
Optimizing B+-Tree for PCM-Based Hybrid Memory
Lu Li1,2, Peiquan Jin1,2, Chengcheng Yang1,2, Zhanglin Wu1,2, and Lihua Yue1,2

1
University of Science and Technology of China, Hefei, China, 230027

2
Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China, 230027

jpq@ustc.edu.cn

ABSTRACT

Phase change memory (PCM) as a newly developed storage

medium has many attractive properties such as non-volatility,

byte addressability, high density and low energy consumption.

Thus, PCM can be used to build non-volatile main memory

databases. However, PCM’s long write latency and high write

energy bring challenges to PCM-based memory systems. In this

paper, we propose an improvement over the B+-tree for PCM.

Particularly, we consider the read/write tendency of leaf nodes.

For write-intensive leaf nodes, we use an overflow-node

technique to reduce PCM writes, while for read-intensive ones,

we adjust the tree structure to remove overflow nodes to

improve read performance. Our experimental results suggest that

our proposal outperforms the traditional B+-tree and the

overflow B+-tree.

CCS Concepts

• Information systems ➝ Information storage systems

• Information storage technologies ➝ Storage class memory.

Keywords

B+-tree; Index; PCM

1. INTRODUCTION
The increasing needs for large energy-efficient main memory

call for new types of memories, such as phase change memory

(PCM). PCM is byte-addressable and supports random access.

Compared with DRAM, PCM is non-volatile and is expected to

have higher storage density in the future [1, 2]. However, two

problems make it difficult to replace DRAM in current computer

systems. First, the write latency of PCM is about 6 to 10 times

slower than that of DRAM. Second, PCM cells have limited

write endurance [3].

Therefore, a more practical way to utilize PCM in memory

architecture is to use both PCM and DRAM to construct hybrid

memory architecture [2]. In such hybrid memory architecture,

the high density and non-volatility of PCM makes it possible to

build non-volatile main-memory databases. However, due to the

special properties of PCM, many existing database algorithms

such as indexing have to be revised to take advantage of PCM.

In this paper, we focus on the indexing issue in

PCM/DRAM-based hybrid memory systems. We aim to

improve the traditional B+-tree to make use of PCM and DRAM

efficiently. Specifically, we improve the traditional B+-tree in

two aspects. First, we use an overflowing mechanism [4, 5] to

reduce write operations to PCM, where each leaf node in the

B+-tree is allowed to have several overflow nodes to keep newly

inserted records when the leaf node is full. Thus, we can reduce

the split operations on the index and consequently reduce writes

and lengthen the lifetime of PCM. Second, we propose to predict

the read/write tendency of index requests, based on which we

use different ways to process index requests. Particularly, we

use the overflowing scheme for write-intensive requests, but

adopt a tree-adjusting operation to remove overflow nodes so as

to improve read performance. We conduct experiments to

evaluate our proposal and make comparison with the traditional

B+-tree and the overflow B+-tree. The results suggest the

efficiency of our proposal.

2. CB+-TREE
The structure of the CB+-tree is similar with the B+-tree, except

that each leaf node can have a few overflow nodes. A leaf node

without overflow nodes is called a tra, while a leaf node

containing overflow nodes is called an ovf.

All the data stored in leaf nodes of CB+-tree is the same as

that in the B+-tree. Nodes of the CB+-tree are ordered, thus

binary search is allowed. Every node of the CB+-tree consists of

a set of <key, value> pairs and some auxiliary information. The

auxiliary information includes num_keys, is_leaf, parent, and

brother. Here, num_keys denotes the number of <key, value>

pairs, is_leaf indicates whether the node is a leaf node, and

parent and brother denote the parent and the brother of the node,

respectively.

In the CB+-tree, when an ovf leaf node has a read tendency,

we remove it from the overflow chain and make it be a new tra.

With this mechanism, we can reduce the number of overflow

nodes and therefore improve read performance. As shown in Fig.

1, the leaf nodes LN1, LN2 are tra and LN3 is an ovf. If LN3 is

required to be changed into a tra, we remove LN3 from its

overflow chain and change it into a tra. Other ovf in the original

overflow chain remain unchanged. Consequently, the overflow

chain is changed into two segments, as shown in the right part of

Fig. 1.

Figure 1. Structure adjustment of the CB+-tree.

The key issue in the CB+-tree is how to predict the

read/write tendency (𝒯) of a leaf node. Formally, 𝒯 is calculated

by (1). Here, 𝑟𝑎𝑡𝑖𝑜𝑡 and 𝑟𝑎𝑡𝑖𝑜𝑐 are total and recent proportion

of writes to all accesses on a leaf node, respectively.

𝒯 = 𝑟𝑎𝑡𝑖𝑜𝑡 ∗ 𝜕 + 𝑟𝑎𝑡𝑖𝑜𝑐 ∗ (1 − 𝜕), 𝑠. 𝑡. 𝜕 ∈ [0, 1]. (1)

We make use of a sliding window to record k latest

read/write requests for a leaf node, and further get the value of

𝑟𝑎𝑡𝑖𝑜𝑐 . Generally, a node is considered to be write-intensive

when 𝒯 is higher than 0.7, and be read-intensive when 𝒯 is

lower than 0.3. The read/write tendency prediction scheme

works when 𝒯 is in 0.3-0.5 for an ovf and in 0.5-0.7 for a tra.

© 2016, Copyright is with the authors. Published in Proc. 19th

International Conference on Extending Database Technology (EDBT),

March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on
OpenProceedings.org. Distribution of this paper is permitted under the

terms of the Creative Commons license CC-by-nc-nd 4.0

Poster Paper

Series ISSN: 2367-2005 662 10.5441/002/edbt.2016.75

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.75

We perform the prediction by using the polynomial fit technique

according to the recent access information in the sliding window.

In addition, we do not trigger the prediction when the 𝒯 of an

ovf drops a little below 0.7 immediately, but wait for some time

to collect more information about the access pattern. This

strategy is also applied to the change of the parameter tra.

3. EVALUATION
To observe the performance benefits of the proposed CB+-tree,

we implemented three algorithms: the traditional B+-tree, the

OB+-tree[4] and the CB+-tree, and we run them on a computer

with Ubuntu 14.04, a CPU of AMD Athlon II X2, 4GB RAM,

and 1 TB Seagate hard disk. In addition, we used DRAM to

simulate PCM by artificially increasing write latency.

We used the TPC-C1 workload to generate the traces in the

experiments. When running the TPC-C workload, 10

warehouses and 100 clients are configured. The TPC-C

workload contains eight index files built on eight tables, and the

size of the tables is approximately 1 GB. We used

BenchmarkSQL2 to generate the TPC-C workload running on

the open-source PostgreSQL, and collect page requests on the

eight tables at the same time. We first performed insertions on

the tables to get index insertions. Consequently, we performed

5.4 million insertions requests and the original B+-tree index file

is about 135 MB. Then, we prepared a trace containing about 3.8

million index requests including 74.2 % searches, 23.8 %

insertions, and 1% deletions.

Figure 2. PCM read counts with different buffer sizes.

Figure 3. PCM write counts with different buffer sizes.

We first measure the read and write count of cache lines.

Figures 2 and 3 show the read and write counts when varying

the buffer size of each index. As shown in Fig. 2, the B+-tree

has the least read count under all settings, because it does not

involve any overflow nodes. However, as shown in Fig. 3, the

B+-tree introduces more PCM write operations, which will

shorten the lifetime of PCM and worsen the overall time

performance. The OB+-tree has the highest read count because

each leaf node in the OB+-tree is likely to contain a long chain

of overflow nodes, which introduces more read operations. On

the other side, the proposed CB+-tree has much less read

operations compared with the OB+-tree, because it uses

read/write tendency to dynamically remove overflow nodes.

1 http://www.tpc.org/tpcc/
2 http://sourceforge.net/projects/benchmarksql/

Note that our index has a little more PCM writes than the OB+-

tree. This is due to the read/write-tendency-based adjustment of

the index structure. Figure 4 shows the run time of each index,

which is normalized according to the run time of the B+-tree, i.e.,

the run time of the B+-tree is always set to 1. It indicates that the

CB+-tree outperforms the B+-tree and the OB+-tree in terms of

overall run time. As a result, the CB+-tree is able to balance the

read and write costs, yielding a better indexing mechanism for

PCM-based memory systems.

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

256 512 1024

Ru
n

Ti
m

e
(N

or
m

al
iz

ed
)

BufferSize (KB)

B+-tree OB+-tree CB+-tree

Figure 4. Run Time (normalized w.r.t. B+-tree).

4. CONCLUSIONS
PCM has been regarded as a new kind of future memories. In

this paper, we proposed an efficient tree indexing approach

called CB+-tree that is an improved version of the traditional

B+-tree. We used the overflow-node design to reduce writes to

PCM, and thus the endurance of PCM can be improved. We also

proposed to predict the read/write tendency of index requests,

based on which we performed necessary adjustment on the tree

index to reduce additional read operations caused by overflow

nodes. The comparative experimental results including

read/write count and run time, show the efficiency and

superiority of our proposal.

5. ACKNOWLEDGMENTS
This work is partially supported by the National Science

Foundation of China (61379037 and 61472376).

6. REFERENCES
[1] Qureshi, M. K., Srinivasan, V., Rivers, J. A. 2009.

Scalable high performance main memory system using

phase-change memory technology. In ACM SIGARCH

Computer Architecture News, 37(3), 24-33.

[2] Dhiman G, Ayoub R, Rosing T. 2009. PDRAM: a hybrid

PRAM and DRAM main memory system. In Proceedings

of the 46th Design Automation Conference (San Francisco,

CA, USA, July 26 - 31, 2009). ACM/IEEE, 2009: 664-669.

[3] Wu, Z., Jin, P., Yue, L. 2015. Efficient space management

and wear leveling for PCM-based storage systems. In

Proceedings of the 15th International Conference on

Algorithms and Architectures for Parallel Processing

(Zhangjiajie, China, November 18 - 20, 2015). LNCS 9531,

784-798.

[4] Chi, P., Lee, W., Xie, Y. 2014. Making B+-tree efficient in

PCM-based main memory. In Proceedings of International

Symposium on Low Power Electronics and Design (La

Jolla, CA USA, August 11 - 13, 2014), ACM, 69-74.

[5] Jin, P., Yang, C., Jensen, C. S., Yang, P., Yue, L., 2015.

Read/write-optimized tree indexing for solid-state drives,

The VLDB Journal, online: 1-23. DOI =

http://dx.doi.org/10.1007/s00778-015-0406-1

0

2

4

6

8

256 512 1024

R
e

ad
C

o
u

n
t(

x1
0

6)

BufferSize (KB)

B+-tree OB+-tree CB+-tree

0

0.5

1

1.5

2

2.5

256 512 1024

W
ri

te
C

o
u

n
t(

x1
0

6)

BufferSize (KB)

B+-tree OB+-tree CB+-tree

663

	Optimizing B+-Tree for PCM-Based Hybrid MemoryLu Li, Peiquan Jin, Chengcheng Yang, Zhanglin Wu, Lihua Yue

