
Snapshot Isolation for Neo4j1

Marta Patiño-Martínez, Diego
Burgos-Sancho

Universidad Politécnica de Madrid
Madrid, Spain

{mpatino,diego.burgos}@fi.upm.es

Ricardo Jiménez-Peris
LeanXcale

Madrid, Spain
rjimenez@leanxcale.com

Iván Brondino, Valerio Vianello,
Rohit Dhamane

Universidad Politécnica de Madrid
Madrid, Spain

{ibrondino, vvianello,rdhamane}@fi.upm.es

ABSTRACT

NoSQL data stores are becoming more and more popular. Graph
databases are one of this kind of data stores. Neo4j is a very
popular graph database. In Neo4j all operations that access a
graph must be performed in a transaction. Transactions in Neo4j
use read-committed isolation level. Higher isolation levels are not
available. In this paper we present an overview of the
implementation of snapshot isolation (SI) for Neo4j. SI provides
stronger guarantees that read-committed and provides more
concurrency than serializability.

Keywords
NoSQL, transaction processing, graph databases.

1. INTRODUCTION
Graph databases such as Neo4j [1], Titan [2] and Sparksee [3] are
being adopted to represent data that is more naturally captured as
a graph than with structured or semi-structured data models such
as the relational model or key-value models. Graph databases also
provide either query languages or APIs that enable for traversing
graphs, running the whole query on the data store, therefore,
resulting in an efficient traversal of the graph. The use of other
data management technology for representing and traversing
graphs them becomes very inefficient because it implies executing
many iterative queries to extract the adjacent nodes to a given one,
what results in a huge overhead.

Some of these graph databases provide transactions, like Neo4j.
Neo4j implements a basic isolation level: read-committed.
Unfortunately, read committed suffers from many anomalies
including unrepeatable reads and phantom reads. Unrepeatable
reads allows that a transaction observes different values for a
given data item in the same transaction. In the case of graphs, it
means that a path that has been traversed might not exist when
trying to go through it later in the same transaction. Phantom
reads affect to the selection of items with a predicate. This affects
a transaction that performs a predicate selection multiple times,
since it might observe a different result set each time, resulting in
inconsistent behavior. A higher isolation level avoiding these two
anomalies is highly recommended.

Snapshot isolation (SI) [4] is an isolation level that has become

very popular since it provides an isolation very close to the one
provided by serializability while avoiding read-write conflicts.
Snapshot isolation provides a snapshot of the committed state to
transactions. SI splits the atomicity of a transaction in two points.
The start of the transaction, where logically all reads happen, and
the commit of the transaction, where logically all writes happen.
SI only can suffer from an anomaly avoided by serializability
known as write skew. The anomaly is not exhibited by all
applications, for instance, the TPC-C benchmark never observes
an anomaly when running on an SI database.

This paper presents how we have designed and implemented a
multi-version concurrency control for Neo4j that provides
snapshot isolation, avoiding the unrepeatable and phantom reads
phenomena that currently affect Neo4j. This work has been
performed in the context of the European project CoherentPaaS
[5] that provides transactional behavior to NoSQL data stores and
global transactions and queries across NoSQL and SQL data
stores.

2. Neo4j ARCHITECTURE1

Figure 1: Neo4j Architecture
Neo4j is a graph database, as such, the entities it handles are
nodes and relationships (edges in graph jargon) among them. It
also allows defining properties and labels. Labels are used to
associate a “role” to a node. Properties can be associated to both
nodes and relationships.

1 This research has been partially funded by the European Commission
under projects CoherentPaaS and LeanBigData (grants FP7-611068, FP7-
619606), the Madrid Regional Council, FSE and FEDER, project
Cloud4BigData (grant S2013TIC-2894), and the Spanish Research
Agency MICIN project BigDataPaaS (grant TIN2013-46883).

© 2016, Copyright is with the authors. Published in Proc. 19th
International Conference on Extending Database Technology
(EDBT), March 15-18, 2016 - Bordeaux, France: ISBN 978-3-
89318-070-7, on OpenProceedings.org. Distribution of this
paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0
EDBT’16,March 15–18, 2010, Bordeaux, France.

Poster Paper

Series ISSN: 2367-2005 700 10.5441/002/edbt.2016.94

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.94

Neo4j architecture is similar to the one of a traditional database,
although it differs quite a bit in the details (Figure 1). Overall, the
architecture has an object cache and a persistent store as a
traditional database. However, the internal representation is
optimized for graphs.

Nodes are kept in a file whose position is determined by the node
identifier. That position in the file contains the ID of the first
relationship of the node and the ID of its first property.
Relationships are stored in a different file. The source node of the
relationship and the destination node are stored. Properties of
nodes and relationships are stored in a different file.

Neo4j also uses indexes to optimize some of the accesses. It has
two indexes for nodes, one for labels and another one for
properties that map them to the set of nodes associated to them. It
also maintains one index for relationships, mapping properties to
nodes holding those properties.

3. SNAPSHOT ISOLATION
Snapshot isolation is typically implemented as a multi-version
concurrency control (MVCC). It requires keeping track of
multiple versions per entity. This means that updating in place is
not especially convenient and a mechanism is needed to maintain
multiple versions of each data item, either physically or logically.

SI can be implemented by enforcing two rules. The read rule
states that a transaction should observe the most recent committed
version of each data item at the time the transaction start. The
write rule states that no two concurrent transactions can update the
same data item.

SI requires a way to remove obsolete versions of the data items
that will never be read by active transactions. Another important
issue to take into account is that versions of uncommitted data
items should be kept private, but they should read by the
transaction that wrote them to guarantee that a transaction reads
its own writes.

4. SNAPSHOT ISOLATION FOR Neo4j
Transactions are assigned a start timestamp that corresponds to
the most recent committed state. The commit timestamp is given
to a transaction when it commits. This commit timestamp is used
to tag each item (version) the transaction has updated. We have
versioned both nodes and relationships. Versions are implemented
as an additional property for both of them. This property stores the
commit timestamp. Another property has been added to indicate if
a data item has been deleted. A deleted data item has to be kept
till no previous version can be read by an active transaction. This
mechanism is also called tombstone versions. Versions are kept in
the Object Cache of Neo4j. In particular, each object representing
a node or relationship stores a list of versions. In that way, when a
transaction reads a node, the right version for the reading
transaction can be obtained by traversing the list of versions.

Neo4j uses an iterator to traverse the persistent state when needed
to answer queries. We have enriched this iterator to take into
account the versions kept in the cache in order to guarantee read-
your-own writes behavior.

Neo4j implements read-committed isolation with a traditional
locking mechanism with short read locks and long write locks.
We have removed the short read locks since they are not needed
for snapshot isolation. The implementation of long write locks has
been modified to perform write-write conflicts implementing a
first-updater wins strategy.

Multi-versioning has also been applied to indexes. Properties and
labels are never deleted in Neo4j even if no node/relationship is
using them. We version them to know whether they should be
visible or not for a particular transaction. When a property or label
has been created by a transaction with a higher timestamp than the
start timestamp of the reader transaction, it can simply discard
them. If the timestamp is equal or lower than the start timestamp
of the reading transaction then the list of associated
nodes/relationships is traversed. The nodes/relationships are
tagged with the commit timestamp of the transaction that
associated the label/property to the node/relationship. In this way,
it is possible to discard those nodes/relationships that do not
correspond to the snapshot to be observed by the transaction
(those with a higher commit timestamp than the start timestamp of
the reading transaction).

The most difficult question to provide snapshot isolation in Neo4j
is how to implement multi-versioning in an efficient way. One of
the most common inefficiencies introduced by multi-versioning is
the version garbage collection process. The approach we have
adopted avoids this issue by only writing to the persistent data
store the most recent committed version of each data item. The
other versions are kept in memory. In order to make the version
garbage collection efficient, they are threaded with a double
linked list sorted by timestamp to enable to perform the garbage
collection just traversing those versions that must be garbage
collected. In this way, the cost of garbage collection is reduced to
the minimum.

Figure 2: Performance Results
We have performed a preliminary performance evaluation
comparing the original implementation of transactions in Neo4j
with our SI implementation. The database has 12.3MB and stores
movies (from http://neo4j.com/ developer/example-data/). The
workload executes 50% updates and 50% reads. Read transactions
read a random node. Update transactions read a random node and
modify a random property of the node. In Fig. 2 the results of the
micro-benchmark are shown. The response time is similar for both
implementations, updates last 100-200 ms and reads below 50 ms.

5. REFERENCES
[1] I. Robinson, et al. Graph Databases. O'Reilly Media. 2015.
[2] http://thinkaurelius.github.io/titan/
[3] http://sparsity-technologies.com/
[4] H. Berenson, et al. A Critique of ANSI SQL Isolation Levels.

SIGMOD 1995.
[5] http://coherentpaas.eu

701

	Snapshot Isolation for Neo4jMarta Patino, Ricardo Jimenez-PEris, Diego Burgos-Sancho, Ivan Brondino, Valerio Vianello, Rohit Dhamane

