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1. INTRODUCTION  
Online social networks (OSN) are one of the most successful 

applications that have been created this last decade. Central to 

these applications is the problem of sharing data, such as texts, 

photos, geolocation, etc. In most cases, this data is private, and 

thus is only shared with “friends”, a loose concept. Some OSN, 

such as Google+ let you define circles in order to categorize your 

friends: friends, close friends, acquaintances, etc. Data can then be 

shared on finer grain using these circles. However, there is no 

automatic way to control the simultaneous sharing of data to 

several circles, with different data precision granularities, such as 

in the following scenario: Alice wants to share a set of photos with 

her family, photos with no metadata with her close friends, photos 

without faces (and without metadata) in a reduced definition with 

her acquaintances, and does not want to share anything with 

anyone else.  

In this article, we will show how the use of a data sharing algebra 

to write a variety of access control plans (ACP) can overcome 

these current limitations of OSN access control. Moreover, by 

using an algebra, it becomes simple to modify, compose, and 

share these ACPs. Thus less advanced users can easily reuse 

ACPs shared on a marketplace by more experienced users. A 

prototype of the DatShA system has been implemented using 

XQuery 3.0 and is briefly described. 

2. OVERVIEW OF DatShA 
In current OSNs, users have on one side vast quantities of 

personal data, and on the other side numerous “friends” with 

whom they wish to share (or sometimes hide) this data. In the 

current systems, it is not simple to share a specific piece of data 

while modifying it (e.g. changing its precision or removing some 

information) depending on the target with whom it is to be shared.  

Consider the examples mentioned in the introduction. The ACP 

related to Alice’s close friends should transform a set of photos to 

another set where metadata is removed. This could be done by 

simply specifying a regular expression to identify images files to 

be shared (FileSearch operator  – see Figure 1.e), “type” this file 

to images (PathToImage operator – see Figure 1.e), then remove 

metadata (RemoveMeta operator). For Alice’s acquaintances, 

other operators could be invoked: ExtractFaces, ExtractMeta, 

Select and ReduceDefinition operators (not detailed here). 

Thus the objective of DatShA is to provide the infrastructure and 

an extensible set of generic operators to describe how users want 

to process their data before sharing it. The operators must be able 

to be combined on any sort of (semi-structured) data to form an 

algebra. Finally, ACP may include user-dependent data (e.g., 

contact files) such that it can also compute the set of users with 

whom the data is shared, thus linking a plan with its grantee. 

3. BACKGROUND AND RELATED 

WORKS  
Access Control. Many different access control models exist, such 

as DAC, MAC, or RBAC. Many works exist on enforcing such 

models in OSN [1]. We adopt a complementary approach: the 

goal of DatShA can be seen as helping the user to write complex 

views of her data, on which she can then apply any existing AC 

model (most often, DAC or RBAC). 

Data Sharing on OSN. Current works on secure data sharing in 

OSNs consider various problems such as securing com-

munications, i.e. how to securely share data, once access control 

has been checked [2], or how to write access control policies over 

data concerning several users [3]. 

XQuery 3.0. XQuery 3.0. is not only a declarative query 

language, it is also Turing complete. Rather than using a 

traditional language such as Java or C, we have chosen to use 

XQuery and XQuery Update Facility 3.0. Indeed, evaluating an 

ACP is done through modifications to a structured document (that 

we chose to code in XML). Generic operators can be completed 

by snippets of XPath or XQuery code referring to this data 

structure, which are directly evaluated by the DatShA system. 

4. THE DATA SHARING ALGEBRA 

4.1 General principle 
An ACP is seen as a set of sequences of (polymorphic) operators, 

serialized as an XML file (see Figure 1.a). It takes as input an 

XML file containing or referencing private sensitive data and 

produces an XML file containing or referencing data that can be 

shared or published (See Figure 1.c). Users or sets of users (such 

as G+ circles) can be given access rights both on atomic data, and 

on ACPs. As with traditional access control through views, when 

access rights are given on an ACP, the data accessed during the 

process is done with the rights of the grantor. For example, if 

Alice grants Bob the right to view the country she is in, which is 

computed using her precise GPS coordinates, the execution of the 

ACP will use Alice’s rights, but only return to Bob the final result. 

4.2 Sharing ACPs through a marketplace 
Operators and ACPs can be published on a “marketplace”, and 

described by a short text explaining their goal. They can be 

downloaded by users in order to fine tune their data sharing 

policies. Thus, it is possible, even for non-expert users to apply 

complex access control policies, by combining existing operators 

or using existing policies. Search, recommendation, or ranking of 

ACP or operators based on their level of intrusiveness or their 

usability is possible within the marketplace. The only complexity 

is to link groups of users to their ACPs, but as the data shared is 

defined intentionally rather than extensionally, we believe this is 

much easier to do than with current privacy settings in OSN. 

4.3 ACP Example 
We propose the following example which illustrates well DatShA 

potential : Alice wants to participate in a survey to determine the 

Published in Proc. 19th International Conference on Extending Database 

Technology (EDBT), March 15-18, 2016 - Bordeaux, France: 

ISBN 978-3-89318-070-7, on OpenProceedings.org. Distribution of this 
paper is permitted under the terms of the Creative Commons license CC-

by-nc-nd 4.0 

Poster Paper

 

 

Series ISSN: 2367-2005 710 10.5441/002/edbt.2016.99

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.99


most photographed place on Earth, which can be done by 

computing a “fuzzy” location of all her photos, where the “fuzzy” 

location is defined by GPS coordinate and an error bar e.g. 

X=45.23+/-0.01 Y=27.67+/-0.01. Note that this error bar could 

also be function of the density of photos in a given area.  

We present, in Figure 1, the corresponding ACP. 

This ACP can be written as a sequence of operators (Due to space 

limitations, the actual XML ACP file is available online at: 

http://www.benjamin-nguyen.fr/data/ACP.xml). Each operator 

takes as input an XML file, and produces as output an XML file. 

It is possible to type-check the ACP at compile time, given that 

the operators are typed, but this discussion is beyond our scope 

here. The sequence is the following: for every image in the file path 

given in the input file, meta-data of the image is extracted, and an 

operator to reduce the precision of the GPS coordinates is executed. 

All meta-data apart from the blurred GPS coordinates is removed, 

pictures are grouped together by fuzzy GPS location, then counted. 

Operators can in most cases be implemented in XQuery 3.0 but 

they can also be ad-hoc operators. Note that DatShA also defines 

many other operators, including binary (or even n-ary) operators 

such as the join operator which can be used to join two different 

sequences, thus needing two input files, and producing a single 

output file. All these operators have been implemented using 

XQuery. The framework executing a DatShA ACP has been 

written in Java, using eXistDB to execute the XQuery fragments. 

We believe that the use of operators to build ACPs drastically 

simplifies the creation, reuse, combination and correctness 

checking of ACPs. 

5. CONCLUSION AND FUTURE WORK 
DatShA can be used to create ACPs to manage access control to 

one’s data. We believe that the full power of DatShA appears 

when users start sharing ACPs between each other, either by 

simply reusing an ACP written by another user, or by integrating 

such an ACP into a more complex one. Indeed, any ACP can be 

encapsulated as a DatShA operator. Creating an online market-

place, and testing its usability and adoptability by real users is the 

next step of our work. 
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Spec>*.jpg</file Spec>	
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<set>		
	<path>img1.jpg</path>		
	<path>img2.jpg</path>	

</set>	

<set>	
		<image>	
	 	<imgPath>img1.jpg</path>	
	</image>	

<set>	<image>	
	 	<imgPath>img1.jpg</path>	
	 	<date>01/02/15</date>	
	 	<gps>	
	 	 	<x>43.2356</x>	

<set>	<image>	
	 	<imgPath>img1.jpg</path>	
	 	<date>01/02/15</date>	
	 	<gps>	
	 	 	<x>43.24</x>	

<set>	<image>	
	 	<imgPath>img1.jpg</path>	
	 	<gps>	
	 	 	<x>43.24</x>	

<set>	<tuple>	<gps>	
	 	 	<x>43.24</x>	<y>23.68</y>	
	 				</gps>	
	 				<set>	<image>	
	 	 	 	<imgPath>	....	

<set>	<tuple>	<gps>	
	 	 	<x>43.24</x>	<y>23.68</y>	
	 				</gps>	
	 				<nbImage>	2	</nbImage>	

FileSearch: replaces a <fileSpec/> with jokers in a set of file paths looking 
recursively or not (input "mode") in the directory indicated by input "target" 
every <fileSpec/> should be replaced by a set of path. 

PathToImage: is an operator that replaces every occurrence of a path by 
an image (an xsd type). An image is at least a <imgPath/> to an "image" 
file, i.e., a jpg, png, gif, etc.... Initially the image type only includes the 
<imgPath/> but metadata can be added using the ExtractMeta operator. 

ExtractMeta: replaces every occurrence of an image by the same image 
(every field is copied), and adds metadata that can be extracted from the 
actual file (e.g. location information embedded in the image). 

Fuzzy: is an operator that can be applied to many types. The global 
behavior is to replace any occurrence of the target by fuzzy values, the 
precision being informed by the “precision” input, which can be an XPath. 

 

Project: this operator is used like the relational algebra P operator. It 
replaces the target subtree by the same subtree in which it keeps only the 
elements (or subtrees) that are mentioned in the "keep" parameters. 

Group: replaces the "target" subtree by a restructured one which must be 
a set. It constructs a <set> of <tuple>s, each containing n+1 elements 
(where n is the number of "groupBy" elements in the operator specification,  
in this example, n = 1). The last element of the tuple is a set of elements 
that share the same value of groupBy (here a set of image having the 
same GPS value). This operator is implemented by XQuery 3.0. Group By. 

Aggregate : The aggregate operator replaces a set of elements ("target" 
input) by an aggregate value having the “AggName” name and applying 
the “AggOperation”, which in this case is the XQuery function fn:count(). 

XQuery	

XQuery	

XQuery	

XQuery	

XQuery	

ad-hoc	

ad-hoc	

(c) XML input, temporary and result files	 (d) ACP tree	 (e) Operators details	

<operator OperatorType="project"> 
       <paramset> 

              <params> 

           <input name ="target">/set/image</input> 

           <input name ="keep">imgPath</input> 

           <input name ="keep">gps</input> 

Allows specifying several sets of parameters (n-ary operators) 

Specific parameters (depends on the operator) 

Specifies the part of the XML input impacted  by this operator (target) 

Operator’s implementations depends on the targeted object (polymorphism) 

(b) Generated Xquery for (a):        for $r in doc(”tmp4.xml")/set/image return update replace $r with <image> {$r/imgPath} {$r/gps} </image> 

(a) Definition of the project operator in the XML ACP	
… 

Figure	1:	A	detailed	example	of	an	ACP	delivering	sta s cs		(number	of	photos	by	fuzzy	loca on)		
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