
Empirical evaluation of guarded structural indexing

Erik Agterdenbos
George H. L. Fletcher
Eindhoven University of

Technology
agterdenbos@gmail.com,

g.h.l.fletcher@tue.nl

Chee-Yong Chan
National University of

Singapore
chancy@comp.nus.edu.sg

Stijn Vansummeren
Université Libre de Bruxelles

svsummer@ulb.ac.be

ABSTRACT
Traditional indices in relational databases are designed for
queries that are selective by value. However, queries can
also retrieve records on their relational structure. In our
research, we found that traditional indices are ineffective for
structurally selective queries. To accelerate such queries, so-
called ‘structural indices’ have been applied in graph databa-
ses. These indices group together structurally similar nodes
to obtain a compact representation of the graph structure.

We studied how structural indices can be applied in rela-
tional databases and evaluated their performance. Guarded
bisimulation groups together relational tuples with similar
structure, which we use to obtain a guarded structural in-
dex. Our solution requires significantly less space than tra-
ditional indices. At the same time, it can offer several orders
of magnitude faster query evaluation performance.

1. PROBLEM DEFINITION
Queries that are selective by value can be accelerated by

using B-trees or Hash indices on attributes in the selection
condition. The problem is that such indices cannot effi-
ciently answer structurally selective queries. Consider a re-
lation customer(id, name, address, phone) and a relation
order(id, status, total price, customer id), where id denotes
the primary key (PK) in both relations. Further, we have a
foreign key (FK) from order(customer id) to customer(id).

For example, we might want to retrieve all names of cus-
tomers that do or do not have an order. To answer these
queries, a semijoin or antijoin has to be processed. Semi-
joins and antijoins require table scans, index scans or index
only scans on both relations. These operations are relatively
expensive. Moreover, these are tuple selecting queries. The
result is a subset of a single relation: the customer relation.
No information from the order relation occurs in the output.
However, the order relation or its index must be scanned to
determine which tuples must be returned, which impacts the
performance when the order relation is much larger than the
the customer relation.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Value-based indices are not directly useful in accelerating
structurally-sensitive selections such as these.

2. BACKGROUND
The main concept of structural indices is to build a sum-

mary that is smaller than the original database, while pre-
serving relevant structural properties. Bisimilarity and simi-
larity are two formal notions of structural similarity in graphs
which have been used for summarizing semi-structured and
graph databases for structural indexing [3, 7]. Andréka et
al. [2] and Otto [5] introduced guarded bisimulation and
guarded simulation which extends these notions to relational
databases. Picalausa et al. characterized query invariance
under guarded (bi)simulation (i.e., for which query languages
guarded (bi)simulation is the correct structural notion for
indexing w.r.t. queries in the language), providing a formal
basis for the engineering of guarded structural indices [6].
This abstract summarizes the main results of our empirical
study of the practical feasibility of this novel approach to
indexing; details can be found in [1].

3. APPROACH
Our approach to build a structural index can be summa-

rized as follows: first we represent the relational database
instance as a graph. Second, we apply an external memory
bisimulation partitioning algorithm to group similar nodes.
Third, we map the partitioning of the original tuples. We
summarize each step in the following paragraphs.

Relational databases allow joins on any set of attribute
pairs with equal types. Because FK constraints are popu-
lar candidates for join conditions, we only consider PK-FK
joins. The graph is constructed as follows: we create a node
for each PK value in the database. Then we create forward
edges from PK to FK values and backward edges from FK
to PK values. We use relation names as node labels and FK
constraint names for edge labels.

We apply a localized version of bisimulation equivalence
on the graph, namely, k-bisimulation. This equivalence rela-
tion induces a partitioning of nodes with respect to topolog-
ical features of their k-neighborhoods. The k-neighborhood
of a node n is the subgraph consisting of all nodes at most
k edges away from n. The partitioning result consists of
a mapping from nodes (tuples) to partition blocks, which
represent k-bisimulation equivalence classes, and a reduced
graph that summarizes the original structure. The map-
ping is stored by tagging each tuple in each relation (in
an additional attribute) with the distinct identifier of the
partition block to which the tuple belongs. The reduced

Poster Paper

 

 

Series ISSN: 2367-2005 714 10.5441/002/edbt.2016.101

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.101


Table 1: Queries for TPC-H dataset
Query description
FACQ 1 Select partsupp supplycosts having lineitem
FACQ 2 Select part names having a lineitem
FACQ 4 Select region having nation, customer, orders

and lineitem
GF 1A Select partsupp comment without lineitem
GF 1B Select customers not having an order
GF 4 Select all suppliers that sell parts that are

offered but not sold by other suppliers

graph is stored in an additional relation edge label(from id ,
to id). After construction of edge label, the PK-FK graph is
no longer needed and is discarded.

k-bisimulation structural indices allow the acceleration of
semijoins and antijoins with join trees of height h ≤ k. The
reduced graph is used to determine which equivalence classes
are selected. Then, the projected relation is scanned and
tuples that are tagged with those equivalence classes are
returned. Queries with join trees of height h > k can be
partially accelerated via query decomposition.

4. EXPERIMENTAL STUDY

Set up. We used the DBLP1 data set and the TPC-H2 data
set with scale factor 1 to evaluate guarded structural index-
ing. PostgreSQL 9.3 and the external memory bisimulation
partitioning solution of Luo et al. [4] were used. Table 1 lists
the queries used in our evaluation.

Results. Figure 1 shows the number of partition blocks that
are generated under k-bisimulation. A higher value of k
leads to more equivalence classes, uses more disk space, and
can accelerate higher join (sub)trees. Figure 2 shows the
reduced graph under 2-bisimulation. We observe significant
compression while preserving non-trivial structure.

0 2 4 6 8 10 12

101

103

105

107

k

n
u
m

b
er

o
f

p
a
rt

it
io

n
b
lo

ck
s TPC-H

DBLP

Figure 1: Partition size under k-bisimulation

Figure 3 shows the speed-up of structural indexing over
value-based B-trees on foreign keys. For 4 ≤ k ≤ 7, this
is between 4 and 190 times faster. We also observed that
our index uses only 1 megabyte of disk space for these k

1http://dblp.uni-trier.de/xml/
2http://www.tpc.org/tpch/

nation-1
size: 25

customer-1
size: 50004

supplier-1
size: 9545

supplier-2
size: 455

part-1
size: 199542

part-2
size: 458

partsupp-1
size: 459

partsupp-2
size: 799541

lineitem-1
size: 6001215

orders-1
size: 1500000

customer-2
size: 99996

Figure 2: TPC-H partitioning under 2-bisimulation

values compared to the more than 450 megabytes required
for value-based indexes.

2 4 6 8 10
10−1

100

101

102

103

k

sp
ee

d
u
p

fa
ct

o
r

FACQ 1 FACQ 2 FACQ 4

GF 1A GF 1B GF 4

Figure 3: Query running time speedup factor

Conclusions. Our results show that guarded structural in-
dices can be orders of magnitude smaller and faster than
traditional indexes. This indicates the significant promise
of further study of this new approach to indexing.

5. REFERENCES
[1] E. Agterdenbos. Structural indexing for accelerated

join-processing in relational databases. Master’s thesis,
Eindhoven Universtity of Technology, 2015.

[2] H. Andréka, I. Németi, and J. van Benthem. Modal
languages and bounded fragments of predicate logic. J.
Phil. Logic, 27(3):217–274, 1998.

[3] Y. Luo et al. Storing and indexing massive RDF
datasets. In R. De Virgilio et al, editor, Semantic
Search over the Web, pages 31–60. Springer, 2012.

[4] Y. Luo et al. External memory k-bisimulation reduction
of big graphs. In CIKM, pages 919–928, 2013.

[5] M. Otto. Highly acyclic groups, hypergraph covers, and
the guarded fragment. J. ACM, 59(1), 2012.

[6] F. Picalausa et al. Principles of guarded structural
indexing. In ICDT, pages 245–256, 2014.

[7] D. Sangiorgi and J. Rutten. Advanced topics in
bisimulation and coinduction. C. U. Press, 2011.

715


	Empirical evaluation of guarded structural indexingErik Agterdenbos, George Fletcher, Chee-Yong Chan, Stijn Vansummeren

