
DatShA :A Data Sharing Algebra for access control plans
Luc Bouganim

Inria Saclay

luc.bouganim@inria.fr

Athanasia Katsouraki
Inria Saclay

athanasia.katsouraki@inria.fr

Benjamin Nguyen
INSA Centre Val de Loire

benjamin.nguyen@insa-cvl.fr

1. INTRODUCTION
Online social networks (OSN) are one of the most successful

applications that have been created this last decade. Central to

these applications is the problem of sharing data, such as texts,

photos, geolocation, etc. In most cases, this data is private, and

thus is only shared with “friends”, a loose concept. Some OSN,

such as Google+ let you define circles in order to categorize your

friends: friends, close friends, acquaintances, etc. Data can then be

shared on finer grain using these circles. However, there is no

automatic way to control the simultaneous sharing of data to

several circles, with different data precision granularities, such as

in the following scenario: Alice wants to share a set of photos with

her family, photos with no metadata with her close friends, photos

without faces (and without metadata) in a reduced definition with

her acquaintances, and does not want to share anything with

anyone else.

In this article, we will show how the use of a data sharing algebra

to write a variety of access control plans (ACP) can overcome

these current limitations of OSN access control. Moreover, by

using an algebra, it becomes simple to modify, compose, and

share these ACPs. Thus less advanced users can easily reuse

ACPs shared on a marketplace by more experienced users. A

prototype of the DatShA system has been implemented using

XQuery 3.0 and is briefly described.

2. OVERVIEW OF DatShA
In current OSNs, users have on one side vast quantities of

personal data, and on the other side numerous “friends” with

whom they wish to share (or sometimes hide) this data. In the

current systems, it is not simple to share a specific piece of data

while modifying it (e.g. changing its precision or removing some

information) depending on the target with whom it is to be shared.

Consider the examples mentioned in the introduction. The ACP

related to Alice’s close friends should transform a set of photos to

another set where metadata is removed. This could be done by

simply specifying a regular expression to identify images files to

be shared (FileSearch operator – see Figure 1.e), “type” this file

to images (PathToImage operator – see Figure 1.e), then remove

metadata (RemoveMeta operator). For Alice’s acquaintances,

other operators could be invoked: ExtractFaces, ExtractMeta,

Select and ReduceDefinition operators (not detailed here).

Thus the objective of DatShA is to provide the infrastructure and

an extensible set of generic operators to describe how users want

to process their data before sharing it. The operators must be able

to be combined on any sort of (semi-structured) data to form an

algebra. Finally, ACP may include user-dependent data (e.g.,

contact files) such that it can also compute the set of users with

whom the data is shared, thus linking a plan with its grantee.

3. BACKGROUND AND RELATED

WORKS
Access Control. Many different access control models exist, such

as DAC, MAC, or RBAC. Many works exist on enforcing such

models in OSN [1]. We adopt a complementary approach: the

goal of DatShA can be seen as helping the user to write complex

views of her data, on which she can then apply any existing AC

model (most often, DAC or RBAC).

Data Sharing on OSN. Current works on secure data sharing in

OSNs consider various problems such as securing com-

munications, i.e. how to securely share data, once access control

has been checked [2], or how to write access control policies over

data concerning several users [3].

XQuery 3.0. XQuery 3.0. is not only a declarative query

language, it is also Turing complete. Rather than using a

traditional language such as Java or C, we have chosen to use

XQuery and XQuery Update Facility 3.0. Indeed, evaluating an

ACP is done through modifications to a structured document (that

we chose to code in XML). Generic operators can be completed

by snippets of XPath or XQuery code referring to this data

structure, which are directly evaluated by the DatShA system.

4. THE DATA SHARING ALGEBRA

4.1 General principle
An ACP is seen as a set of sequences of (polymorphic) operators,

serialized as an XML file (see Figure 1.a). It takes as input an

XML file containing or referencing private sensitive data and

produces an XML file containing or referencing data that can be

shared or published (See Figure 1.c). Users or sets of users (such

as G+ circles) can be given access rights both on atomic data, and

on ACPs. As with traditional access control through views, when

access rights are given on an ACP, the data accessed during the

process is done with the rights of the grantor. For example, if

Alice grants Bob the right to view the country she is in, which is

computed using her precise GPS coordinates, the execution of the

ACP will use Alice’s rights, but only return to Bob the final result.

4.2 Sharing ACPs through a marketplace
Operators and ACPs can be published on a “marketplace”, and

described by a short text explaining their goal. They can be

downloaded by users in order to fine tune their data sharing

policies. Thus, it is possible, even for non-expert users to apply

complex access control policies, by combining existing operators

or using existing policies. Search, recommendation, or ranking of

ACP or operators based on their level of intrusiveness or their

usability is possible within the marketplace. The only complexity

is to link groups of users to their ACPs, but as the data shared is

defined intentionally rather than extensionally, we believe this is

much easier to do than with current privacy settings in OSN.

4.3 ACP Example
We propose the following example which illustrates well DatShA

potential : Alice wants to participate in a survey to determine the

Published in Proc. 19th International Conference on Extending Database

Technology (EDBT), March 15-18, 2016 - Bordeaux, France:

ISBN 978-3-89318-070-7, on OpenProceedings.org. Distribution of this
paper is permitted under the terms of the Creative Commons license CC-

by-nc-nd 4.0

Poster Paper

Series ISSN: 2367-2005 710 10.5441/002/edbt.2016.99

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.99

most photographed place on Earth, which can be done by

computing a “fuzzy” location of all her photos, where the “fuzzy”

location is defined by GPS coordinate and an error bar e.g.

X=45.23+/-0.01 Y=27.67+/-0.01. Note that this error bar could

also be function of the density of photos in a given area.

We present, in Figure 1, the corresponding ACP.

This ACP can be written as a sequence of operators (Due to space

limitations, the actual XML ACP file is available online at:

http://www.benjamin-nguyen.fr/data/ACP.xml). Each operator

takes as input an XML file, and produces as output an XML file.

It is possible to type-check the ACP at compile time, given that

the operators are typed, but this discussion is beyond our scope

here. The sequence is the following: for every image in the file path

given in the input file, meta-data of the image is extracted, and an

operator to reduce the precision of the GPS coordinates is executed.

All meta-data apart from the blurred GPS coordinates is removed,

pictures are grouped together by fuzzy GPS location, then counted.

Operators can in most cases be implemented in XQuery 3.0 but

they can also be ad-hoc operators. Note that DatShA also defines

many other operators, including binary (or even n-ary) operators

such as the join operator which can be used to join two different

sequences, thus needing two input files, and producing a single

output file. All these operators have been implemented using

XQuery. The framework executing a DatShA ACP has been

written in Java, using eXistDB to execute the XQuery fragments.

We believe that the use of operators to build ACPs drastically

simplifies the creation, reuse, combination and correctness

checking of ACPs.

5. CONCLUSION AND FUTURE WORK
DatShA can be used to create ACPs to manage access control to

one’s data. We believe that the full power of DatShA appears

when users start sharing ACPs between each other, either by

simply reusing an ACP written by another user, or by integrating

such an ACP into a more complex one. Indeed, any ACP can be

encapsulated as a DatShA operator. Creating an online market-

place, and testing its usability and adoptability by real users is the

next step of our work.

6. REFERENCES
[1] B. Carminati, E., and A. Perego. 2009. Enforcing access

control in Web-based social networks. ACM Trans. Inf. Syst.

Secur. 13, 1, Article 6 (November 2009).

[2] H. Qinlong, M. Zhaofeng, Y.Yixian, N.Xinxin, F. Jingyi,

Improving security and efficiency for encrypted data sharing

in online social networks in IEEE China Communications,

11(3):104-117, 2014.

[3] H. Hu, G-J. Ahn, J. Jorgensen: Multiparty Access Control for

Online Social Networks: Model and Mechanisms. IEEE

Trans. Knowl. Data Eng. 25(7): 1614-1627 (2013).

<fil

e

Spec>*.jpg</file Spec>	

FileSearch

PathToImage	

ExtractMeta	

Fuzzy	

Project	

Group	

Aggregate	

<set>		
	<path>img1.jpg</path>		
	<path>img2.jpg</path>	

</set>	

<set>	
			

<set>	

(a) Definition of the project operator in the XML ACP	
…

Figure	1:	A	detailed	example	of	an	ACP	delivering	sta s cs		(number	of	photos	by	fuzzy	loca on)		

tmp2	

tmp3	

tmp4	

tmp5	

tmp6	

Input	file	

tmp1	

Output	file	

…

…

…

…

…

…

711

	DatShA :A Data Sharing Algebra for access control plansLuc Bouganim, Athanasia Katsouraki, Benjamin Nguyen

