Poster Paper

C proceedings

Revisiting DBMS Space Management for Native Flash

Sergey Hardock
Databases and Distributed
Systems Group
TU-Darmstadt, Germany
hardock@dvs.tu-
darmstadt.de

llia Petrov
Data Management Lab
Reutlingen University,
Germany
ilia.petrov@reutlingen-
university.de

Robert Gottstein
Databases and Distributed
Systems Group
TU-Darmstadt, Germany
gottstein@dvs.tu-
darmstadt.de

Alejandro Buchmann
Databases and Distributed
Systems Group
TU-Darmstadt, Germany
buchmann@dvs.tu-
darmstadt.de

ABSTRACT

In this paper we present our work in progress on revisiting tradi-
tional DBMS mechanisms to manage space on native Flash and
how it is administered by the DBA. Our observations and initial
results show that: the standard logical database structures can be
used for physical organization of data on native Flash; at the same
time higher DBMS performance is achieved without incurring ex-
tra DBA overhead. Initial experimental evaluation indicates a 20%
increase in transactional throughput under TPC-C, by performing
intelligent data placement on Flash, less erase operations and thus
better Flash longevity.

1. INTRODUCTION

We argue that the design of the storage architecture is not well
suited for new kinds of memory in terms of both software and hard-
ware. Flash memory has significant performance potential, which
is underutilized due to the present architecture of Flash SSDs and
the way they are used by the DBMS. To provide backwards compat-
ibility with magnetic drives, modern Flash SSDs implement legacy
block-device interfaces, supporting reading and writing at Flash
page granularity from immutable device addresses. As a result a
black-box abstraction over the Flash memory is created inside the
device by the so called Flash Translation Layer (FTL). Although,
this has facilitated the widespread use of SSDs, it results in: (i)
significant overhead primarily due to limited on-device resources
available to the FTL; (ii) unpredictable performance caused by the
background FTL processes (wear-levelling (WL) and garbage col-
lection (GC)) [1]; (iii) inability to optimize the DBMS 1/O behavior
for new kinds of storage due to an additional level of indirection.

To overcome these disadvantages we recently proposed the NoFTL

approach [2], which assumes native Flash as secondary DBMS
storage. NoFTL removes all intermediate abstraction layers along

©2016, Copyright is with the authors. Published in Proc. 19th Interna-
tional Conference on Extending Database Technology (EDBT), March 15-
18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Series ISSN: 2367-2005

the critical I/O path (block device interface, file system and FTL),
and enables the DBMS to control the physical address space of
Flash storage directly (see Figure 1). Under NoFTL the DBMS
is not confronted with the intricate low-level NAND control. The
Flash device is still assumed to have a thin hardware management
layer (a low-level controller).

Table T| t_id -
g Region

Tablespace tsHotTbl rgHotThl

i

T RRMS T o<
—__oBMS > i
ZLL

Storage Manager

Address Translation

Out-of-place updates

Free Space Manager NAND

Wear | |Bad Block|
GC .
leveling| | Manager

Figure 1: General NoFTL Architecture including Regions.

Native Flash Interface:
(Read/Program Page,

Erase Block, Copyback,
handle Page Metadata)

PCle, FlashDIMM,
Memory Channel

Buffer
Manager

NAND

3
s
=
1=
Q
o
]
>
3
z
3

The major advantages of NoFTL over the traditional FTL-based
Flash SSD are the following: (i) usage of the more powerful com-
putational and memory resources of the host system for complex
Flash maintenance tasks; (ii) utilization of the DBMS run-time in-
formation and knowledge about the stored data and I/O for opti-
mization of GC, WL and the address mapping scheme; (iii) better
utilization of available Flash parallelism through intelligent data
placement; (iv) direct control over the out-of-place updates, which
allows implementing short atomic writes without additional over-
head; (v) elimination of redundant functionality along the I/O path.

In the present paper we revisit traditional methods for physical
space management on Flash under NoFTL. The central questions
are: how can native Flash comprising a loose set of Flash chips
be organized and utilized by the DBMS; do we need new logical
storage structures; will they overcomplicate the job of the DBA?

2. LOGICAL STORAGE STRUCTURES AND
DATA PLACEMENT ON FLASH

We introduce the concept of NoFTL regions as a new physi-
cal storage structure, to simplify the organization and management
of native Flash storage. A region comprises multiple Flash chips
or dies, over which the data is evenly distributed. The number of

694 10.5441/002/edbt .2016.91

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.91

dies in each region, as well as the structure of their set is dynamic
and can change over time depending on different factors: size of
objects, required level of I/O parallelism and global wear-levelling.

CREATE REGION rgHotTbl (
MAX_CHIPS=8, MAX_CHANNELS=4,

CREATE TABLESPACE tsHotTbl (
REGION=rgHotTbl, EXTENT SIZE 128K);

CREATE TABLE T (t_id NUMBER(3)) TABLESPACE tsHotTbl;

MAX_SIZE=1280M) ;

One or more database objects with similar access properties can
be physically placed in a region; this holds for complete objects
or partitions of them. Objects with different properties are placed
in different physically separate regions to account and optimize for
the specific access characteristics. This gives us two distinct advan-
tages discussed in detail below: (a) coupling of regions and existing
logical structures to simplify database administration, and (b) abil-
ity to perform intelligent data placement to increase performance
and improve Flash longevity.

Logical Storage Structures and NoFTL Regions.

Existing logical DBMS storage structures can be defined on top
of NoFTL regions. Consider the above example: a region of a cer-
tain size rgHotTbl is defined over 8 chips. A tablespace tsHotTbl is
defined on top of rgHotTbl, where a newly created table 7T is placed.
The DBA can continue using established logical storage structures
such as rablespaces or extents, which can be effectively coupled to
regions. Hence, no new logical structures are needed to manage,
organize native Flash storage. The administration of native Flash
does not confront the DBA with additional complexity.

Data Placement and NoFTL Regions.

It is well known that Flash memory can perform random access
almost as fast as sequential (which is not always true for SSDs).
Thus, keeping logically adjacent blocks, physically distributed has
negligible performance implications. Furthermore, the distribution
over available Flash data channels, dies or planes allows for better
I/O parallelism than storing those blocks in sequential order phys-
ically on Flash. On the other hand, the database knowledge about
the data, about its properties and access patterns can be used to per-
form smarter data placement and optimize important Flash mainte-
nance algorithms, such as WL, GC and address mapping scheme.

For instance, it is proven that the overhead of garbage collec-
tion, which is the major factor for unpredictable performance on
SSDs, is highly dependent on the ability to separate between hot
and cold data [4, 3]. The limited on-device SSD resources rarely al-
low for maintaining comprehensive statistics about access patterns
and access frequencies over the whole logical address space. At the
same time, the DBMS maintains such and other statistics and meta-
data for each particular database object. Since under NoFTL the
DBMS has full control over the physical Flash address space and
can perform direct data placement, it becomes easy to utilize the
DBMS knowledge. Regions, therefore, allow the DBA and DBMS
to control physical data placement on the device in order to opti-
mize Flash management. Intelligent data placement using regions
is in the general case an optimal trade off between the provided
[/O-parallelism and the overhead of GC.

3. PRELIMINARY EVALUATION

We implemented and integrated regions in the NoFTL architec-
ture [2] under Shore-MT. Our initial results indicate that the con-
cept of intelligent data placement on Flash has big potential. For in-
stance, under TPC-C we could achieve about 20% increase in trans-
actional throughput (Figure 3) by applying multi-region data place-

695

ment configuration (Figure 2). In this configuration we have di-
vided database objects of TPC-C based on their I/O properties into
6 regions. Further we have distributed 64 dies of Flash SSD over
those regions based on sizes of objects and their I/O rate (required
level of I/0O parallelism). In addition to performing 20% more trans-
actions than traditional data placement and 20% more READ and
WRITE I/Os, the GC performs almost 20% less COPYBACKSs and
4.3% less ERASEs. This reduction in write-amplification of multi-
region configurations leads to lower I/0O latencies and consequently
to lower transaction response times. The second effect of decreased
write-amplification of multi-region data placement configurations
is the better longevity of the Flash devices.

Tablespace/ . Num. of
Region DB-Objects Flash dies

0 DBMS-metadata; HISTORY 2
NEW_ORDER; ORDER

1 ORDERLINE 11

2 CUSTOMER 10

3 OL_IDX; STOCK 29

4 C_IDX; [_IDX; S_IDX; W_IDX 6
C_NAME_IDX; ITEM; D_IDX

5 WAREHOUSE; DISTRICT 6
NO_IDX; O_IDX; O_CUST_IDX

Figure 2: Multi-region data placement configuration for TPC-C

Traditional Data placement

data placement using Regions
TPS 595.42 720.43
o READ 4KB (ps) 531.00 318.63
2 o |WRITE 4KB (ps) 904.00 564.83
2 E [NewOrder TRX (ms) 61.43 58.45
3 [Payment TRX (ms) 8.88] 6.99)
- StockLevel TRX (ms) 437.30 293.97
Transactions 359,725 433,192
g . |Host READ I/Os (4KB) 19,017,255 23,329,310
€. |[Host WRITE I/Os (4KB) 2,740,236 3,259,162
3 © |GC COPYBACKs 4,326,612 3,496,984
GC ERASEs 110,410] 105,564

Figure 3: Performance comparison of traditional and multi-
region data placement configuration.

4. CONCLUSIONS

The black box architecture of modern Flash SSDs does not al-
low to utilize the rich DBMS knowledge about stored data and I/O
for optimization of complex Flash maintenance functionality such
as garbage collection, wear-levelling and address mapping scheme.
In pursuit of a solution, we extend our NoFTL approach with the
notion of regions for allowing the DBMS to control the physical
placement based on the properties of database objects. NoFTL Re-
gions can be easily mapped to existing DBMS structures such as
tablespaces. Our initial results indicate that intelligent data place-
ment can significantly improve the performance of the DBMS as
well as the longevity of Flash devices.

Acknowledgements

This paper was supported by the German BMBF "Software Cam-
pus" (011S12054), the German Research Foundation (DFG) within
GRK 1343 "Topology of Technology" and DFG "Flashy-DB" project.

5. REFERENCES

[1] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives. In Proc. SIGMETRICS 09, 2009.

S. Hardock, 1. Petrov, R. Gottstein, and A. Buchmann. Noftl
for real: Databases on real native flash storage. In Proc.
EDBT’15,2015.

J. Lee and J.-S. Kim. An empirical study of hot/cold data
separation policies in solid state drives. In Proc. SYSTOR ’13.
R. Stoica and A. Ailamaki. Improving flash write performance
by using update frequency. In Proc. VLDB’13,2013.

(2]

(3]

(4]

	Revisiting DBMS Space Management for Native FlashSergey Hardock, Ilia Petrov, Robert Gottstein, Alejandro Buchmann

