ABSTRACT

Keyword search over relational databases has gained popularity as it provides a user-friendly way to explore structured data. Current research in keyword search has largely ignored queries to retrieve statistical information from the database. The work in [13] extends keywords by supporting aggregate functions in their SQAK system. However, SQAK does not consider the semantics of objects and relationships in the database, and thus suffers from the problems of returning incorrect answers. In this work, we propose a semantic approach to answer keyword queries involving aggregates and GROUPBY. Our approach utilizes the ORM schema graph to capture the Object-Relationship-Attribute (ORA) semantics in the database, and determines the various interpretations of a query before generating the corresponding SQL statements. These semantics enable us to distinguish objects with the same attribute value and detect duplications of objects in relationships to compute the answers correctly. Our approach can also handle unnormalized relations in the database and GROUPBY in keyword queries which SQAK cannot. Experiments on the TPC-H and ACM Digital Library publication datasets demonstrate the advantages of the proposed semantic approach in retrieving correct statistical information for users.

1. INTRODUCTION

As databases increase in size and complexity, the ability for users to issue structured queries in SQLs has become a challenge. Keyword search over relational databases has gained traction as it provides a user-friendly way to explore structured data. Current research in keyword search has largely ignored queries to retrieve statistical information from the database. The work in [13] extends keywords by supporting aggregate functions in their SQAK system. However, SQAK does not consider the semantics of objects and relationships in the database, and thus suffers from the problems of returning incorrect answers. In this work, we propose a semantic approach to answer keyword queries involving aggregates and GROUPBY. Our approach utilizes the ORM schema graph to capture the Object-Relationship-Attribute (ORA) semantics in the database, and determines the various interpretations of a query before generating the corresponding SQL statements. These semantics enable us to distinguish objects with the same attribute value and detect duplications of objects in relationships to compute the answers correctly. Our approach can also handle unnormalized relations in the database and GROUPBY in keyword queries which SQAK cannot. Experiments on the TPC-H and ACM Digital Library publication datasets demonstrate the advantages of the proposed semantic approach in retrieving correct statistical information for users.

Aggregate queries is a powerful mechanism that provides users with a summary of the data. The work in [13] developed a prototype system called SQAK that allows aggregate queries to be expressed using simple keywords. An aggregate query in SQAK comprises of a set of terms and one of the terms is an aggregate function such as COUNT, SUM, AVG, MIN, or MAX. SQAK models the database schema as a schema graph where each node represents a relation and each edge represents a foreign key-key reference. Then SQAK identifies the matches of each term in a query. A relation is matched if a term matches its name, or the name of one of its attributes, or the value of some of its tuples. A set of minimal connected subgraphs of the schema graph that contain the matched relations are generated. These subgraphs are translated into SQL statements to retrieve answers from the database. Note that an aggregate function(s) is applied to the attribute that follows the aggregate term in the query.

Figure 1 shows a sample university database. Suppose we want to know the total credits obtained by the student Green. We can issue a keyword query \(Q_1 = \{\text{Green SUM Credit}\} \), where the term SUM indicates the aggregate function SUM on the course credits, and SQAK will generate the following SQL statement for the query:

```
SELECT S.Sname, SUM(C.Credit) FROM Student S, Enrol E, Course C WHERE E.Sid=S.Sid AND E.Code=C.Code AND S.Sname='Green' GROUP BY Sname
```

We observe that SQAK may compute incorrect answers when a query term matches multiple tuples. We see that the term Green in \(Q_1 \) matches the names of two students \(s_2 \) and \(s_3 \) in Figure 1. This naturally implies that we should find the sum of the credits obtained by each of these students.

Figure 1: Example university database
i.e., the total credits for s2 is 5 while the total credits for s3 is 8. However, SQAK does not distinguish between these two “different” name matches, and outputs a total credits of 13 for students called Green, which is incorrect.

Similarly, SQAK may return incorrect answers when a query matches a relation that has more than 2 foreign keys. For instance, the Teach relation in Figure 1 contains 3 foreign keys that reference the relations Course, Lecturer and Textbook respectively, and depicts that a course can be taught by more than one lecturer using different textbooks. Suppose we have a query $Q_2 = \{\text{Java SUM Price}\}$, where the term Java matches a course title while the term Price matches an attribute of the Textbook relation. This implies that we should return the total price of the textbooks that are used in the Java course. Based on the Teach relation, there are 2 such textbooks b1 and b2 whose total price is 25. But SQAK will generate the following SQL statement:

```sql
SELECT C.Title, SUM(B.Price)
FROM Course C, Teach T, Textbook B
WHERE T.Bid = B.Bid AND T.Code = C.Code
AND C.Title = 'Java'
GROUP BY C.Title
```

which returns 35 for total price because textbook b1 appears 2 times for the Java course (i.e., c1) in the Teach relation. This answer is incorrect as a student does not need 2 copies of the same textbook for a course.

In addition, many applications often denormalize their databases to improve runtime performance. This denormalization leads to data duplication which affects the database schema graph. As SQAK does not consider unnormalized relations in the database, it will return incorrect answers for aggregate queries.

Figure 2 shows an unnormalized university database where the Lecturer relation now has a foreign key that references the Faculty relation. Consider the query $Q_3 = \{\text{Engineering COUNT Department}\}$, where the term Engineering matches a faculty name while the term Department matches the name of the Department relation. SQAK will find the number of departments in Engineering faculty by joining the relations Department, Lecturer and Faculty, and output an incorrect answer 2. This is because the values of attributes Did and Fid in the Lecturer relation are duplicated.

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Department</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fid</td>
<td>Lname</td>
<td>Did</td>
</tr>
<tr>
<td>11</td>
<td>Sivan</td>
<td>all</td>
</tr>
<tr>
<td>12</td>
<td>George</td>
<td>all</td>
</tr>
</tbody>
</table>

Figure 2: An unnormalized university database

We advocate that a relational database is essentially a repository of objects that interact with each other via relationships that are embedded in foreign key-key references. Since SQAK does not consider the semantics of objects and relationships in the database, it will not be able to distinguish objects with the same attribute value (as in Q_1), and it will fail to detect the duplications of objects in relationships (as in Q_2). This leads to the incorrect computations of aggregate queries. Further, if relations are unnormalized with duplicate information of objects and relationships, SQAK may compute the same information repeatedly and return incorrect answers to aggregate queries (as in Q_3).

In this paper, we propose a semantic approach to answer keyword queries involving aggregates and GROUPBY on relational databases. Our approach utilizes the ORM schema graph introduced in [15] to capture the Object-Relationship-Attribute (ORA) semantics in the database. Given an aggregate query, we analyze the context of query keywords, interpret the various interpretations of the query and then apply aggregate functions and GROUPBY on the appropriate attributes of objects/relationships based on the ORM schema graph. Each query interpretation is denoted as a minimal connected graph called annotated query pattern. The top-k ranked annotated query patterns are translated into SQL statements to compute the answers to the aggregate query. By using the ORA semantics, we can distinguish the objects with the same attribute value as well as detect the duplications of objects in relationships in order to avoid incorrect computations of aggregate functions. Otherwise, it is impossible to answer aggregate queries correctly. We also develop a mechanism to detect duplicate information of objects/relationships arising from unnormalized relations so that the aggregate functions will not repeatedly compute statistics for the same information.

The contributions of our work are summarized as follows:

1. We examine how SQAK answers aggregate queries in relational keyword search, and identify its problems of returning incorrect answers due to its unawareness of the ORA semantics in the database.
2. We extend the keyword query language to incorporate aggregates and GROUPBY, and propose a semantic approach to process aggregate queries. We show that without the ORA semantics, it is impossible to process the aggregate functions correctly.
3. By using the ORA semantics, we detect the duplications of objects and relationships arising from unnormalized relations, and extend our approach to handle aggregate queries on unnormalized databases correctly.
4. We conduct extensive experiments to demonstrate the correctness of our approach in retrieving statistical information for users.

2. PRELIMINARIES

The work in [15] extends the keyword query language to include keywords that match meta-data, i.e., the names of relations and attributes. These keywords reduce query ambiguity by providing the context of subsequent keywords in the query.

Consider the query {Lecturer George} on the database in Figure 1. The keyword George can refer to a student name or a lecturer name. However, since the keyword Lecturer matches the name of the relation Lecturer and provides the context of the keyword George, we deduce that the user is more likely to be interested in a lecturer named George rather than a student. Here, we further extend the query language to incorporate aggregates and GROUPBY.

Definition 1. A keyword query Q is a sequence of terms $\{t_1 t_2 \cdots t_n\}$ where each term t_i either matches a relation name, an attribute name, a tuple value, GROUPBY or an aggregate function MIN, MAX, AVG, SUM or COUNT.

In order to properly interpret a keyword query involving aggregate functions and GROUPBY, we impose the following constraints on the terms in the query:
1. The last term \(t_n \) cannot match an aggregate function or GROUPBY.

2. For each term \(t_i \), \(i < n \) that matches the aggregate function \(MIN, MAX, AVG \) or \(SUM \), the next term \(t_{i+1} \) should match an attribute name.

3. For each term \(t_i \), \(i < n \) that matches \(COUNT \) or GROUPBY, the next term \(t_{i+1} \) should match either a relation name or an attribute name.

A query that satisfies the last constraint is \{COUNT Student GROUPBY Course\}. An SQL statement to find the number of students in each course is generated as follows:

```sql
SELECT C.Code, COUNT(S.Sid) As numSid
FROM Student S, Enrol E, Course C
WHERE E.Sid = S.Sid AND E.Code = C.Code
GROUP BY C.Code
```

Note that the terms Student and Course match the names of the Student and Course relations, and are mapped to \(Sid \) and \(Code \) respectively.

2.1 Query Patterns

The work in [16] classifies the relations in a database into object relations, relationship relations, mixed relations and component relations. An object (relationship resp.) relation captures the information of objects (relationships resp.), i.e., the single-valued attributes of an object class (relationship type). Multivalued attributes of an object class (relationship type) are captured in object/relationship component relations. A mixed relation contains information of both objects and relationships, which occurs when we have a many-to-one relationship. We call these semantics the Object-Relationship-Attribute (ORA) semantics.

A keyword query is inherently ambiguous as each keyword can have multiple matches. [15] introduces the notion of query patterns to depict the interpretations of a keyword query. These query patterns are generated from the Object-Relationship-Mixed (ORM) schema graph of the database. The ORM schema graph is an undirected graph that captures the ORA semantics in the database. Each node in the ORM schema graph comprises of an object/relationship/mixed relation and its component relations, and is associated with a type (object, relationship and mixed). Two nodes are connected if there exists a foreign key - key reference between the relations in these two nodes.

In Figure 1, the relations Student, Course, Faculty and Textbook are object relations while Enrol and Teach are relationship relations. Relations Lecturer and Department are mixed relations because of the many-to-one relationships between lecturers and departments, and the many-to-one relationships between departments and faculties respectively. Figure 3 shows the ORM schema graph of the database.

A query pattern for the keyword query \{Green George Code\} is shown in Figure 4. This pattern depicts the query interpretation to find the common courses taken by students Green and George. We generate this pattern by first identifying the matches of each term in the query. The term Code matches the name of an attribute in the Course relation, while both terms Green and George match some tuple value in the Student relation, specifically, the value of Sname attribute. Based on these matches, we know that Green and George refer to two student objects and Code refers to a course object. Thus, we create 2 Student nodes and 1 Course node to represent these objects. From the ORM schema graph in Figure 3, we know that the Student node and the Course node are connected via an Enrol node. Hence, we create 2 Enrol nodes and obtain the query pattern in Figure 4.

![Figure 3: ORM schema graph of Figure 1](image1)

![Figure 4: Query pattern of \{Green George Code\}](image2)

Note that the term George can refer to a lecturer object since it also matches some tuple value in the Lecturer relation. Hence, this keyword query has more than one query pattern. We rank these query patterns and translate the top-k ranked patterns into SQL statements.

In this work, we want to utilize these query patterns to capture the interpretations of an aggregate query. However, since we extend the keyword query to include GROUPBY and aggregate functions, we need to annotate the nodes that the GROUPBY and aggregate functions are applicable to. Annotating the appropriate nodes is important as it will facilitate the translation of the query pattern into SQL statements to retrieve the correct answers for the aggregate query. We will discuss how we achieve this in the next section.

3. AGGREGATE QUERIES ON NORMALIZED DATABASE

3.1 Simple Aggregate Queries

Given a keyword query \(Q = \{t_1 \ t_2 \ \cdots \ t_n\} \), we first classify the terms \(t_i \) into basic terms and operators. A basic term matches a relation name, or an attribute name, or a tuple value, while an operator matches GROUPBY or an aggregate function. Then we process \(Q \) as follows:

1. **Pattern generation and annotation.** We utilize the ORM schema graph of the database and the basic terms in the query to generate a set of query patterns, and annotate these patterns with the operators.

2. **Pattern disambiguation.** We disambiguate the query patterns by annotating the object/mixed nodes with GROUPBY. This is to distinguish objects with the same attribute value in the database.

3. **Pattern translation.** We translate the top-k ranked query patterns into SQL statements to compute the aggregate functions in the query.

We explain the details of these steps next.

3.1.1 Pattern Generation and Annotation

We use the basic terms in a query to generate a set of initial query patterns. Each pattern \(P \) contains a set of
nodes that represent the objects or relationships referred to by the basic terms. The nodes are connected based on the ORM schema graph as described in [15]. A node is annotated with the condition \(a = t \) if the basic term \(t \) refers to the value of the attribute \(a \) of the object/relationship.

For each operator \(t_i \in Q \), we examine the matches of its subsequent term \(t_{i+1} \) in \(Q \) to annotate query pattern \(P \). We have two cases:

a. \(t_{i+1} \) matches the name of some object/ mixed/ relationship relation.

This indicates that \(t_{i+1} \) refers to some object or relationship, and the operator \(t_i \) is applied on the identifier \(id \) of this object/relationship. We annotate the node that represents this object/relationship in \(P \) with \(t_i(id) \), \(id \) is given by the primary key of the relation.

b. \(t_{i+1} \) matches the name of a component relation or an attribute name.

This indicates that \(t_{i+1} \) refers to some attribute \(a \) of an object or relationship, and \(t_i \) is applied on this object/relationship attribute. We annotate the node that represents this object/relationship in \(P \) with \(t_i(a) \).

Example 1. Consider query \(Q_4 = \{ \text{Green George COUNT Code} \} \). Figure 4 shows a query pattern obtained using the basic terms Green, George and Code. For the operator \(\text{COUNT} \), its subsequent term \(\text{Code} \) matches an attribute name in the \(\text{Course} \) relation. Hence, we annotate the \(\text{Course} \) node with \(\text{COUNT(Code)} \). Figure 5(a) shows the annotated query pattern \(P_1 \) that depicts the query interpretation to find the total number of courses taken by students Green and George.

Example 2. Query \(Q_5 = \{ \text{COUNT Lecturer GROUPBY Course} \} \) has two basic terms \(\text{Lecturer} \) and \(\text{Course} \). We generate a query pattern that contains a \(\text{Teach} \) relationship node between the objects \(\text{Lecturer} \) and \(\text{Course} \). For the operator \(\text{GROUPBY} \), since its subsequent term \(\text{Course} \) matches the name of the \(\text{Course} \) relation, and refers to a course object, we obtain the identifier of the course object and annotate the corresponding \(\text{Course} \) node in the query pattern with \(\text{GROUPBY(Code)} \). Similarly, the operator \(\text{GROUPBY} \) has a subsequent term \(\text{Lecturer} \) that matches the name of the \(\text{Lecturer} \) relation. We annotate the \(\text{Lecturer} \) node with \(\text{COUNT(Lid)} \) and obtain the annotated query pattern \(P_2 \) in Figure 5(b). This query pattern indicates that the user is interested in the number of lecturers for each course.

Figure 5: Annotated query patterns of \(Q_4 \) and \(Q_5 \)

3.1.2 Pattern Disambiguation

After annotating the query pattern with operators, we examine the object and mixed nodes in the pattern. An object/mixed node with the condition \(a = t \) refers to an object such that its value of attribute \(a \) matches the basic term \(t \). However, since this condition could be satisfied by more than one object in the database, there are two different interpretations of \(t \) in the context of the aggregate query:

1. Apply the aggregate function(s) for every distinct object satisfying the condition \(a = t \).
2. Apply the aggregate function(s) for all the objects satisfying the condition \(a = t \).

These two interpretations will lead to different results of the aggregate function(s) and we need to distinguish them in the annotated query pattern. Note that SQAK does not distinguish objects satisfying the same condition, and thus returns incorrect answers to the query.

Let \(P \) be an annotated query pattern for aggregate query \(Q \) and \(U \) be a set of object/mixed nodes in \(P \). We generate a set of patterns \(S \) to indicate if objects with the same value will be distinguished for aggregates. Initially, \(S \) only contains the pattern \(P \). For each node \(u \in U \) that is annotated with the condition \(a = t \), we check if more than one object satisfies this condition in the database. If so, we create a copy of each pattern in \(S \) to indicate if objects that satisfy the condition \(a = t \) will be distinguished in these patterns. Let \(P_1 \) be a pattern in \(S \) and \(P_2 \) be a copy of \(P_1 \). We annotate \(u \) in \(P_2 \) with \(\text{GROUPBY(id)} \), where \(id \) is the identifier of the object referred to by \(u \). In particular, \(P_1 \) indicates that aggregate function(s) is applied for all the objects that satisfy \(a = t \), while \(P_2 \) indicates that aggregate function(s) is applied for every distinct object with \(a = t \).

Example 3. Consider the query pattern \(P_1 \) for the query \(Q_4 = \{ \text{Green George COUNT Code} \} \) in Figure 5(a). This pattern contains three object/mixed nodes: one \(\text{Course} \) node and two \(\text{Student} \) nodes that are annotated with the conditions \(\text{Sname = Green} \) and \(\text{Sname = George} \) respectively. For the \(\text{Student} \) node imposed by the condition \(\text{Sname = George} \), we do not need to create new copies of query patterns as there is only one student called George in Figure 1. However, for the \(\text{Student} \) node imposed by the condition \(\text{Sname = Green} \), we know that there are two students called Green in Figure 1. Hence, we create a copy \(P_2 \) of the pattern \(P_1 \) and annotate this node with \(\text{GROUPBY(Sid)} \) in \(P_3 \). Figure 6 shows the query pattern \(P_3 \). It indicates that the aggregate function counts the number of courses enrolled by each student called Green. In contrast, pattern \(P_1 \) indicates that the count aggregate is applied for both these two students.

Figure 6: A query pattern for \(Q_4 \)

Next, we rank the query patterns. [15] classifies nodes in a query pattern into target nodes and condition nodes. A target node specifies the search target of the query, and a condition node indicates the search conditions of the query. A query pattern is ranked based on its number of object/mixed
nodes and the average distance between the target and condition nodes. Patterns with fewer object/mixed nodes, and a shorter average distance are ranked higher.

Here, we extend the definitions of target nodes and condition nodes to rank the query patterns of an aggregate query. Let P be an annotated query pattern and u be a node in P. We say u is a target node if u is annotated with an aggregate function. Otherwise, u is a condition node if u is annotated with a condition or GROUPBY. We can now use the same method as [15] to rank the annotated query patterns.

3.1.3 Pattern Translation

Finally, we translate the top-k ranked query patterns into SQL statements. A straightforward way to translate an annotated query pattern is to join the relations of all the nodes in the pattern, select the tuples that satisfy the conditions imposed by basic terms from the join result, and then apply GROUPBY and aggregate function(s) on the selected tuples. However, this may generate an SQL statement that gives an incorrect answer to the query.

Example 4. Consider the query pattern P_2 for the query $Q_2 = \{\text{COUNT Lecturer GROUPBY Course}\}$ in Figure 5(b). If we simply translate P_2 into an SQL statement that joins the relations Teach, Lecturer and Course, and applies the count aggregate on the lecturer id Lid after grouping the tuples by the course code, we may obtain wrong answers as the same lecturer may be counted multiple times. This is because the Teach node in P_2 is in fact a ternary relationship involving the objects course, lecturer and textbook (see the ORM schema graph in Figure 3). Since different Bid may have the same Lid and Code, we should project the Teach relation on the foreign keys (Lid, Code) to remove duplicates before joining with the relations Lecturer and Course.

The above example demonstrates the need to examine the type of nodes in a query pattern if we want to generate the SQL statement correctly. In particular, if the query pattern contains a relationship node u, we should look at its corresponding node v in the ORM schema graph to determine if a projection is needed to remove duplicates. Note that SQAQ does not detect the duplications of objects in relationships, and suffers from the problem of returning incorrect answers.

Given a query pattern P, we generate the clauses in an SQL statement as follows:

SELECT clause.
If a node $u \in P$ is annotated with $t(a)$ and t matches an aggregate function, we include t in the SELECT clause. t is applied on attribute a. If u is annotated with GROUPBY(a), we include a in the SELECT clause to facilitate user understanding of the aggregate function(s).

FROM clause.
This clause includes the relations of all the nodes in P. For each relationship node $u \in P$, we check its corresponding node v in the ORM schema graph. Let $N_v = \{u_1, u_2, \ldots, u_y\}$ be a set of object/mixed nodes that are directly connected to v in the ORM schema graph. If $x < y$, then this indicates that P contains a subset of the participating objects of the relationship v, and we project the foreign keys k_1, k_2, \ldots, k_x in the relation of u such that k_i references the relation of u_i in N_v, $i \in [1, x]$. This projection eliminates duplicates and we replace the relation of u in the FROM clause with the relation obtained by this projection.

WHERE clause. The WHERE clause joins all the relations in the FROM clause based on foreign key - key references. For each node $u \in P$ that is annotated with a condition $a = t$, we include the condition "R_u.a contains t'" where R_u is the relation corresponding to u.

GROUPBY clause. If a node u is annotated with $t(a)$ and t matches GROUPBY, then we include the attribute a in the GROUPBY clause.

Example 5. The query pattern P_3 in Figure 6 for query $Q_3 = \{\text{COUNT Lecturer GROUPBY Course}\}$ depicts the total number of courses enrolled by the student George and each of the students called Green. The Course node is annotated with COUNT(Code), thus we include COUNT(Code) in the SELECT clause. The FROM clause contains the relations corresponding to each of the nodes in P_3. Next, we add the conditions to join these relations in the WHERE clause, as well as the conditions in the two annotated Student object nodes. Since the Student node is annotated by the condition Sname = Green is also annotated with GROUPBY to distinguish different students called Green, we include the id of its relation in the GROUPBY clause, and obtain the SQL statement:

```
GROUP BY S1.Sid
```

By applying GROUPBY on student ids, we distinguish students s2 and s3 who have the same name Green, and the aggregate function COUNT is computed for the courses of each student.

Example 6. The query pattern P_3 in Figure 5(b) for query $Q_3 = \{\text{COUNT Lecturer GROUPBY Course}\}$ depicts the number of lecturers for each course. The Lecturer node is annotated with COUNT(Lid) while the Course node is annotated with GROUPBY (Code). Hence, we include the aggregate function COUNT(Lid) in the SELECT clause, and the attribute Code in the GROUPBY clause. The Teach node in P_3 is connected to two object/mixed nodes, while the corresponding Teach node in the ORM schema graph in Figure 3 is connected to three object/mixed nodes. We generate a subquery "SELECT DISTINCT Lid, Code FROM Teach" to project the attributes Lid and Code in the Teach relation. The subquery has a DISTINCT keyword and thus eliminates any duplicates of (Lid, Code) for different Bid. We use the result of this subquery to join the other relations in the FROM clause. The SQL statement generated is:

```
SELECT C.Code, COUNT(L.Lid) AS numLid FROM Lecturer L, Course C, Teach T
(SELECT DISTINCT Lid, Code FROM Teach) T
WHERE T.Lid=L.Lid AND T.Code=C.Code
GROUP BY C.Code
```

3.2 Nested Aggregate Queries

So far, we have described how to handle keyword queries involving simple aggregate functions and GROUPBY. In order to maximize the power of aggregate queries, we also want to support queries with nested aggregate functions.

Given a keyword query $Q = \{t_1, t_2, \ldots, t_n\}$, we relax the constraints on the terms so that if the term t_i, $i < n$ matches
an aggregate function, the next term t_{i+1} can also match an aggregate function. In this case, the aggregate function t_i is applied on the result of the aggregate function t_{i+1}.

Let P be a query pattern obtained from basic terms in the query. We annotate P with $t_i(f)$, where f is the attribute name assigned to the result of aggregate function t_{i+1}. Then we generate a nested SQL statement for P. The inner query computes the aggregate function t_{i+1}, while the outer query includes the inner query in the FROM clause and computes the aggregate function t_i.

Example 7. Suppose the user issues a query `{ AVG COUNT Lecturer GROUPBY Course }` to find the average number of lecturers that teach a course. Both the terms AVG and COUNT match some aggregate function. We obtain the query pattern and annotate the operators COUNT and GROUPBY. For the AVG operator, we annotate the pattern with AVG(numLid), where numLid is the attribute name given to the result of the aggregate function COUNT. Figure 7 shows the annotated query pattern. We translate the query pattern by first generating an inner SQL query similar to that in Example 6. Then we put it in the FROM clause of the outer SQL query to compute the aggregate function AVG as follows:

```sql
SELECT AVG(R.numLid) AS avgnumLid
FROM ( SELECT C.Code, COUNT(L.Lid) AS numLid
FROM Lecturer L, Course C,
(SELECT DISTINCT Lid, Code FROM Teach) T
WHERE T.Lid=L.Lid AND T.Code=C.Code
GROUP BY C.Code ) R
```

![Figure 7: Query pattern in Example 7](image)

4. AGGREGATE QUERIES ON UNNORMALIZED DATABASE

Relations in a relational database are often unnormalized to reduce the number of joins and improve query processing performance. A relational database that contains unnormalized relations is called an unnormalized database. The denormalization process will duplicate information in the database and SQAK may obtain incorrect results for keyword queries involving aggregates.

Recall that in Figure 2, the Lecturer relation is denormalized by adding a foreign key Fid that references the Faculty relation. This allows queries that are frequently issued on lecturers and their faculties to be answered quickly without the need to join the Department relation. Given a query Q_2 = `{Engineering COUNT Department}`, SQAK will join the relations Lecturer, Department and Faculty and return the incorrect number of departments in the Engineering faculty as it does not handle unnormalized relations.

In order to generate SQL statements correctly for keyword queries involving aggregates, we need to determine if relations are unnormalized. This can be done by examining the functional dependencies that hold on the relations.

Consider the unnormalized relation Enrolment in Figure 8 that is obtained by joining the Student, Enrol and Course relations in Figure 1. The following functional dependencies hold on the Enrolment relation:

- $Sid \rightarrow Sname, Age$
- $Code \rightarrow Title, Credit$
- $Sid, Code \rightarrow Grade$

We deduce that \{Sid, Code\} is the key of the Enrolment relation, and it violates the second normal form (2NF) definition as Sname and Age only depend on Sid.

<table>
<thead>
<tr>
<th>Enrolment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sid</td>
</tr>
<tr>
<td>s1</td>
</tr>
<tr>
<td>s1</td>
</tr>
<tr>
<td>s1</td>
</tr>
<tr>
<td>s2</td>
</tr>
<tr>
<td>s3</td>
</tr>
<tr>
<td>s3</td>
</tr>
</tbody>
</table>

Figure 8: An unnormalized relation

A naive approach to handle a keyword query involving aggregate functions on the unnormalized database is to generate a copy of the database where every relation is normalized and then process the query as described in Section 3. However, this approach is expensive and not feasible in practice.

We observe that although the relations are unnormalized, the information of objects and relationships in the database remain the same. Hence, if we can keep track of the objects and relationships information in an unnormalized database, then we can continue to process keyword queries involving aggregates and GROUPBY correctly.

Recall that the ORM schema graph captures the information of objects and relationships in the database by classifying the relations into different types. These relations are assumed to be in 3NF. Thus, we generate a normalized view of the unnormalized database comprising of a minimal set of relations in 3NF. Then we classify the relations in this normalized view and construct the ORM schema graph to represent the ORA semantics in the unnormalized database.

Let $D = \{R_1, R_2, \ldots, R_l\}$ be the set of relations in the original unnormalized database schema, and D' be the set of relations in the normalized view. For each $R_i \in D$, $1 \leq i \leq j$, if R_i is in 3NF, then we add it to D'. Otherwise, we normalize R_i into a set of relations in 3NF and add them to D'. Finally, relations in D' with the same key are merged.

We use relational algebra operators to express the mappings of the relations from D to D', and vice versa.

Example 8. Let us generate the normalized view of the unnormalized database in Figure 8. The database consists of a single relation Enrolment and has the schema D below:

```
Enrolment(Sid, Code, Sname, Age, Title, Credit, Grade)
```

Since the Enrolment relation is not in 3NF, we decompose it into 3NF relations Student', Enrol' and Course'. Thus, the normalized view D' will have the relations:

```
Student'(Sid, Sname, Age)
Enrol'(Sid, Code, Grade)
Course'(Code, Title, Credit)
```

Based on D', we construct the ORM schema graph of the unnormalized database as shown in Figure 9. Table 1 shows the mappings of the relations in D and D'.
After obtaining the normalized view D' and the ORM schema graph G of the unnormalized database with schema D, we can proceed to evaluate an aggregate query Q on D' correctly as follows:

First, we identify the matches of each basic term in the unnormalized database. Let R be the relation in D such that a basic term t matches the relation name of R, or the name of an attribute in R, or the value of some tuples in R. We obtain the corresponding relations of R in D' based on the mappings from D to D'.

Next, we utilize the relations in D' to generate the query patterns based on G, and annotate these patterns with the operators in the query as described in Section 3. Note that the generated query patterns are based on the normalized view D', since G is constructed from D'.

Finally, we translate the annotated query patterns into SQL statements to be executed over the original unnormalized database. This requires us to map the relations in D' back to their corresponding relations in D. Depending on the mappings, a relation R' that corresponds to a node in the query pattern may become a subquery in SQL.

EXAMPLE 9. Consider query $Q_1 = \{ \text{Green George COUNT Code} \}$ on the unnormalized database in Figure 8. The terms Green and George match the Sname attribute values of some tuples in the Enrolment relation, while the term Code matches the name of an attribute in Enrolment.

Based on Table 1(a), these matches correspond to 2 Student' relations and 1 Course' relation in the normalized view of the database respectively, indicating that Green and George refer to two student objects, while Code refers to a course object. Based on the ORM schema graph in Figure 9, we generate a query pattern that connects 2 Student' nodes and 1 Course' node via 2 Enrol' nodes, and annotate it with operators COUNT and GROUPBY.

Figure 10 shows the query pattern obtained. It depicts the query interpretation to find the total number of courses taken by the student George and each student called Green. We use the mappings in Table 1(b) to translate the query pattern and obtain an SQL statement with 5 subqueries, namely, 2 subqueries for Student' relation, 2 subqueries for Enrol' relation, and 1 subquery for Course' relation in the normalized view of the database.

Table 1: Mappings of relations in Example 8

<table>
<thead>
<tr>
<th>Relation</th>
<th>Mapped View</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student'</td>
<td>$\Pi_{\text{Sid, Sname, Age}}(\text{Enrolment})$</td>
</tr>
<tr>
<td>Enrol'</td>
<td>$\Pi_{\text{Sid, Code, Grade}}(\text{Enrolment})$</td>
</tr>
<tr>
<td>Course'</td>
<td>$\Pi_{\text{Code, Title, Credit}}(\text{Enrolment})$</td>
</tr>
</tbody>
</table>

(a) From original schema D to normalized view D'

$\text{Enrolment} = \text{Student'} \bowtie \text{Enrol'} \bowtie \text{Course'}$

(b) From normalized view D' to original schema D

Figure 9: ORM schema graph of Figure 8

Figure 10: Query pattern in Example 9

$$\text{SELECT} \; S1'.\text{Sid}, \; \text{COUNT}(\text{C'.Code}) \; \text{AS numCode FROM}$$

$$(\text{SELECT DISTINCT Code, Title, Credit FROM Enrolment}) \; C', \; (\text{SELECT Sid, Code, Grade FROM Enrolment}) \; E1',$$

$$(\text{SELECT DISTINCT Sid, Sname, Age FROM Enrolment}) \; S1',$$

$$(\text{SELECT Sid, Code, Grade FROM Enrolment}) \; E2',$$

$$(\text{SELECT DISTINCT Sid, Sname, Age FROM Enrolment}) \; S2' \; \text{WHERE} \; C'.\text{Code}=\text{E1'.Code} \; \text{AND} \; C'.\text{Code}=\text{E2'.Code} \; \text{AND} \; S1'.\text{Sid}=\text{E1'.Sid} \; \text{AND} \; S1'.\text{Sname} \; \text{contains} \; \text{Green} \; \text{AND} \; S2'.\text{Sid}=\text{E2'.Sid} \; \text{AND} \; S2'.\text{Sname} \; \text{contains} \; \text{George} \; \text{GROUP BY} \; S1'.\text{Sid}$$

4.1 Query Rewriting

The generated SQL statement may contain a lot of subqueries since the mapping from a relation $R' \in D'$ to a relation $R \in D$ for a node in P often involves a subset of the attributes of R. Joining relations obtained from subqueries is time consuming due to the lack of indexes. Hence, it is crucial to rewrite the SQL to improve query performance.

We observe that some attributes in the SELECT clause of subqueries are never used, and can be removed. In Example 9, we can rewrite the subquery “SELECT DISTINCT Code, Title, Credit FROM Enrolment” to “SELECT DISTINCT Code FROM Enrolment”, since Title and Credit are not used.

Further, some select conditions in the SQL statement can be moved to the WHERE clause of subqueries so that tuples can be filtered out before the join, e.g., we can rewrite the subquery “SELECT DISTINCT Sid, Sname, Age FROM Enrolment” to “SELECT DISTINCT Sid, Sname, Age FROM Enrolment WHERE Sname contains ‘Green’” to filter out the students whose names are not Green.

Finally, relations are unnormalized to reduce the number of joins. We can try to use the unnormalized relation to replace the joining of relations obtained from subqueries. For example, the Enrolment relation is equivalent to the joins of relations obtained from the subqueries “SELECT DISTINCT Code, Title, Credit FROM Enrolment”, “SELECT Sid, Code, Grade FROM Enrolment”, and “SELECT DISTINCT Sid, Sname, Age FROM Enrolment”. Hence, we can use the Enrolment relation to replace these subqueries.

Based on the above observations, We derive the following heuristics to rewrite an SQL statement sql for the unnormalized database:

Rule 1: If a subquery projects an attribute that does not appear in the SELECT and WHERE clause of sql, then remove this attribute.

Rule 2: If a subquery projects an attribute a that appears in the condition “a contains” of sql, then put this condition in the WHERE clause of the subquery.

Rule 3: Let s_1, s_2, \ldots, s_m be a set of subqueries in sql. If there exists a relation R such that $s_1 \bowtie s_2 \bowtie \cdots \bowtie s_m = \Pi_L(R)$, where L is a superkey of R, then replace $s_1 \bowtie s_2 \bowtie \cdots \bowtie s_m$ with R.

167
Example 10. Consider the SQL statement in Example 9. Since the joins of the subqueries “SELECT DISTINCT Code, Title, Credit FROM Enrolment”, “SELECT Sid, Code, Grade FROM Enrolment”, and “SELECT DISTINCT Sid, Sname, Age FROM Enrolment” is equivalent to the Enrolment relation, we replace $C' \bowtie E' \bowtie S' \bowtie$ by the Enrolment relation. Further, we see that the joins of the subqueries “SELECT Sid, Code, Grade FROM Enrolment” and “SELECT DISTINCT Sid, Sname, Age FROM Enrolment” is equivalent to a relation obtained by projecting a super key (Sid, Code, Title, Credit, and Grade) of the Enrolment relation. Hence, we can also replace $E' \bowtie S'$ by the Enrolment relation, and obtain:

```
SELECT R1.Sid, COUNT(R1.Code) AS numCode
FROM Enrolment R1, Enrolment R2
AND R2.Sname contains 'George'
GROUP BY R1.Sid
```

5. ALGORITHMS

Algorithm 1 generates a normalized view D' of the database schema D, if D is not normalized. For each relation R in D, if R is in 3NF, we add it into D' directly, otherwise we normalize R into a set of 3NF relations and add them into D'. After checking the relations in D, we enumerate each pair of relations R'_1 and R'_2 in D'. If R'_1 and R'_2 have the same key, then we merge them into a single relation R'. After generating the database schema D' and the normalized view D', we obtain the mappings between D and D'. We call Algorithm 2 to process a keyword query Q and generate SQL statements. If the schema D is normalized, we construct the ORM schema graph G based on D. For each basic term t in Q, we find its matches in the database and create a tag for each of the matches to capture the interpretation of t. We insert these tags into a tag set $taglist$ (Lines 4-7). Based on $taglist$ and G, we generate a list of query patterns $ptnlist$ as described in [15], and annotate these patterns with the operators in Q (Lines 8-9). Then we translate each pattern P in $ptnlist$ into an SQL statement sql according to D', and insert it into $sqllist$ (Lines 10-12). If the schema D is unnormalized, we construct the ORM schema graph G based on D'. For each basic term t, we create tags for t based on the matches in D and the mappings in D'. We generate a list of query patterns $ptnlist$ based on the tags and the ORM schema graph, and annotate each pattern P in $ptnlist$ with the operators. Then we translate each pattern P into an SQL statement sql based on D', and map the relations of D' back to the relations of D in sql. Finally, we rewrite sql to sql' to reduce the number of subqueries and insert sql' into $sqllist$ (Lines 14-26). Algorithm 3 annotates the query patterns. For each pattern P in $ptnlist$, we annotate P with operators. For each operator t in Q, let t' be the next term of t in Q. If t' is a basic term, we check its matches in D. Let u be a node in P and R be the relation of u. If t' matches the name of R, then we annotate u with (R, key); otherwise if t' matches an attribute a of R, we annotate u with $(t(R.a))$. If t' is also an operator, then we annotate pattern P with $(t(t'))$ to indicate that t is a nested aggregate function (Lines 3-12). Next, we check the annotated nodes in the patterns. For each pattern P in $ptnlist$, we create a set S and add P into S. For each object/mixed node u in P, if u is annotated with the condition $a = t$, we find a set of tuples T that satisfy this condition in the relation of u. If T contains more than one tuple, we generate new copies of patterns in S to distinguish the objects that satisfy the same condition. For each pattern P in S, we create a copy P' of P, annotate node u in P' with GROUPBY($R.key$), and add P' into S. Finally, we add the patterns in S into the list aptnlist (Lines 13-24).

6. PERFORMANCE STUDY

In this section, we evaluate the performance of our approach to process keyword queries involving aggregates and GROUPBY. We implement the algorithmologies in Java and carry out experiments on a 3.40 GHz CPU with 8 GB RAM. We use the relational databases TPC-H (TPCH) and ACM Digital Library publication (ACM DL). Table 2 shows the schemas of these databases. Tables 3 and 4 show the queries we constructed for each database and the corresponding descriptions (or search intentions).
Algorithm 3: Annotate Pattern

Input: query \(Q \) and a list of patterns \(\text{ptnlist} \)
Output: a list of annotated patterns \(\text{aptnlist} \)

1. \(\text{aptnlist} \leftarrow \emptyset; \)
2. for each pattern \(P \) in \(\text{ptnlist} \) do
 3. for each operator \(t \) in \(Q \) do
 4. Let \(t' \) be the next term of \(t \) in \(Q \);
 5. if \(t' \) is a basic term then
 6. Let \(u \) be a node in \(P \) and \(R \) be the relation of \(u \);
 7. if \(t' \) matches the name of \(R \) then
 8. \(\text{Annotate } u \text{ with } t(R;\,\text{key}); \)
 9. else if \(t' \) matches an attribute \(a \) in \(R \) then
 10. \(\text{Annotate } u \text{ with } t(R;\,a); \)
 11. else if \(t' \) is an operator then
 12. \(\text{Annotate } P \text{ with } (t'); \)
 13. for each Object/Mixed node \(u \) in \(P \) do
 14. if \(u \) is annotated with condition \(a = t \) then
 15. Let \(R \) be the relation of \(u \) and \(T \) be the tuples satisfying \(a = t \) in \(R \);
 16. if \(|T| > 1 \) then
 17. for each Pattern \(P \) in \(S \) do
 18. Create a copy \(P' \) of \(P \);
 19. \(\text{Annotate } u \text{ in } P' \text{ with } \text{GROUPBY}(R;\,\text{key}); \)
 20. Add \(P' \) into \(S \);
 21. Add the patterns in \(S \) into \(\text{aptnlist} \);
22. return \(\text{aptnlist} \);

6.1 Effectiveness Experiments

Our approach utilizes the ORM schema graph to capture the ORA semantics in the database, and generates a list of annotated query patterns from the ORM schema graph to represent the various interpretations of a keyword query. Based on these patterns, we distinguish the objects with the same value and detect duplicate objects in relationships in order to compute the answers correctly.

We compare our approach with SQAK [13], the state-of-the-art relational keyword search engine that processes aggregate queries without considering the ORA semantics. SQAK takes an aggregate query and finds a set of relations that are matched by query terms. A relation is matched if a term matches the name of the relation, or the name of one of its attributes, or the relation tuples. Based on these relations, it generates a set of minimal connected graphs called simple query networks (SQN). The SQNs are used to generate the SQL statements to return the answers.

6.1.1 Results for TPCH Database

We use the generated SQL statements that best match the query descriptions in Table 3 to compute the query answers. Table 5 shows the results returned by SQAK and our approach, as well as explanations for these answers. Although both SQAK and our approach give the same answer for queries T1 and T2, they differ greatly for the rest.

Queries T3 and T4 show that our approach is able to distinguish the various interpretations of query terms that match objects with the same value. For query T3, our approach returns the number of orders for each “royal olive” part, while SQAK returns the number of orders for all the “royal olive” parts. This is because we differentiate parts with the same name by their object identifiers partkey. Similarly, for T4, our approach returns the maximum account balance of suppliers for each “yellow tomato” part, whereas SQAK returns the maximum account balance among all the suppliers that supply a “yellow tomato”. Note that our approach can also generate query patterns to compute aggregates without distinguishing objects with the same value.

Our approach is able to compute the answers correctly. For query T5, our approach returns 4 for the number of suppliers that supply “Indian black chocolate”, whereas SQAK counts the same suppliers multiple times for different orders and returns 22, a value that is way above the actual number. Similarly for T6, our approach detects the duplicates of suppliers for different orders, and returns the correct number of parts supplied by each supplier, while SQAK returns incorrect answers.

Queries T7 and T8 demonstrate that our approach can answer aggregate queries that SQAK does not handle. Query T7 requires an SQL statement that contains 2 aggregate functions in the SELECT clause. However, SQAK restricts that the SELECT clause of a generated SQL statement specifies exactly one aggregate function. Query T8 requires an SQL statement to join 2 Part relations, but SQAK does not generate SQL statements that contain self joins of relations.

6.1.2 Results for ACMIDL Database

Table 6 shows the answers and explanations for the queries on the ACMIDL database. Query A1 is relatively straightforward, and both our approach and SQAK return the correct answer. For A2, SQAK also gives the correct answer because the term SIGMOD matches a proceeding acronym and there is no proceedings with the same acronym.

However, for queries A3 and A4, there are 61 editors with the same name Smith and 36 authors with name Gill in the database. Since SQAK does not distinguish the editors and authors with the same name, it returns incorrect number of proceedings and the most recent date of papers respectively.

Similarly, for query A5, our approach returns 6 answers while SQAK only returns 4 answers, as it mixes some papers with the same title.

Query A6 involves 2 aggregate functions. Queries A6 and A7 require self joins of two Author relations and two Editor relations respectively. SQAK is unable to process these queries, while our approach returns the correct answers.
<table>
<thead>
<tr>
<th>#</th>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>order AVG amount</td>
<td>Find the average amount of orders</td>
</tr>
<tr>
<td>T2</td>
<td>MAX COUNT order GROUPBY nation</td>
<td>Find the maximum number of orders among nations</td>
</tr>
<tr>
<td>T3</td>
<td>COUNT order “royal olive”</td>
<td>Find the number of orders that contains the “royal olive”</td>
</tr>
<tr>
<td>T4</td>
<td>supplier MAX acctbal “yellow tomato”</td>
<td>Find the maximum balance of suppliers that supply the “yellow tomato”</td>
</tr>
<tr>
<td>T5</td>
<td>COUNT supplier “Indian black chocolate”</td>
<td>Find the number of suppliers for “Indian black chocolate”</td>
</tr>
<tr>
<td>T6</td>
<td>COUNT part GROUPBY supplier</td>
<td>Find the number of parts supplied by each supplier</td>
</tr>
<tr>
<td>T7</td>
<td>COUNT order SUM amount GROUPBY mktsegment</td>
<td>Find the number of orders and their total amount for each market segment</td>
</tr>
<tr>
<td>T8</td>
<td>COUNT supplier “pink rose” “white rose”</td>
<td>Find the number of suppliers for “pink rose” and “white rose”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Query</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>proceeding AVG pages</td>
<td>Find the average pages of proceedings</td>
</tr>
<tr>
<td>A2</td>
<td>COUNT paper GROUPBY proceeding SIGMOD</td>
<td>Find the number of papers in each ‘SIGMOD’ proceeding</td>
</tr>
<tr>
<td>A3</td>
<td>COUNT proceeding editor Smith</td>
<td>Find the number of proceedings edited by “Smith”</td>
</tr>
<tr>
<td>A4</td>
<td>paper MAX date Gill</td>
<td>Find the date of the latest papers written by ‘Gill’</td>
</tr>
<tr>
<td>A5</td>
<td>COUNT author “database tuning”</td>
<td>Find the number of authors for each “database tuning” paper</td>
</tr>
<tr>
<td>A6</td>
<td>COUNT paper MAX date IEEE</td>
<td>Find the number of papers published by ‘IEEE’ and most recent date</td>
</tr>
<tr>
<td>A7</td>
<td>COUNT paper author John Mary</td>
<td>Find the number of papers co-authored by ‘John’ and ‘Mary’</td>
</tr>
<tr>
<td>A8</td>
<td>COUNT editor SIGIR CIKM</td>
<td>Find the number of editors that edit proceedings ‘SIGIR’ and ‘CIKM’</td>
</tr>
</tbody>
</table>

6.1.3 Queries on Unnormalized Databases

Next, we denormalize the ACMDL and TPCH databases, and obtain the unnormalized database schemas in Table 7. We use the queries in Tables 3 and 4 on the unnormalized databases and compare the results returned by SQAK and our approach.

Tables 8 and 9 show that our approach continues to return correct answers to the queries. In contrast, SQAK either returns incorrect answers or does not handle the queries. For queries T1 and T2, SQAK returns the values 1.78 × 10^5 and 26485 respectively because the information of orders are duplicated in the unnormalized relation `Ordering`. Similarly, SQAK returns the answer 637 for A1, and 2000, 408, 14858, etc. (totally 36 answers) for A2, both of which are incorrect as the information of proceedings and papers are duplicated in the unnormalized relations `EditorProceeding` and `PaperAuthor`. Note that these queries are answered correctly by SQAK when the database is normalized.

For queries T3 to T6 and queries A3 to A5, SQAK returns the incorrect answers for the same reason as discussed in Section 6.1.1 and Section 6.1.2.

This set of experiments clearly demonstrate that the ORA semantics are important to distinguish the various interpretations of keyword queries so that the generated SQL statements will compute statistical information correctly.

6.2 Efficiency Experiments

Finally, we compare the time taken by our approach and SQAK to generate SQL statements. Figure 11 shows the results for TPCH and ACMDL queries in Tables 3 and 4.

We observe that our approach is slightly slower than SQAK for most of the queries. This is because SQAK does not analyze the interpretations of keyword queries but only finds SQNs containing all the query terms. It also does not distinguish objects with the same attribute value or detect the duplicate objects in relationships. Besides, it does not consider the duplications arising from unnormalized relations.

Take query A7 for example. We first parse this query into basic terms (paper, author, John, Mary) and operators (COUNT). Then, we generate a query pattern with one Paper node, two Write nodes and two Author nodes. We annotate the Paper node with the Count operator, and distinguish the authors called John and the authors called Mary respectively. Finally, we detect if information of paper and author objects are duplicated in write relationships, and translate the patterns into SQL statements. In contrast, SQAK does not handle the query because both the terms John and Mary match the values of some tuples in the Author relation.

As the SQL execution time dominates the overall processing time (in seconds), we see that the extra time (in ms) required by our approach to interpret the keyword queries and detect the duplicates is a good tradeoff and important to retrieve correct answers from the databases.

7. RELATED WORK

Existing works on keyword search in relational databases can be classified into data graph approach and schema graph approach. In data graph approach, the relational database is modeled as a graph where each node represents a tuple and each edge represents a foreign key-key reference. BANKS [8] defines an answer to a keyword query as a Steiner tree that contains all the keywords, and proposes a backward expansion search to find the Steiner trees. [9] uses bidirectional
Table 5: Answers of queries for normalized TPCH database

<table>
<thead>
<tr>
<th>#</th>
<th>SQAK</th>
<th>Our Proposed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>AVG amount: 1.42×10^4</td>
<td>AVG amount: 1.42×10^4</td>
</tr>
<tr>
<td>T2</td>
<td>MAX COUNT order: 6568</td>
<td>MAX COUNT order: 6568</td>
</tr>
<tr>
<td>T3</td>
<td>1 answer: 229</td>
<td>8 answers: 23, 22, 29, 27, 33, 35, 33, 27</td>
</tr>
<tr>
<td>T4</td>
<td>1 answer: 9844.00</td>
<td>5 answers: $2.99 \times 10^4, 4.26 \times 10^4, (3.03 \times 10^4, 4.33 \times 10^4)$</td>
</tr>
<tr>
<td>T5</td>
<td>COUNT supplier: 22</td>
<td>COUNT supplier: 4</td>
</tr>
<tr>
<td>T6</td>
<td>1000 answers: 593, 571, 505, 606, ...</td>
<td>1000 answers: 80, 80, 79, 80, ...</td>
</tr>
<tr>
<td>T7</td>
<td>N.A.</td>
<td>5 answers: $10^3, 6361.20, 9538.15, ..., 7916.56$</td>
</tr>
<tr>
<td>T8</td>
<td>N.A.</td>
<td>3 answers: 1, 1, 1</td>
</tr>
</tbody>
</table>

Table 6: Answers of queries for normalized ACMDL database

<table>
<thead>
<tr>
<th>#</th>
<th>SQAK</th>
<th>Our Proposed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>AVG ages: 297</td>
<td>AVG ages: 297</td>
</tr>
<tr>
<td>A2</td>
<td>36 answers: 84, 84, 82, ...</td>
<td>36 answers: 84, 84, 82, ...</td>
</tr>
<tr>
<td>A3</td>
<td>1 answer: 62</td>
<td>1 answer: 1, 1, 2, ...</td>
</tr>
<tr>
<td>A4</td>
<td>1 answer: 2011-06-13</td>
<td>36 answers: 1994-05-01, 1998-08-01, ...</td>
</tr>
<tr>
<td>A5</td>
<td>4 answers: 2, 4, 6, 4</td>
<td>6 answers: 2, 2, 2, 6, 2, 2</td>
</tr>
<tr>
<td>A6</td>
<td>N.A.</td>
<td>4 answers: (4011, 2011-01-25), ...</td>
</tr>
<tr>
<td>A7</td>
<td>N.A.</td>
<td>46 answers: 1, 32, 8, 1, ...</td>
</tr>
<tr>
<td>A8</td>
<td>N.A.</td>
<td>2 answers: 1, 1</td>
</tr>
</tbody>
</table>

Table 8: Query answers on unnormalized TPCH
(Our approach returns the same answer as Table 5)

<table>
<thead>
<tr>
<th>#</th>
<th>SQAK</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>AVG amount: 1.78×10^5</td>
<td>incorrect answer: count duplicate orders</td>
</tr>
<tr>
<td>T2</td>
<td>MAX COUNT order: 26485</td>
<td>incorrect answer: count duplicate orders</td>
</tr>
<tr>
<td>T3</td>
<td>1 answer: 229</td>
<td>incorrect answers: The same reason as Table 5</td>
</tr>
<tr>
<td>T4</td>
<td>1 answer: 9844.00</td>
<td>incorrect answers: count duplicate orders</td>
</tr>
<tr>
<td>T5</td>
<td>COUNT supplier: 22</td>
<td>incorrect answers: The same reason as Table 5</td>
</tr>
<tr>
<td>T6</td>
<td>1000 answers: 593, 571, ...</td>
<td>incorrect answers: The same reason as Table 5</td>
</tr>
<tr>
<td>T7</td>
<td>N.A.</td>
<td>incorrect answers: The same reason as Table 5</td>
</tr>
<tr>
<td>T8</td>
<td>N.A.</td>
<td>incorrect answers: The same reason as Table 5</td>
</tr>
</tbody>
</table>

Table 9: Query answers on unnormalized ACMDL
(Our approach returns the same answer as Table 6)

<table>
<thead>
<tr>
<th>#</th>
<th>SQAK</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>AVG ages: 637</td>
<td>incorrect answers: count duplicate proceedings</td>
</tr>
<tr>
<td>A2</td>
<td>36 answers: 2000, 408, 14858, ...</td>
<td>incorrect answers: count duplicate papers</td>
</tr>
<tr>
<td>A3</td>
<td>1 answer: 62</td>
<td>incorrect answers: count duplicate papers</td>
</tr>
<tr>
<td>A4</td>
<td>1 answer: 2011-06-13</td>
<td>incorrect answers: count duplicate papers</td>
</tr>
<tr>
<td>A5</td>
<td>4 answers: 2, 4, 6, 4</td>
<td>incorrect answers: count duplicate papers</td>
</tr>
<tr>
<td>A6</td>
<td>N.A.</td>
<td>incorrect answers: count duplicate papers</td>
</tr>
<tr>
<td>A7</td>
<td>N.A.</td>
<td>incorrect answers: count duplicate papers</td>
</tr>
<tr>
<td>A8</td>
<td>N.A.</td>
<td>incorrect answers: count duplicate papers</td>
</tr>
</tbody>
</table>

In schema graph approach, the database schema is modeled as a graph where each node represents a relation and each edge represents a foreign key - key constraint. DISCOVER [7] proposes a breadth-first traverse on the schema graph to generate a set of SQL statements. Each SQL join expansion to reduce the search space. [4] employs dynamic programming to identify the top-k minimal group Steiner trees. [12] finds a subgraph that contains all the keywords within a given distance to be a query answer, and captures more information than a Steiner tree.
a minimal number of relations and outputs tuples that contain all the keywords. [6] and [10] relax the requirement that output tuples should contain all the query keywords, and develop top-k keyword query techniques to improve efficiency of [7]. [1] exploits the relative positions of keywords in a query and auxiliary external knowledge to generate SQL statements that satisfy users’ search intention.

The above works only examine tuples that contain query keywords and try to link them by foreign key-key references. [17] studies the problem of aggregate keyword search on a universal relation. Given a keyword query, it finds a set of tuples that are grouped by a minimal number of attributes and contain all the keywords. [11] classifies query keywords into dimensional and general keywords, and computes subgraphs that contain all dimensional keywords and some general keywords. These subgraphs are grouped based on dimensional keywords to compute the statistical information of the subgraphs. However, none of these works can answer queries involving aggregate functions and GROUPBY.

SQAK [13] generates a set of SQL statements from a keyword query containing reserved keywords to indicate the aggregate functions in SQL statements. But, it does not consider the ORA semantics, and thus returns incorrect answers as we have highlighted. Moreover, SQAK cannot handle queries when relations in the database are unnormalized.

8. CONCLUSION

In this paper, we have studied the problem of answering keyword queries involving aggregates and GROUPBY on relational databases. Existing work does not consider the ORA semantics, and thus fails to distinguish objects with the same attribute value and detect duplications of objects in relationships. This leads to incorrect computation of aggregate queries. To avoid these problems, we utilize the ORM schema graph to capture the ORA semantics, and propose a semantic approach to answer aggregate queries. Given an aggregate query, we generate a set of annotated query patterns to represent various interpretations of the query. Based on these patterns, we distinguish objects with the same attribute value and detect duplications of objects in relationships. The top-k ranked patterns are translated into SQL statements which apply aggregate functions to compute the statistical information correctly. Further, we develop a mechanism to detect duplications arising from unnormalized relations, and extend our approach to handle aggregate queries on unnormalized databases. Experimental results demonstrate the approach returns correct answers to aggregate queries both on normalized and unnormalized databases.

9. REFERENCES