
Proposal of a Database Type and Aggregation Function
for Accelerating Medical Genomics Study on RDBMS

Yoshifumi Ujibashi

Fujitsu Laboratories Ltd.
Kawasaki, Japan

ujibashi@jp.fujitsu.com

Motoyuki Kawaba
Fujitsu Laboratories Ltd.

Kawasaki, Japan

kawaba@jp.fujitsu.com

Lilian Harada
Fujitsu Laboratories Ltd.

Kawasaki, Japan

harada.lilian@jp.fujitsu.com

ABSTRACT

Next generation sequencing (NGS) and the recent development of

efficient algorithms for genomic analysis are contributing to the

understanding of human genetic variation and thus to personalized

medicine. Among those genomic analysis, disease-causal gene

analysis that finds genes relevant to specific diseases has received

much attention. In this paper, we present our work on extending

the PostgreSQL open source relational database management

system (RDBMS) to efficiently handle genomic analysis. We

introduced a new genome data type and a genome type aggregation

function that drastically improved the performance of a typical

query for disease-causal gene analysis by a factor of 50 to 360.

1. INTRODUCTION
Human beings have a sequence of three billions deoxyribonucleic

acid (DNA) molecules which contains some millions of variants

called “gene variants” that cause individual variations. Each

individual has personal types of gene variants called “genotypes”

which are combinations of nucleotide derived from chromosome

dipoles. Figure 1 illustrates an example of genotypes. Individual 0

has genotype ‘C/C’ at gene variant 0, and genotype ‘T/C’ at gene

variant 1. On the other hand, individual 1 has genotype ‘A/C’ at

gene variant 0, and ‘T/T’ at gene variant 1.

The improvement of processing performance and the reduction

of running cost of NGS, and the recent development of efficient

algorithms for genomic analysis have resulted in an enormous

increase in the amount of data of gene variants like SNP (single

nucleotide polymorphism) and INDEL (insertion-deletion

polymorphism). These gene variants are leveraged in a variety of

studies such as cohort study, inheritance history study and disease-

causal gene study. Disease-causal gene study aims to find the genes

relevant to specific diseases and clarify the reasons of these

diseases. The typical processing in such a study is to first filter the

individuals by some patient clinical condition (e.g. case-control),

and then, find the genes whose frequency of its genotype is

different between the filtered group and the rest. Normally the

genetic data is delivered in flat-files (VCF [4]), and the patient

information data, for instance, demographic information as

gender/race/age, clinical information, and lifestyle information, are

usually stored/managed in RDBMS. Recently, some studies

integrate the genetic data and the patient data to be managed in

RDBMS [1] [2]. Although the RDBMS approach improves the data

manageability and usability, the improvement of the procedure and

performance of the analysis processing in finding out the genes of

interest remains a big challenge because of the very huge amount

of gene variants.

In this paper, we present our work on extending the PostgreSQL

[3] open RDBMS with a new data type and a new aggregation

function called “genome type” and “genome type aggregation

function”, respectively. Some preliminary examination shows that

our approach is promising and can improve the execution time of

disease causal gene analysis processing by a factor of 50 to 360.

2. Conventional Methods

2.1 Database Schema

Figure 2 shows the database schema composed of tables that

contain the N gene variants (GV0...N-1) with the associated genotype

for each individual. Note that since there is a limit on the number

of columns a table can contain, in this case M, there are N/M tables

(T0…N/M-1) to store all the M gene variants of the individuals. Figure

1 shows also a clinical table (Tc) with information related to n

diseases (D0…n-1) for each individual. Other tables containing

information about the patients (lifestyle, demographics, etc.) can

also be necessary to properly describe the individuals.

2.2 Naïve Method
A naïve method counts the number of occurrence of each

genotype for all the gene variants of patients with a specified

disease. SQL 1 shows the SQL statement that calculates the

distribution of genotype of a gene variant (GV0) for patients who

have a specified disease (D0). This query is executed N times (i.e.

for each GV0..N-1). It takes 1,530ms on PostgreSQL to execute the

above query on 150,000 individuals for each gene variant GVi. For
© 2016, Copyright is with the authors. Published in Proc. 19th International

Conference on Extending Database Technology (EDBT), March 15-18, 2016
- Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

Figure 1: Chromosome dipoles of two individuals Figure 2: Conventional database schema

Poster Paper

Series ISSN: 2367-2005 672 10.5441/002/edbt.2016.80

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.80

the usual case of 3,000,000 gene variants, it would take more than

50 days. There are two major reasons for such a long execution time.

One is the huge number of gene variants N and thus, the huge

number of corresponding SQL queries that have to be processed.

The other is the long processing time of the query for the join

between Ti and Tc. Note that in real cases the query could contain

more joins to include lifestyle and demographics that are usually

stored in other tables.

2.3 External Count Method
In order to decrease the number of queries and join operations, a

method composed of an SQL that first retrieves all the genotypes

of the gene variants for the individuals with a specified disease, and

then an external application that counts the number of each

genotype using the result of the query, is analyzed.

SQL 2 shows the SQL statement that retrieves the genotypes of

gene variants (GV0..GVM-1) on Table T0 for the patients with

disease D0. Note that a similar query is executed N/M times, i.e.,

for all gene variants tables T0..TN/M-1. The result of the SQL queries

is input into an external program that counts the distribution of each

genotype for all gene variants. It still takes about 5,500s, including

both the PostgreSQL processing and the external processing, for

the case of 1,000 individuals and 3,000,000 variants. This method

still has two problems. First, since there is a limit on the number of

columns a table can contain, many tables are necessary to store

millions of variants and thus, the costly join processing of those

tables with clinical and other tables cannot be avoided. Second,

external processing causes a huge amount of data flow from the

RDBMS to external application and thus, a high cost transfer time

is necessary.

3. Proposed Method
In order to solve these problems, we proposed a method that

integrates all the genotypes of the gene variations in a single table,

making possible an efficient counting of the genotypes. We created

a special database type and a special aggregation function called

“genome type” and “genome aggregation function”, respectively.

Figure 3 illustrates the gene variants table (TGV) with the genome

type (GT) column that packs all genotypes of all gene variants for

each individual, enabling an efficient storing and scanning of the

genotype data for its aggregation. SQL 3 shows the SQL statement

with the proposed genome type aggregation function

fjgeno_count(). Since all the genotypes of the gene variations are

contained in GT, the genome aggregation function can efficiently

count up through all genotypes of each individual at once. And only

a single execution of the join processing with other tables as the

clinical table Tc is necessary.

4. Evaluation
We implemented our proposed method on PostgreSQL, and

compared its performance with the conventional methods presented

in Section 3. We used the machine whose CPU is Xeon CPU E5-

2680 0 @2.70GHz x2 and memory is DDR3 128GB.

 Figure 4 shows the execution time per gene variant for the case

of 1,000 individuals for the naïve, the external count, and our

proposed method, when varying the number of gene variants

packed in GT. For the naïve method, the execution time per variant

is 13ms, and for the external method is 1.86ms. On the other hand,

the execution time for our method improves when increasing the

number of packed variants, and it is reduced to 0.035ms which

represents an improvement factor of about 50 to 360 over the

conventional methods.

5. Conclusion
We proposed a new database type and new aggregation function

as extensions to PostgreSQL for genomic analysis. Our preliminary

evaluation showed that it can greatly improve the processing time

of a typical query in medical genomics study. We are now working

on further performance improvements for the genome aggregation

function using dictionary and vectorization techniques, which we

plan to report in detail in a future paper.

6. REFERENCES
[1] Ameur, A., Bunkikis, I., Enroth, S., et al. (2014) CanvasDB:

a local database infrastructure for analysis of targeted- and

while genome resequencing projects. Database, Vol. 2014,

Article ID bau098

[2] Paila, U., Chapman, B.A., Kirchner,R. (2013) GEMINI:

integrative exploration of genetic variation and genome

annotations. PLOS Comput. Biol.,9,e1003153

[3] The PostgreSQL Global Development Group. (1996-2015)

PostgreSQL http://www.postgresql.org/

[4] 1000 Genomes Project (2015) The Variant Call Format

(VCF) Version 4.2 Specification

http://samtools.github.io/hts-specs/VCFv4.2.pdf

SELECT count(T0.GV0) FROM T0, Tc

GROUP BY T0.GV0

WHERE T0.ID = Tc.ID and Tc.D0 = ‘Yes’

SQL 1: SQL for naïve method

SELECT fjgeno_count(TGV.GT) FROM T0

WHERE TGV.ID = Tc.ID and Tc.D0 = ‘Yes’;

SQL 3: SQL for proposed method

SELECT T0.GV0, T0.GV1, …T0.GVM-1 FROM T0, Tc

WHERE T0.ID = Tc.ID and Tc.D0 = ‘Yes’;

SQL 2: Pseudo SQL for external count method

Figure 3: Proposed database schema

Figure 4: Execution time for the three methods

673

	Proposal of a Database Type and Aggregation Function for Accelerating Medical Genomics Study on RDBMSYoshifumi Ujibashi, Motoyuki Kawaba, Lilian Harada

