
Efficient Implementation of Joins over Cassandra DBs
Haridimos Kondylakis

FORTH-Inst. of Computer Science
N. Plastira 100, 700 13 Heraklion,

Crete, Greece

kondylak@ics.forth.gr

Antonis Fountouris
Computer Science Department

University of Crete,
700 13 Heraklion, Greece

afountour@gmail.com

Dimitris Plexousakis
FORTH-Inst. of Computer Science
N. Plastira 100, 700 13 Heraklion,

Crete, Greece

dp@ics.forth.gr

ABSTRACT

NoSQL databases provide new opportunities by enabling elastic

scaling, fault tolerance, high availability and schema flexibility.

Despite these benefits, their limitations in the flexibility of query

mechanisms impose a real barrier for any application that has not

predetermined access use-cases. One of the main reasons for this

bottleneck is that NoSQL databases do not support joins. In this

poster we present a solution that efficiently supports joins over such

databases. More specifically, we present a query optimization and

execution module placed on top of Cassandra clusters that is able

to efficiently combine information stored in different column-

families. Our preliminary evaluation demonstrates the feasibility of

our solution and the advantages gained when compared to a recent

commercial solution by DataStax. To the best of our knowledge our

approach is the first and the only available open source solution

allowing joins over NoSQL Cassandra databases.

1. INTRODUCTION
During the latest years, the explosive growth of data and the

emerging requirements for big data management solutions led to

the development of NoSQL databases. Among the reasons for the

rapid adoption of NoSQL databases is that they scale across a large

number of servers by horizontal partitioning of data items, they are

fault tolerant and achieve high write throughput, low read latencies

and schema flexibility. To achieve all these benefits, the main idea

is that you have to denormalize your data model and avoid costly

operations in order to speed up the database engine. As such, the

NoSQL databases were initially designed to support only single-

table queries and explicitly excluded the support for join operations

allowing applications to implement such tasks. However, modern

applications increasingly require the efficient combination of

information from multiple tables and column-families.

To this direction the first approaches are starting to emerge for

operators similar to join, based on Map-Reduce such as rank-join

queries [1] and set-similarity joins [2]. Rank-join queries try to find

the most relevant documents for two or more keywords whereas

set-similarity joins are those that try to find similar pairs of records

instead of exact ones. However, both these approaches execute

joins at the application level using Map-Reduce implementations

and the joins implemented do not focus on an exact matching of the

joined tuples. This emerging need has also been recently

recognized by DataStax, the biggest vendor of Cassandra NoSQL

commercial products which recently introduced a commercial join-

capable ODBC driver. The company claims that Cassandra can

now perform joins just as well as relational database management

systems. However, no results were presented nor the specific join

implementation algorithms and optimization techniques..

To fill these gaps, in this poster we present a naïve, yet efficient

query optimization and execution module enabling joins over

Cassandra NoSQL databases surpassing DataStax’s commercial

solution and highlighting the differences between NoSQL and

relational solutions.

2. PRELIMINARIES
Cassandra is a NoSQL database developed by the Apache Software

Foundation. It uses a hybrid model between key-value and column-

oriented database. The structure of the database is defined by super-

columns and column-families. In this paper the term column-family

and table will be used interchangeably although they are not exactly

the same.

All stored data can be easily manipulated using the Cassandra

Query Language (CQL) which is based on the widely used SQL.

CQL can be thought of as an SQL fragment with the following

restrictions over the classical SQL:

 R1. Joins are now allowed.

 R2. You cannot project the value of a column without selecting

first the key of the column. Every select query requires that

you restrict all partition keys. Select queries restricting a

clustering key have to restrict all the previous clustering keys

in order. Queries that don’t restrict all partition keys and any

possibly required clustering keys, can run only if they can

query secondary indices. To be allowed to run a query

including more than two secondary indices, Cassandra

requires that “allow filtering” is used in the query to show that

you really want to do it. All Cassandra queries that require this

run extremely slow and Cassandra’s recommendation is to

avoid running them. Tables can be stored sorted by clustering

keys. This is the only case in which you are allowed to run

range queries and order by clauses.

 R3. Unlike the projection in a CQL SELECT, there is no

guarantee that the results will contain all of the columns

specified because Cassandra is schema-optional. An error

does not occur if you request non-existent columns.

 R4. Nested queries are not allowed, there is no “OR” operator

and queries that select all rows of a table are extremely slow.

CQL statements change data, look up data, store data or change the

way data is stored. A select CQL expression selects one or more

records from Cassandra column family and returns a result-set of

rows. Similarly to SQL each row consists of a row key and a

collection of columns corresponding to the query.

3. QUERY OPTIMIZER & EXECUTION
Our query optimization and execution module can be placed on top

of any Cassandra cluster and is composed of the following

components, shown in Fig. 1:

This work was partially support by the iManageCancer (H2020-643529)
and the MyHealthAvatar (FP7-600929) EU projects.

© 2016, Copyright is with the authors. Published in Proc. 19th
International Conference on Extending Database Technology (EDBT),

March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on

OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0

Poster Paper

Series ISSN: 2367-2005 666 10.5441/002/edbt.2016.77

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.77

a) Rewriter: The rewriter accepts the CQL query containing joins

and creates the queries for accessing each individual column-

family/tables. For example assuming that Q0 is issued by the user,

this module produces as output Q1 and Q2 as shown in Fig. 1.

b) Planner: This component plans the execution of the individual

queries as constructed by the rewriter. First it identifies the

available indices on the queried column-families and tries to

comply with R2. For example, if the queries don’t restrict all

partition keys they can only run if there are available secondary

indices on these keys. To satisfy this restriction the planner

automatically generates secondary indices on the required fields. In

our running example, a secondary index will be automatically

generated to the producedBy.movieID column.

Figure 1. Components of the optimization & execution module

Besides trying to comply with all Cassandra restrictions the planner

identifies which join algorithms should be used for executing the

various joins by comparing the cost of left-deep trees. Currently

two join algorithms have been implemented: a) a variation of

Index-Nested Loops taking advantage of the existing indexes and

additionally allowing joins over collection sets – indexed

collections of elements (maps, sets and lists) supported after the

Cassandra version 2.1; b) the sort-merge join allowing the join to

be implemented in one pass over the data when the joined relations

are indexed. When joining two column-families, if only one of

them has an index on the joined field, the optimizer reads all rows

from the non-indexed one and then uses the index for searching the

indexed column-family. On the other hand when both column-

families are sorted on the join column, the Sort-Merge join

algorithm would be faster and is preferred by the optimizer.

c) Combiner: This component executes the queries, calculates the

join using the selected algorithm and returns the results to the users.

4. EVALUATION & CONCLUSION
All algorithms reported in this paper were implemented as a Java

API named CassandraJoins. The API is going to be released soon

under an open-source license. To perform a preliminary evaluation

of our implementation we used a single Cassandra DataStax

Community Server 2.1.5 x64 node running on a system with an I5

Intel Processor, 8GB of RAM on a Samsung SSD 850 EVO. We

compared our approach with the Simba-DataStax ODBC 0.7 driver

and with a MySQL Server CE 5.6.24. The execution time reported

in each case is the average of 50 runs of each query execution.

The first series of experiments we performed tries to join two tables

with a join on the indexed field. When we have indices on the

joined field the CassandraJoins optimizer is using the Index-Nested

Loops join algorithm whereas, when the input relations are sorted,

the optimizer uses sort-merge join. We cannot identify the specific

algorithm used by Simba-DataStax - the source code is not publicly

available. The results are shown in Fig. 2 for different input and

output sizes. We can observe that CassandraJoins is by far more

efficient than the Simba-DataStax implementation in all cases. For

example, when joining column-families with 2*105 rows each and

the result is of the same size our approach needs 166 secs whereas

Simba-DataStax ODBC driver needs 1087 secs. Obviously, when

the selectivity of the query is increased the execution time is

decreased. This is reasonable since Cassandra is known to be

extremely slow when a query needs to retrieve all rows of a table,

whereas it is extremely fast when only a small subset of the rows is

selected. In addition, in all cases the implementation of Index-

Nested Loops in a relational database (MySQL) is more efficient as

shown in the third column of the graphs, whereas when the

selectivity of the queries is high, our results are similar. However,

we have to note that Cassandra scales linearly in a multi-node

environment and we expect that our implementation will have even

better results than MySQL when more nodes are used. Finally, to

demonstrate the advantages of our implementation compared to a

MySQL Database, we performed another experiment trying to join

two column-families using collection indices. Since MySQL does

not support collection indices the dataset has to be modelled using

an additional indexed table. On the other hand Simba-DataStax

does not support joins on collections. The results depicted in the

last graph show that using CassandraJoins we need 0,01 sec

whereas using MySQL we need 0,64 sec.

Figure 2. Results of preliminary evaluation on a single node

To the best of our knowledge our implementation is the only

available non-commercial solution implementing joins over

Cassandra databases. Our experiments demonstrate the advantages

of our solution and confirm that our algorithms run efficiently and

effectively. In all cases, we achieved better execution times than

the commercial Simba-DataStax Driver currently available and our

results are comparable to the execution times achieved in the

relational database world. We have to note that our experiments

were performed in an environment that favors relational databases

(single node cluster). Surprisingly, our implementation is more

efficient than relational databases when collection indices are used.

The next step is to evaluate our implementation in a multi-node

cluster with more data, to integrate our algorithms directly in the

CQL language and to implement additional join methods.

5. REFERENCES
[1] Ntarmos, N., Patlakas, I. Triantafillou, P. 2014, Rank Join

Queries in NoSQL Databases, PVLDB, 7(7), 493-504.

[2] Kim, C., Shim, K. 2015. Supporting set-valued joins in

NoSQL using MapReduce, IS Journal, 49, 52-64.

667

	Efficient Implementation of Joins over Cassandra DBsHaridimos Kondylakis, Antonis Fountouris, Dimitris Plexousakis

