
Storing and Analyzing Historical Graph Data at Scale

Udayan Khurana
IBM TJ Watson Research Center

ukhurana@us.ibm.com

Amol Deshpande
University of Maryland
amol@cs.umd.edu

ABSTRACT
The work on large-scale graph analytics to date has largely focused
on the study of static properties of graph snapshots. However, a
static view of interactions between entities is often an oversimplifi-
cation of several complex phenomena like the spread of epidemics,
information diffusion, formation of online communities, and so on.
Being able to find temporal interaction patterns, visualize the evolu-
tion of graph properties, or even simply compare snapshots across
time, adds significant value in reasoning over graphs. However,
due to the lack of underlying data management support, an ana-
lyst today has to manually navigate the added temporal complexity
of dealing with large evolving graphs. In this paper, we present a
system, called Historical Graph Store, that enables users to store
large volumes of historical graph data and to express and run com-
plex temporal graph analytical tasks against that data. It consists of
two key components: (1) a Temporal Graph Index (TGI), that com-
pactly stores large volumes of historical graph evolution data in a
partitioned and distributed fashion – TGI also provides support for
retrieving snapshots of the graph as of any timepoint in the past or
evolution histories of individual nodes or neighborhoods; and (2) a
Temporal Graph Analysis Framework (TAF), for expressing com-
plex temporal analytical tasks and for executing them in an efficient
and scalable manner using Apache Spark. Our experiments demon-
strate our system’s efficient storage, retrieval and analytics across a
wide variety of queries on large volumes of historical graph data.

1. INTRODUCTION
Graphs are useful in capturing behavior involving interactions

between entities. Several processes are naturally represented as
graphs – social interactions between people, financial transactions,
biological interactions among proteins, geospatial proximity of in-
fected livestock, and so on. Many problems based on such graph
models can be solved using well-studied algorithms from graph
theory or network science. Examples include finding driving routes
by computing shortest paths on a network of roads, finding user
communities through dense subgraph identification in a social net-
work, and many others. Numerous graph data management sys-
tems have been developed over the last decade, including special-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

ized graph database systems like Neo4j, Titan, etc., and large-scale
graph processing frameworks such as GraphLab [27], Pregel [29],
Giraph, GraphX [12], GraphChi [24], etc.

However much of the work to date, especially on cloud-scale
graph data management systems, focuses on managing and ana-
lyzing a single (typically, current) static snapshot of the data. In
the real world, however, interactions are a dynamic affair and any
graph that abstracts a real-world process changes over time. For in-
stance, in online social media, the friendship network on Facebook
or the “follows” network on Twitter change steadily over time,
whereas the “mentions” or the “retweet” networks change much
more rapidly. Dynamic cellular networks in biology, evolving cita-
tion networks in publications, dynamic financial transactional net-
works, are few other examples of such data. Lately, we have seen
an increasing merit in dynamic modeling and analysis of network
data to obtain crucial insights in several domains such as cancer
prediction [38], epidemiology [15], organizational sociology [16],
molecular biology [9], information spread on social networks [26]
amongst others.

In this work, our focus is on providing the ability to analyze and
to reason over the entire history of the changes to a graph. There are
many different types of analyses of interest. For example, an an-
alyst may wish to study the evolution of well-studied static graph
properties such as centrality measures, density, conductance, etc.,
over time. Another approach is through the search and discovery of
temporal patterns, where the events that constitute the pattern are
spread out over time. Comparative analysis, such as juxtaposition
of a statistic over time, or perhaps, computing aggregates such as
max or mean over time, possibly gives another style of knowledge
discovery into temporal graphs. Most of all, a primitive notion of
just being able to access past states of the graphs and performing
simple static graph analysis, empowers a data scientist with the ca-
pacity to perform analysis in arbitrary and unconventional patterns.

Supporting such a diverse set of temporal analytics and query-
ing over large volumes of historical graph data requires addressing
several data management challenges. Specifically, there is a want
of techniques for storing the historical information in a compact
manner, while allowing a user to retrieve graph snapshots as of any
time point in the past or the evolution history of a specific node
or a specific neighborhood. Further, the data must be stored and
queried in a distributed fashion to handle the increasing scale of the
data. There is also a need for an expressive, high-level, easy-to-use
programming framework that will allow users to specify complex
temporal graph analysis tasks, while ensuring those tasks can be
executed efficiently in a data-parallel fashion across a cluster.

In this paper, we present a graph data management system, called
Historical Graph Store (HGS), that provides an ecosystem for man-
aging and analyzing large historical traces of graphs. HGS con-

Series ISSN: 2367-2005 65 10.5441/002/edbt.2016.09

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.09

sists of two key distinct components. First, the Temporal Graph
Index (TGI), is an index that compactly stores the entire history of
a graph by appropriately partitioning and encoding the differences
over time (called deltas). These deltas are organized to optimize the
retrieval of several temporal graph primitives such as neighborhood
versions, node histories, and graph snapshots. TGI is designed to
use a distributed key-value store to store the partitioned deltas, and
can thus leverage the scalability afforded by those systems (our im-
plementation uses Apache Cassandra1 key-value store). TGI is a
tunable index structure, and we investigate the impact of tuning
the different parameters through an extensive empirical evaluation.
TGI builds upon our prior work on DeltaGraph [21], where the
focus was on retrieving individual snapshots efficiently; TGI ex-
tends DeltaGraph to support efficient retrieval of subgraphs instead
of only full snapshots, retrieval of histories of nodes or subgraphs
over past time intervals, and features a highly scalable design over
DeltaGraph.

The second component of HGS is a Temporal Graph Analy-
sis Framework (TAF), which provides an expressive framework to
specify a wide range of temporal graph analysis tasks. TAF is based
on a novel set of temporal graph operands and operators that en-
able parallel execution of the specified tasks at scale in a cluster
environment. The execution engine is implemented on Apache
Spark [40], a large-scale in-memory cluster computing framework.

Outline: The rest of the paper is organized as follows. In Section 2,
we survey the related work on graph data stores, temporal indexing,
and other topics relevant to the scope of the paper. In Section 3,
we provide a sketch of the overall system, including key aspects
of the underlying components. We then present TGI and TAF in
detail in Sections 4 and 5, respectively. In Section 6, we provide an
empirical evaluation, and and conclude with a summary and a list
of future directions in Section 7.

2. RELATED WORK
In the recent years, there has been much work on graph storage

and graph processing systems and numerous systems have been de-
signed to address various aspects of graph data management. Some
examples include Neo4J, Titan2, GBase [19], Pregel [29], Giraph,
GraphX [12], GraphLab [27], and Trinity [36]. These systems use
a variety of different models for representation, storage, and query-
ing, and there is a lack of standardized or widely accepted models
for the same. Most graph querying happens through programmatic
access to graphs in languages such as Java, Python or C++. Graph
libraries such as Blueprints3 provide a rich set of implementations
for graph theoretic algorithms. SPARQL [33] is a language used
to search patterns in linked data. It works on an underlying RDF
representation of graphs. T-SPARQL [13] is a temporal extension
of SPARQL. He et al. [17], provide a language for finding sub-
graph patterns using a graph as a query primitive. Gremlin4 is a
graph traversal language over the property graph data model, and
has been adopted by several open-source systems. For large-scale
graph analysis, perhaps the most popular framework is the vertex-
centric programming framework, adopted by Giraph, GraphLab,
GraphX, and several other systems; there have also been several
proposals for richer and more expressive programming frameworks
in recent years. However, most of these prior systems largely focus
on analyzing a single snapshot of the graph data, with very little
support for handling dynamic graphs, if any.
1https://cassandra.apache.org
2http://thinkaurelius.github.io/titan/
3https://github.com/tinkerpop/blueprints/wiki
4https://github.com/tinkerpop/gremlin

A few recent papers address the issues of storage and retrieval in
dynamic graphs. In our prior work, we proposed DeltaGraph [21],
an index data structure that compactly stores the history of all
changes in a dynamic graph and provides efficient snapshot re-
construction. G* [25] stores multiple snapshots compactly by uti-
lizing commonalities. ImmortalGraph [30] is an in-memory sys-
tem for processing dynamic graphs, with the objectives of shared
storage and computation for overlapping snapshots. Ghrab et
al. [11] provide a system of network analytics through labeling
graph components. Gedik et al. [10], describe a block-oriented and
cache-enabled system to exploit spatio-temporal locality for solv-
ing temporal neighborhood queries. Koloniari et al. [23] also utilize
caching to fetch selective portions of temporal graphs they refer to
as partial views. LLAMA [28] uses multiversioned arrays to rep-
resent a mutating graph, but their focus is primarily on in-memory
representation. There is also recent work on streaming analytics
over dynamic graph data [8, 7], but it typically focuses on analyz-
ing only the recent activity in the network (typically over a sliding
window).

Temporal graph analytics is an area of growing interest. Evolu-
tion of shortest paths in dynamic graphs has been studied by Huo
et al. [18], and Ren et al. [34]. Evolution of community structures
in graphs has been of interest as well [5, 14]. Change in page rank
with evolving graphs [3], and the study of change in centrality of
vertices, path lengths of vertex pairs, etc. [32], also lie under the
larger umbrella of temporal graph analysis. Ahn et al. [1] pro-
vide a taxonomy of analytical tasks over evolving graphs. Barrat
et al. [4], provide a good reference for studying several dynamic
processes modeled over graphs. Our system significantly reduces
the effort involved in building and deploying such analytics over
large volumes of graph data.

Temporal data management for relational databases was a topic
of active research in the 80s and early 90s. Snapshot index [39]
is an I/O optimal solution to the problem of snapshot retrieval for
transaction-time databases. Salzberg and Tsotras [35] present a
comprehensive survey of temporal data indexing techinques, and
discuss two extreme approaches to supporting snapshot retrieval
queries, referred to as the Copy and Log approaches. While the
copy approach relies on storing new copies of a snapshot upon ev-
ery point of change in the database, the log approach relies on stor-
ing everything through changes. Their hybrid is often referred to as
the Copy+Log approach. We omit a detailed discussion of the work
on temporal databases, and refer the interested reader to a represen-
tative set of references [37, 31, 35].Other data structures, such as
Interval Trees [2] and Segment trees [6] can also be used for stor-
ing temporal information. Temporal aggregation in scientific ar-
ray databases is another related topic of interest, but the challenges
there are significantly different. Kaufmann et al. [20] propose an
in-memory index in SAP HANA that addresses temporal aggrega-
tion, joins, and snapshot construction. The applicability of tem-
poral relational data management techniques to graphs is restricted
due to lack of (efficient) support for graph specific retrieval such
as fetching neighborhoods, or histories of nodes over time. Our
work in this paper focuses on techniques for a wide variety of tem-
poral graph retrieval and analysis on entire graph histories that are
primarily stored on disk.

3. OVERVIEW
In this section, we introduce key aspects related to HGS. We

begin with the data model, followed by the key challenges and con-
cluding with an overview of the system.

66

size

tim
e

node neighborhood graph

po
in
t

in
te
rv
al

Snapshot
shortest paths, pagerank
diameter, density
betweenness centrality
What is the average number
of friends for a person?

Multipoint Snapshot
evolution of graph density
comparing diameter across time
most central node last year
Has the degree of separation
increased in the last 1 year?

Subgraph
local clustering coefficient

Whether X or Y has a higher
knit cluster around them?

Subgraph versions
community evolution
compare local clustering
coefficient
Visualize evolution of this
community of investors.

Static vertex

Vertex history

vertex connections

degree evolution
Which are X's most
interacted contacts
until 1995?

How many citations
did I have in 2012?

Figure 1: The scope of temporal graph analytics can be represented
across two different dimensions - time and entity. The chart lists re-
trieval tasks (black), graph operations (red), example queries (ma-
genta) at different granularities of time and entity size.

3.1 Data Model
Under a discreet notion of time, a time-evolving graph GT =

(V T ,ET) may be expressed as a collection of graph snapshots over
different time points, {G0 = (V 0,E0),G1, . . . ,Gt}. The vertex set
V i for a snapshot consists of a set of vertices (nodes), each of which
has a unique identifier (constant over time), and an arbitrary num-
ber of key-value attribute pairs. The edge sets E i consist of edges
that each contain references to two valid nodes in the correspond-
ing vertex set V i, information about the direction of the edge, and
an arbitrary list of key-value attribute pairs. A temporal graph can
also be equivalently described by a set of changes to the graph over
time. We call an atomic change at a specific timepoint in the graph
an event. The changes could be structural, such as the addition or
the deletion of nodes or edges, or be related to attributes such as
an addition or a deletion or a change in the value of a node or an
edge attribute. For instance, a new user joining the Facebook so-
cial network corresponds to an event of node creation; connecting
to another user is an event of edge creation; changing location or
posting an update are events of change and creation of attribute val-
ues, respectively. These approaches specified here as well as cer-
tain hybrids have been used in the past for the physical and logical
modeling of temporal data. Our approach to temporal processing
in this paper is best described using a node-centric logical model,
i.e., the historical graph is seen as a collection of evolving vertices
over time; the edges are considered as attributes of the nodes. This
abstraction helps in our design of distributed storage of the graph
and parallel execution of the analytical tasks.

3.2 Challenges
The nature of data management tasks in historical graph analyt-

ics can be categorized based on the scope of analysis using the dual
dimensions of time and entity as illustrated with examples in Fig-
ure 1. The temporal scope of an analysis task can range from a
single point in time to a long interval; the entity scope can range
from a single node to the entire graph. While the diversity of an-
alytical tasks provides a potential for a rich set of insights from
historical graphs, it also poses several challenges in constructing a
system that can perform those tasks. To the best of our knowledge,
none of the existing systems address a majority of those challenges
that are described below:

Compact storage with fast access: An natural tradeoff between
index size and access latencies can be seen in the Log and Copy ap-
proaches for snapshot retrieval. Log requires minimal information

to encode the graph’s history, but incurs large reconstruction costs.
Copy, on the other hand, provides direct access, but at the cost of
excessive storage. The desirable index should consume space of
the order of Log index but provide near direct access like Copy.

Time-centric versus entity-centric indexing: For point access
such as past snapshot retrieval, a time-centric indexing such as
DeltaGraph or Copy+Log is suitable. However, for version re-
trieval tasks such as retrieving a node’s history, entity-centric in-
dexing is the correct choice. Neither of the indexing approaches,
however, are feasible in the opposite scenarios. Given the diver-
sity of access needs, we require an index that works well with both
styles of lookup at the same time.

Optimal granularity of storage for different queries: Query la-
tencies for a graph also depend on the size of chunks in which the
data is indexed. While larger granularities of storage incur waste-
ful data read for “node retrieval”, a finely chunked graph storage
would mean higher number of lookups and aggregation for a 2-
hop neighborhood lookup. The physical and logical arrangement
of data should take care of access needs at all granularities.

Coping with changing topology in a dynamic graph: It is evi-
dent that graph partitioning is inevitable in the storage and pro-
cessing of large graphs. However, finding the appropriate strategy
to maintain workable partitioning on a constantly changing graph
is another challenge while designing a historical graph index.

Systematically expressing temporal graph analytics: A plat-
form for expressing a wide variety of historical graph analytics
requires an appropriate amalgam of temporal logic and graph
theory. Additionally, utilizing a vast body of existing tools in
network science is an engineering challenge and opportunity.

Appropriate abstractions for distributed, scalable analytics:
Parallelization is key to scale up analytics for large graph datasets.
It is essential that the underlying data-representations and operators
in the analytical platform be designed for parallel computing.

3.3 System Overview
Figure 2 shows the architecture of our proposed Historical Graph

Store. It consists of two main components:

Temporal Graph Index (TGI) records the entire history of a
graph compactly while enabling efficient retrieval of several tempo-
ral graph primitives. It encodes various forms of differences (called
deltas) in the graph, such as atomic events, changes in subgraphs
over intervals of time, etc. It uses specific choices of graph parti-
tioning, data replication, temporal compression and data placement
to optimize the graph retrieval performance. TGI uses Cassandra, a
distributed key-value store for the deltas. In Section 4, we describe
the design details of TGI and the access algorithms.

Temporal Graph Analytics Framework (TAF) provides a tem-
poral node-centric abstraction for specifying and executing com-
plex temporal network analysis tasks. It helps the user analyze
the history of the graph by means of simple yet expressive tem-
poral operators. The abstraction of temporal graph through a set
of (temporal) nodes (SoN) allows the framework to achieve compu-
tational scalability through distribution of tasks by node and time.
TAF is built on top of Apache Spark to utilize its support for scal-
able, in-memory, cluster computation; TAF provides an option to
utilize GraphX for static graph computation. We provide a Java
and Python based library to specify the retrieval, computation and
analysis tasks. In Section 5, we describe the details of the data and
computational models, query processing, parallel data fetch aspects
of the system, the analytical library along with a few examples.

67

TEMPORAL GRAPH INDEX

(a) Framework to specify graph extraction and analysis.
Operators - Select, Timeslice, Filter, Map, MapDelta

Operands - Set of Nodes (SON), TGraph, …

Temporal
Graph History

TEMPORAL GRAPH ANALYSIS FRAMEWORK

(b) Apache Spark based parallel execution on RDDs

Persistent, distributed, compact graph history

QUERY MANAGER: Fetches Snapshots, Node Version
History, Historical Neighborhood States or Versions, ...

INDEX MANAGER: Creates TGI through partitioning, replication,
hierarchical temporal aggregation and version chaining.

RDD<TNode> RDD<TNode> RDD<TNode> RDD<TNode>

Figure 2: System Overview

4. TEMPORAL GRAPH INDEX
In this section, we investigate the issue of indexing temporal

graphs. First, we introduce a delta framework to define any tempo-
ral index as a set of different changes or deltas. Using this frame-
work, we are able to qualitatively compare the access costs and
sizes of different alternatives for temporal graph indexing, includ-
ing our proposed approach. We then present the Temporal Graph
Index (TGI), that stores the entire history of a large evolving net-
work in the cloud, and facilitates efficient parallel reconstruction
for different graph primitives. TGI is a generalization of both en-
tity and time-based indexing approaches and can be tuned to suit
specific workload needs. We claim that TGI is the minimal index
that provides efficient access to a variety of primitives on a his-
torical graph, ranging from past snapshots to versions of a node
or neighborhood. We also describe the key partitioning strategies
instrumental in scaling to large datasets across a cloud storage.

4.1 Preliminaries
We start with a few preliminary definitions that help us formalize

the notion of the delta framework.

DEFINITION 1 (STATIC NODE). A static node refers to the
state of a vertex in a network at a specific time, and is defined as a
set containing: (a) node-id, denoted I (an integer), (b) an edge-list,
denoted E (captured as a set of node-ids), (c) attributes, denoted A,
a map of key-value pairs.

A static edge is defined analogously, and contains the node-ids
for the two endpoints and the edge direction in addition to a map of
key-value pairs. Finally, a static graph component refers to either a
static edge or a static node.

DEFINITION 2 (DELTA). A Delta (∆) refers to either: (a) a
static graph component (including the empty set), or (b) a differ-
ence, sum, union or intersection of two deltas.

Such a definition of delta helps express the change in a wider con-
text than merely difference of graph states at two points. It helps us
articulate several temporal graph indexes including TGI and Delta-
Graph in a single framework.

DEFINITION 3 (CARDINALITY AND SIZE). The cardinality
and the size of a delta are the unique and total number of static
node or edge descriptions within it, respectively.

DEFINITION 4 (∆ SUM). A sum (+) over two deltas, ∆1 and
∆2, i.e., ∆s = ∆1 +∆2 is defined over graph components in the two
deltas as follows: (1) ∀gc1 ∈ ∆1, if ∃gc2 ∈ ∆2 s.t. gc1.I = gc2.I,
then we add gc2 to ∆s, (2) ∀gc1 ∈ ∆1 s.t. @gc2 ∈ ∆2 s.t. gc1.I =
gc2.I, we add gc1 to ∆s, and (3) analogously the components
present only in ∆2 are added to ∆s.

Note that: ∆1 + ∆2 = ∆2 + ∆1 is not necessarily true due the
order of changes. We also note that: ∆1 + /0 = ∆1, and (∆1 +∆2)+
∆3 = ∆1 +(∆2 +∆3). Analogously, difference(-) is defined as a set
difference over different components of the two deltas. ∆1−φ =∆1
and ∆1 − ∆1 = φ , are true, while, ∆1 − ∆2 = ∆2 − ∆1, does not
necessarily hold.

DEFINITION 5 (∆ INTERSECTION). An intersection of two
deltas is defined as a set intersection over the the components of
two deltas. ∆1 ∩ φ = φ , is true for any delta. Similarly, union of
two deltas ∆∪ = ∆1 ∪∆2, consists of all elements from ∆1 and ∆2.
The following is true for any delta: ∆1∪φ = ∆1.

Next we discuss and define some specific types of deltas:

DEFINITION 6 (EVENT). An event is the smallest change that
happens to a graph, i.e., addition or deletion of a node or an edge,
or a change in an attribute value. An event is described around
one time point. As a delta, an event concerning a graph component
c, at time point te, is defined as the difference of state of c at and
before te, i.e., ∆event(c, te) = c(te)− c(te−1).

DEFINITION 7 (EVENTLIST). An eventlist delta is a chrono-
logically sorted set of event deltas. An eventlist’s scope may be
defined by the time duration, (ts, te], during which it defines all the
changes that happened to the graph.

DEFINITION 8 (EVENTLIST PARTITION). An eventlist pari-
tition delta is is a chronologically sorted set of event deltas per-
taining to a set of nodes, P, over a given time duration, (ts, te].

DEFINITION 9 (SNAPSHOT). A snapshot, Gta is the state of a
graph G at a time point ta. As a delta, it is defined as the difference
of the state of the graph at ta from an empty set, ∆snapshot(G, ta) =
G(ta)−G(−∞).

DEFINITION 10 (SNAPSHOT PARTITION). A snapshot parti-
tion is a subset of a snapshot. It is identified by a subset P of all
nodes in graph, G at time, ta. It consists of all nodes in G at ta and
all the edges whose at least one end-point lies in P at time, ta.

4.2 Prior Techniques
The prior techniques for temporal graph indexing use changes

or differences in various forms to encode time-evolving datasets.
We can express them in the ∆-framework as follows. The Log in-
dex is equivalent to a set of all event deltas (equivalently, a single
eventlist delta encompassing the entire history). The Copy+Log
index can be represented as combination of: (a) a finite number
of distinct snapshot deltas, and (b) eventlist deltas to capture the
change between successive snapshots. Although we are not aware
of a specific proposal for a vertex-centric index, however, a natural
approach would be to maintain a set of eventlist partition deltas,

68

one for each node (with edge information replicated with the end-
points). The DeltaGraph index, proposed in our prior work, is a
tunable index with several parameters. For a typical setting of pa-
rameters, it can be seen as equivalent to taking a Copy+Log index,
and replacing the snapshot deltas in it with another set of deltas
constructed hierarchically as follows: for every k successive snap-
shot deltas, replace them with a single delta that is the intersection
of those deltas and a set of difference deltas from the intersection
to the original snapshots, and recursively apply this till you are left
with a single delta.

Table 1 estimates the cost of fetching different graph primitives
as the number and the cumulative size of deltas that need to be
fetched for the different indexes. The first column shows an esti-
mate of index storage space, which varies considerably across the
techniques. For proofs, please refer to the extended version [22].

4.3 Temporal Graph Index: Definition
Given the above formalism, a Temporal Graph Index for a graph

G over a time period T = [0, tc] is described by a collection of dif-
ferent deltas as follows:

(a) Eventlist Partitions: A set of eventlist partition deltas, {Et p},
where Et p captures the changes during the time interval t be-
longing to partition p.

(b) Derived Snapshot Partitions: Consider r distinct time points,
ti, where 1 ≤ i ≤ r, ti ∈ T , For each ti, we consider l parti-
tion deltas, Pi

j, 1 < j < l, such that ∪ jPi
j = Gti . There exists a

function that maps any node-id(I) in Gti to a unique partition-
id(Pi

j), fi : I→ Pi
j. With a collection of Pi

j over T as leaf nodes,
we construct a hierarchical tree structure where a parent is the
intersection of children deltas. The difference of each parent
from its child delta is called as a derived snapshot partition and
is explicitly stored. Note that Pi

j are not explicitly stored. This
is the same as DeltaGraph, with the exception of partitioning.

(c) Version Chain: For all nodes N in the graph G, we maintain a
chronologically sorted list of pointers to all the references for
that node in the delta sets described above (a and b). For a node
I, this is called a version chain (denoted VCI).

In short, the TGI stores deltas or changes in three different forms,
as follows. The first one is the atomic changes in a chronological
order through eventlist partitions. This facilitates direct access to
the changes that happened to a part or whole of the graph at speci-
fied points in time. Secondly, the state of nodes at different points
in time is stored indirectly in form of the derived snapshot partition
deltas. This facilitates direct access to the state of a neighborhood
or the entire graph at a given time. Thirdly, a meta index stores
node-wise pointers to the list of chronological changes for each
node. This gives us a direct access to the changes occurring to
individual nodes. Figure 3(a) shows the arrangement of eventlist,
snapshot and derived snapshot partition deltas. Figure 3(b) shows
a sample version chain.

TGI utilizes the concept of temporal consistency which was opti-
mally utilized by DeltaGraph. However, it differs from DeltaGraph
in two major ways. First, it uses a partitioning for eventlists, snap-
shots or deltas instead of large monolithic chunks. Additionally,
it maintains a list of version chain pointers for each node. The
combination of these two novelties along with DeltaGraph’s tem-
poral compression generalizes the notion of entity-centric and time-
centric indexing approaches in an efficient way. This can be seen by
the qualitative comparison shown in Table 1 as well as empirical re-
sults in Section 6. Note that the particular design of TGI in the form
of eventlist partitions and deltas, and version chain is not equiva-
lent to two separate indexes, one with snapshots and eventlists and

{Pi
1} {Pi

2} {Pi
3} {Pi

4} {Pi
5} {Pi

6} {Pi
7} {Pi

8}

{Pi
1-1=f(Pi

1, Pi
2) }

Pi
1-2 Pi

1-3
Pi

1-4

Pi
2-1 Pi

2-2

Pi
3-1

{Ei
1} {Ei

2} {Ei
3} {Ei

4} {Ei
5} {Ei

6} {Ei
7}

time

{Ji
1-1=Pi

1- Pi
1-1}

...

...

E1
2 E2

2E3
2....

E5
2 P5

1-2E5
6...

Version Chain

N4

N3

N2

N1

Node

(a)

(b)

Figure 3: Temporal Graph Index representation: (a) TGI deltas par-
titions - eventlists, snapshots and derived snapshots. The (dashed)
bounded deltas are not stored; (b) Version Chains.

the other with chronologically organized events per node. For in-
stance, the latter is fairly inefficient to fetch temporal subgraphs or
neighborhoods over time intervals.

4.4 TGI: Design and Architecture
In the previous subsection, we presented the logical description

of TGI. We now describe the strategies for physical storage on a
cloud which enables high scalability. In a distributed index, we
desire that all graph retrieval calls achieve maximum paralleliza-
tion through equitable distribution. A distribution strategy based on
pure node-based key is good idea for snapshot style access, how-
ever, it is bad for a subgraph history style of access. A pure time-
based key strategy on the other hand, has complementary qualities
and drawbacks. An important related challenge for scalability is
dealing with two different skews in a temporal graph dataset – tem-
poral and topological. They refer to the uneven density of graph
activity over time and the uneven edge density across regions of
the graph, respectively. Another important aspect to note is that for
a retrieval task, it is desirable that all the deltas needed for a fetch
operation that are present on a particular machine be proximally
located to minimize latency of lookups5. Based on the above con-
straints and desired properties, we describe the physical layout of
TGI as follows:

1. The entire history of the graph is divided into time spans, keep-
ing the number of changes to the graph consistent across differ-
ent time spans, ft : e.time→ tsid, where e is the event and tsid
is the unique identifier for the time span.

2. A graph at any point is horizontally partitioned into a fixed num-
ber of horizontal partitions based upon a random function of
the node-id, fh : nid→ sid, where nid is the node-id and sid is
unique identifier of for the horizontal partition.

3. The partition deltas (including eventlists) are stored as a key-
value pairs, where the delta-key is composed of
{tsid,sid,did, pid}, where did is a delta-id, and pid is the
partition-id of the partition.

4. The placement-key is defined as a subset of the composite deltas
key described above, as {tsid,sid}, which defines the chunks in
which data is placed across a set of machines on a cluster. A
combination of the tsid and sid ensure that a large fetch task,
whether snapshot or version oriented, seeks data distributed
across the cluster and not just one machine.

5In general, this depends on the underlying storage mechanism.
The physical placement of deltas is irrelevant for an in-memory
store, but significant for an on-disk store due to seek times.

69

Index Snapshot Static Vertex Vertex versions 1-hop 1-hop Versions
Size ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1

Log |G| |G| |G|
|E| |G| |G|

|E| |G| |G|
|E| |G| |G|

|E| |G| |G|
|E|

Copy |G|2 |S| 1 |S| 1 |S||G| |G| |S| 1 |S||G| |G|
Copy+Log |G|2

|E| |S|+ |E| 2 |S|+ |E| 2 |G| |G|
|E| |S|+ |E| 2 |G| |G|

|E|
Node Centric 2|G| 2.|G| |N| |C| 1 |C| 1 |R|.|V | |R| |R|.|V | |R|
DeltaGraph |G|(h+1) h.|S|+ |E| 2h h.|S|+ |E| 2h |G| |G|

|E| h.(|S|+ |E|) 2h |G| |G|
|E|

TGI |G|(2h+3) h.|S|+ |E| 2h h.|S|
p + |E|

p 2h |V |(1+ |S|
p) |V |+1 h.(|S|+|E|)

p 2h |V |(1+ |S|
p) |V |+1

Table 1: Comparison of access costs for different retrieval queries and index storage for various temporal indexes. |G|=number of changes
in the graph; |S|=size of a snapshot; h = height and |E|= eventlist size; |V |=number of changes to a node; |R|=numbers of neighbors of a
node; p= number of partitions in TGI. The metrics used are, sum of delta cardinalities (∑∆ |∆|) and number of deltas (∑∆ 1).

5. The partitioned deltas are clustered by the delta key. The given
order of delta-key along with the placement-key implies that all
partitions of a delta are stored contiguously, which makes it ef-
ficient to scan and read all partitions belonging to a delta in a
snapshot query. Also, if the order of did and pid is reversed, it
makes fetching a partition across different deltas more efficient.

Implementation and Architecture: TGI uses Cassandra for its
delta storage as well as metadata regarding partitioning, time-
spans, etc. TGI consists of a Query Manager (QM) is responsi-
ble for planning, dividing and delegating the query to one or more
Query Processors (QP). Multiple QPs query the datastore in paral-
lel and process the raw deltas into the required result. Depending
on the query specification, the distributed result is either aggregated
at a particular QP (the QM) or returned to the client which made the
request without aggregation. An Index Manager is responsible for
the construction and maintenance activities of the index. We omit
further details and refer the reader to the extended version [22].

4.5 Dynamic Graph Partitioning
Partitioning of the deltas is an essential aspect of TGI and pro-

vides cheaper access to subgraph elements when compared to Delt-
aGraph or similar indexes. The two traditional approaches to parti-
tioning a static graph are random (node-id hash-based) or locality-
based (min-cut, max-flow) partitioning. Random partitioning is
simpler and involves minimal bookkeeping. However, since it loses
locality, it is unsuitable for neighborhood-level granularity access.
Locality-aware partitioning, on the other hand, preserves locality
but incurs extra bookkeeping in form of a {node-id:partition-id}
map. TGI is designed to work with either configuration as desired,
as well as different partition size specifications. TGI also supports
replication of edge-cuts for further speed up of 1-hop neighbor-
hoods. It uses a separate auxiliary delta partition besides each delta
partition to store the replication, thereby preventing extra read cost
for snapshot or node centric queries. More details on this can be
found in the extended manuscript.

Locality-aware partitioning, however, faces an additional chal-
lenge with time-evolving graphs. With the change in size and topol-
ogy of a graph, a partitioning deemed good (with respect to local-
ity) at an instant may cease to be good at a later time. A probable
approach of frequent repartitioning over time would maintain par-
titioning quality, but leads to excessive amounts of bookkeeping,
which in turn leads to degradation of performance while accessing
different node or neighborhood versions.

Our approach of dealing with this dilemma is described as fol-
lows. For a time-evolving graph, G(t), we update the partitioning
once at the beginning of each time span. The partitioning valid dur-
ing a time-span τ , is decided as the collectively best partitioning
for the graph during time τ , Gτ . Now, the best-suited partition-

ing for a graph over a time-interval Gτ is performed by projecting
it to a static graph using a function, Ω(Gτ), followed by a static-
graph partitioning. Ω could be defined in various ways, depending
on the best-deemed interpretation of a representative static graph.
Any definition, however, must retain all and only the nodes that
appeared in Gτ . In TGI, the default choice of Ω is called Union-
Mean and includes all edges that appeared in Gτ with the edge-
weights computed as a function of time-fraction of existence. We
refer the reader to the extended manuscript for further details on
different choices of Ω, contrast of this technique with other alter-
natives, and comments on the associated problem of finding the
appropriate boundaries of time-spans.

4.6 Fetching Graph Primitives
We briefly describe how the different types of retrieval queries

are executed. The details of the algorithms can be found in the
extended version of the paper.

Snapshot Retrieval: In snapshot retrieval, the state of a graph at a
time point is retrieved. Given a time ts, the query manager locates
the appropriate time span T such that ts ∈ T , within which, it figures
out the path from the root of the TGI to the leaf closest to the given
time point. All the snapshot deltas, ∆s1,∆s2, . . . ,∆sm, (i.e., all the
corresponding partitions) along that path from root to the leaf, and
the eventlists from the leaf node to the time point, ∆e1,∆e2, . . . ,∆en
are fetched and merged appropriately as: ∑

m
i=1 ∆si +∑

n
i=1 ∆ei (no-

tice the order). This is performed across different query processors
covering the entire set of horizontal partitions. This is conceptually
similar to the DeltaGraph snapshot reconstruction with the addition
of the aspect of partitions.

Node’s history: Retrieving a node’s history during time interval,
[ts, te) involves finding the state of the graph at point ts, and all
changes during the time range (ts, te). The first one is done in a
similar manner to snapshot retrieval except the fact that we look up
only a specific delta partition in a specific horizontal partition, that
the node belongs to. The second part happens through fetching the
node’s version chain to determine its points of changes during the
given range. The respective eventlists are fetched and filtered for
the given node.

k-hop neighborhood (static): In order to retrieve the k-hop neigh-
borhood of a node, we can proceed in two possible ways. One of
them is to fetch the whole graph snapshot and filter the required
subgraph. The other is to fetch the given node, and then determine
its neighbors, fetch them, and recurse. It is easy to see that the per-
formance of the second method will deteriorate fast with growing
k. However for lower values, typically k≤ 2, the latter is faster or at
least as good, especially if we are using neighborhood replication
as discussed in a previous subsection. In case of a neighborhood

70

fetch, the query manager automatically fetches the auxiliary por-
tions of deltas (if they exist), and if the required nodes are found,
further lookup is terminated.

Neighborhood evolution: Neighborhood evolution queries can be
posed in two different ways. First, requesting all changes for a
described neighborhood, in which case the query manager fetches
the initial state of the neighborhood followed by the events indicat-
ing the change. Second, requesting the state of the neighborhood
at multiple specific time points. This translates to the retrieval of
multiple single neighborhoods fetch tasks.

5. ANALYTICS FRAMEWORK
In this section, we describe the Temporal Graph Analysis Frame-

work (TAF), that enables programmers to express complex analyt-
ical tasks on time-evolving graphs and execute them in a scalable,
parallel, in-memory manner. We present details of the novel com-
putational model, including a set of operators and operands. We we
also present the details of implementation on top of Apache Spark,
as well as the user API (exposed through Python and Java). Finally,
we describe TAF’s coordination with TGI, particularly the parallel
data transfer protocol, that provides a complete ecosystem for his-
torical graph management and analysis.

5.1 Data and Computational Model
At the heart of this analytics framework is an abstraction with the

view of historical graph as a set of nodes (or subgraphs) evolving
over time. The choice of temporal nodes as a primitive is instru-
mental in enabling us to express a wide range of fetch and compute
operations in an intuitive manner. More significantly, it provides us
with the appropriate basis for the parallelizing computation of arbi-
trary analysis tasks. The temporal nodes and set of temporal nodes
bear a correspondence to tuples and tables of the relational algebra,
as the basic unit of data and the prime operand, respectively. The
two central data types are defined below:

DEFINITION 11 (TEMPORAL NODE). A temporal node
(NodeT), NT , is defined as a sequence of all and only the states
of a node N over a time range, T = [ts, te). All the k states of the
node must have a valid time duration Ti, such that ∪k

i Ti = T and
∩k

i Ti = φ .
DEFINITION 12 (SET OF TEMPORAL NODES). A SoN, is

defined as a set of r temporal nodes {NT
1 ,N

T
2 . . .NT

r } over a time
range, T = [ts, te), as depicted in Figure 4.

The NodeT class provides a range of methods to access the state
of the node at various time points, including: getVersions()
which returns the different versions of the node as a list of static
nodes (NodeS), getVersionAt()which finds a specific version
of the node given a timepoint, getNeighborIDsAt() which
returns IDs of the neighbors at the specified time point, and so on.

A Temporal Subgraph (SubgraphT) generalizes NodeT and cap-
tures a sequence of the states of a subgraph (i.e., a set of nodes and
edges among them) over a period of time. Typically the subgraphs
correspond to k-hop neighborhoods around a set of nodes in the
graph. An analogous getVersionAt() function can be used to
retrieve the state of the subgraph as of a specific time point as an
in-memory Graph object (the user program must ensure that any
graph object so created can fit in the memory of a single machine).
A Set of Temporal Subgraphs (SoTS) is defined analogously to SoN
as a set of temporal subgraphs.

5.2 Temporal Graph Analysis Library
The important temporal graph algebra operators supported by

our system are described below.

time

no
de

attribu
te

{

se
le
ct

{

timeslice

{filter

Figure 4: SoN: A set of nodes can be abstracted as a 3 dimensional
array with temporal, node and attribute dimensions.

1. Selection accepts an SoN or an SoTS along with a boolean
function on the nodes or the subgraphs, and returns an SoN or
SoTS. It performs entity-centric filtering on the operand, and
does not alter temporal or attribute dimensions of the data.

2. Timeslicing accepts an SoN or an SoTS along with a timepoint
(or time interval) t, finds the state of each of individual nodes or
subgraphs in the operand as of t, and returns it as another SoN
or SoTS, respectively (SoN/SoTS can represent sets of static
nodes or subgraphs as a well). The operator can accept a list of
timepoints as input and return a list.

3. Graph accepts an SoN and returns an in-memory Graph object
containing the nodes in the SoN (with only the edges whose
both endpoints are in the SoN). An optional parameter, tp, may
be specified to get a GraphS valid at time tp.

4. NodeCompute is analogous to a map operation; it takes as input
an SoN (or an SoTS) and a function, and applies the function to
all the individual nodes (subgraphs) and returns the results as a
set.

5. NodeComputeTemporal. Unlike NodeCompute, this operator
takes as input a function that operates on a static node (or
subgraph) in addition to an SoN (or an SoTS); for each node
(subgraph), it returns a sequence of outputs, one for each
different state (version) of that node (or subgraph). Optionally,
the user may specify another function (NodeCompute-
Delta, described next) that operates on the delta between two
versions of a node (subgraph). Another optional parameter
is a method describing points of time at which computation
needs to be performed; in the absence of it, the method will be
evaluated at all the points of change.

6. NodeComputeDelta operator takes as input: (a) a function that
operates on a static node (or subgraph) and produces an output
quantity, (b) an SoN (or an SoTS) , (c) a function that operates
on the following: a static node (or subgraph), some auxiliary
information pertaining to that state of the node (or subgraph),
the value of the quantity at that state, and an update (event) to it.
This operator returns a sequence of outputs, one for each state of
the node (or subgraph), similar to NodeComputeTemporal.
However, it computes the required quantity for each version
incrementally instead of computing it afresh. An optional
parameter is the method describing points of time at which
to base the comparison. An optional parameter is a method
describing points of time at which computation needs to be
performed; in the absence of it, the method will be evaluated at
all the points of change.

7. Compare operator takes as input two SoNs (or two SoTSs)
and a scalar function (returning a single value), computes the
function value over all the individual components, and returns
the differences between the two as a set of (node-id, difference)
pairs. This operator tries to abstract the common operation of

71

comparing two different snapshots of a graph at different time
points. A simple variation of this operator takes a single SoN
(or SoTS) and two timepoints as input, and does the compare
on the timeslices of the SoN as of those two timepoints. An
optional parameter is the method describing points of time at
which to base the comparison.

8. Evolution operator samples a specified quantity (provided as a
function) over time to return evolution of the quantity over a
period of time. An optional parameter is the method describing
points of time at which to base the evolution.

9. TempAggregation abstractly represents a collection of temporal
aggregation operators such as Peak, Saturate, Max, Min,
and Mean over a scalar timeseries. The aggregation operations
are performed over a specified quantity for an SoN or SoTS.
For instance, finding “times at which there was a peak in the
network density” is used to find eventful timepoints of high in-
terconnectivity such as conversations in a cellular network, or
high transactional activity in a financial network.

5.3 System Implementation
The library is implemented in Python and Java and is built on

top of the Spark API. The choice of Spark provides us with an
efficient in-memory cluster compute execution platform, circum-
venting dealing with the issues of data partitioning, communica-
tion, synchronization, and fault tolerance. We provide a GraphX
integration for utilizing the capabilities of the Spark based graph
processing system for static graphs. Note that while we use Spark
for implementation, the concepts presented as a part of the TAF are
general and can be implemented over other distributed frameworks
such as DryadLINQ6.

The key abstraction in Spark is that of an RDD, which represents
a collection of objects of the same type, stored across a cluster. SoN
and SoTS are implemented as RDDs of NodeT and SubgraphT re-
spectively (i.e., as RDDTG<NodeT> and RDDTG<SubgraphT>,
where RDDTG extends RDD class). Note that the in-memory graph
objects may be implemented using any popular graph representa-
tion, specially the ones that support useful libraries on top. We
now describe in brief the implementation details for NodeT and
SubgraphT, followed by details of the incremental computational
operator, and the parallel data fetch operation.

Figure 5 shows sample code snippets for three different analyt-
ical tasks – (a) finding the node with the highest clustering coeffi-
cient in a historical snapshot; (b) comparing different communities
in a network; (c) finding the evolution of network density over a
sample of ten points.

NodeT and SubgraphT: A set of temporal nodes is represented
with an RDD of NodeT (temporal node). A temporal node contains
the information for a node during a specified time interval. The
question of the appropriate physical storage of the NodeT (or
SubgraphT) structure is quite similar to storing a temporal graph
on disk such as the one using a DeltaGraph or a TGI, however,
in-memory instead of disk. Since NodeT is fetched at query time, it
is preferable to avoid creating a complicated index, since the cost to
create the index at query time is likely to offset any access latency
benefits due to the index. Upon observing several analysis tasks, we
noticed that the common access pattern is mostly in chronological
order, i.e., the query requesting the subsequent versions or changes,
in order of time. Hence, we store NodeT (and SubgraphT)
as an initial snapshot of the node (or subgraph), followed by a
list of chronologically sorted events. It provides methods such
as GetStartTime(), GetEndTime(), GetStateAt(),
6http://research.microsoft.com/en-us/projects/DryadLINQ/

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
sots = SOTS(k=1, tgiH).Timeslice("t = July 14,2002").fetch()
nm = NodeMetrics()
nodeCC = sots.NodeCompute(nm.LCC, append = True, key="cc")
maxlCC = nodeCC.Max(key="cc")

(a) Finding node with highest local clustering coefficient

tgiH = TGIHandler(tgiconf, "snet", sparkcontext)
son = SON(tgiH).Timeslice('t >= Jan 1,2003 and t< Jan 1, '
 \',2004').Filter("community")
sonA=son.Select("community =\"A\" ").fetch()
sonB=son.Select("community =\"B\" ").fetch()
compAB = SON.Compare(sonA, sonB, SON.count())
print('Average membership in 2003,')
print(A=%s\tB=%s'%(mean(compAB[0]), mean(compAB[1])))

(b) Comparing two communities in a network

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
son = SON(tgiH).Select("id < 5000").Timeslice("t >= OCt"
 \"24, 2008").fetch()
gm = GraphMetrics()
evol = son.GetGraph().Evolution(gm.density, 10)
print('Graph density over 10 points=%s'%evol)

(c) Evolution of network density
Figure 5: Examples of analytics using the TAF Python API.

GetIterator(), Iterator.GetNextVersion(),
Iterator.GetNextEvent(), and so on. We omit their
details as their functionality is apparent from the nomenclature.

NodeComputeDelta: NodeComputeDelta evaluates a quantity
over each NodeT (or SubgraphT) using two supplied methods, f ()
which computes the quantity on a state of the node or subgraph,
and, f∆(), which updates the quantity on a state of the node or sub-
graph for a given set of event updates. Consider a simple example
of computing the fraction of all nodes that contain a specific at-
tribute value in a given SubgraphT. If this was performed using
NodeComputeTemporal, the quantity will be computed afresh
on each new version of the subgraph, which would cost O(N.T)
operations where N is the size of the operand (number of nodes)
and T is the number of versions. However, using incremental com-
putation, each new version after the first snapshot can be processed
in constant time, which adds up to O(N+T). While performing in-
cremental computation, the corresponding f∆() method is expected
to be defined so as to evaluate the nature of the event – whether
it brings about any change in the output quantity or not, i.e., a
scalar change value based upon the actual event and the concerned
portions of the state of the graph, and also update the auxiliary
structure, if used. Code snippet in Figure 6 illustrates the usage of
NodeComputeTemporal and NodeComputeDelta in a sim-
ilar example.

Consider a somewhat more intricate example, where one needs
to find counts of a small pattern over time on an SoTS, such as find-
ing the occurrence of a subgraph pattern in the data graph’s history.
In order to perform such pattern matching over long sequences of
subgraph versions, it is essential to maintain certain inverted in-
dexes which can be looked up to answer in constant time whether
an event has caused a change in the answer from a previous state or
caused a change in the index itself, or both. Such inverted indexes,
quite common to subgraph pattern matching, are required to be up-
dated with every event; otherwise, with every new event update, we
would need to look up the new state of the subgraph afresh which
would simply reduce it to performing non-indexed subgraph pat-
tern matching over new snapshots of a subgraph at each time point,
which is a fairly expensive task. In order to utilize a constantly
updated set of indices, the auxiliary information, which is a param-
eter and a return type for f∆(), can be utilized. Note that such an
incremental computational operator opens up possibilities of utiliz-

72

tgiH = TGIHandler(tgiconf, "dblp", sparkcontext)
sots = SOTS(k=2, tgiH).Timeslice('t >= Nov 1,2009 and t< Nov 30,'\
 '2009').fetch()
labelCount = sots.NodeComputeTemporal(fCountLabel)

labelCount = sots.NodeComputeDelta(fCountLabel, fCountLabelDel)
...
def fCountLabel(g):
 labCount = 0
 for node in g.GetNodes():
 if node.GetPropValue('EntityType') == 'Author':
 labCount += 1
 return labCount

def fCountLabelDel(gPrev, valPrev, event):
 valNew = valPrev
 if event.Type == EType.AttribValAlter:
 if event.AttribKey == 'EntityType':
 if event.PrevVal == 'Author':
 valNew = valPrev - 1
 else if event.NextVal == 'Author':
 valNew = valPrev + 1
 return valNew

Figure 6: Incremental computation using different options:
NodeComputeTemporal and NodeComputeDelta to com-
pute counts of nodes with a specific label in subgraphs over time.

ing a large body of algorithmic work in online and streaming graph
query evaluation for the purpose of graph analytics.

Specifying interesting time points: In the map-oriented version
operators on an SoN or an SoTS, the time points of evaluation,
by default, are all the points of change in the given operand. How-
ever, a user may choose to provide a definition of which points to
select. This can be as simple as returning a constant set of time-
points, or based on a more complex function of the operand(s).
Except the Compare operator, which accepts two operands, other
operators allow an optional function, which works on a singe tem-
poral operand; the compare accepts a similar function that operates
on two such operands. Two such examples can be seen in Figure 7.

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
son = SON(tgiH).Select("id < 5000").Timeslice("t >= OCt"
 \"24, 2008").fetch()
gm = GraphMetrics()
evol = son.GetGraph().Evolution(gm.density,
 \ selectTimepointsMinimal)
print('Graph density over 3 points=%s'%evol)
...
def selectTimepointsMinimal(son):
 time_arr = []
 st = son.GetStartTime()
 et = son.GetEndTime()
 time_arr.append(st)
 time_arr.append((st + et)/2)
 time_arr.append(et)
 return time_arr

Figure 7: Using the optional timepoint specification function for an
Evolution query with the start, middle and endpoint of SON.

Data Fetch: In a temporal graph analysis task, we first need to in-
stantiate a TGI connection handler instance. It contains configu-
rations such as address and port of the TGI query manager host,
graph-id, and a SparkContext object. Then, a SON (or SOTS)
object is instantiated by passing the reference to the TGI handler,
and any query specific parameters (such as k-value for fetching 1-
hop neighborhoods with SOTS). The next few instructions spec-
ify the semantics of the graph to be fetched from the TGI. This
is done through the commands explained in Section 5.1, such as
the Select, Filter, Timeslice, etc. However, the actual
retrieval from the index doesn’t happen until the first statement fol-
lowing the specification instructions. A fetch() command can
be used explicitly to tell the system to perform the fetch operation.
Upon the fetch() call, the analytics framework sends the com-
bined instructions to the query planner of the TGI, which translates
those instructions into an optimal retrieval plan. This prevents the
system from retrieving large amounts of data from the index that is
a superset of the required information and prune it later.

Parallel Fetch

Apache
Spark
Cluster

TGI

Master

Query Manager

Spark Node1 Spark Node2 Spark Node kSpark Node

TGI Node1 TGI Node 2 TGI Node 3 TGI Node r

Query

QP QP QP QP

RDD<NodeT> RDD<NodeT> RDD<NodeT> RDD<NodeT>

Fetch

Query

TGIDriver TGIDriver TGIDriver TGIDriver

RDD<TGIDriver>

3

1

2

4

5
6

Figure 8: A flow diagram of the parallel fetch operation between
the TGI and TAF clusters. The numbers in circles indicate the rel-
ative order of events and arrowheads indicate the direction of flow.

The analytics engine runs in parallel on a set of machines, so
does the graph index. The parallelism at both places speeds up and
scales both the tasks. However, if the retrieval graph at the TGI
cluster was aggregated at the Query Manager and sent serially to
the master of the analytical framework engine after which it was
distributed to the different machines on the cluster, it would create
a space and time bottleneck at the Query Manager and the mas-
ter, respectively, for large graphs. In order to bypass this situation,
we have designed a parallel fetch operation, in which there is a di-
rect communication between the nodes of the analytics framework
cluster and the nodes of the TGI cluster. This happens through a
protocol that can be seen in Figure 8 and summarized below:

1. Analytics query containing fetch instructions is received by the
TAF master.

2. A handshake between the TAF master and TGI query manager is
established. The latter receives fetch instructions and the former
is made aware of the active TGI query processors.

3. Parallel fetch starts at the TGI cluster.
4. The TAF master instantiates a TGIDriver instance at each of its

cluster machines wrapped in a RDD.
5. Each node at the TAF performs a handshake with one or more

of the TGI nodes.
6. Upon completion of fetch at TGI, the individual TGI nodes

transfer the SoN to an RDDs on the corresponding TAF nodes.

More details on the TGI-TAF integration can be found in the
longer version of the paper [22].

6. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the efficiency of TGI and

TAF. To recap, TGI is a persistent store for entire histories of large
graphs, that enables fast retrieval for a diverse set of graph primi-
tives – snapshots, subgraphs, and nodes at past time points or across
intervals of time. We primarily highlight the performance of TGI
across the entire spectrum of retrieval primitives. We are not aware
of a baseline that may compete with TGI across all or a substantial
subset of these retrieval primitives. Specialized alternatives such as
DeltaGraph for snapshot retrieval is highly unsuitable for node or
neighbor version retrieval; a version centric index may be special-
ized for node-version retrieval but is highly unsuitable for snapshot

73

c=1
c=2
c=4
c=8
c=16
c=32

R
et

rie
va

l T
im

e
(s

ec
s)

0

100

200

Snapshot Size (node count)
0 10 20×106

Figure 9: Snapshot retrieval times for varying parallel fetch factor
(c), on Dataset 1; m = 4; r = 1, ps = 500.

or neighborhood-version style retrieval. Also note that TGI gener-
alizes all the known approaches including those two; using appro-
priate parameter configurations, it can even converge to any specific
alternative. Secondly, we demonstrate the scalability of TGI design
through experiments on parallel fetching for large and varying data
sizes. Finally, we also report experiments demonstrating computa-
tional scalability of the TAF for a graph analysis task, as well as the
benefits of our incremental computational operator.

Datasets and Notation: We use four datasets: (1) Wikipedia cita-
tion network consisting of 266,769,613 edge addition or modifica-
tion events from Jan 2001 to Sept 2010. At its largest point, the
graph consists of 21,443,529 nodes and 122,075,026 edges; (2) We
augment Dataset 1 by adding around 333 million synthetic events
which randomly add new edges or delete existing edges over a pe-
riod of time, making a total of 700 million events; (3) Similarly, we
add 733 million events, making the total around 1 billion events;
(4) Using a Friendster gaming network snapshot, we add synthetic
dates at uniform intervals to 500 million events with a total of ap-
proximately 37.5 million nodes and 500 million edges.

Following key parameters that are varied in the experiments:
data store machine count (m), replication across dataset (r), num-
ber of parallel fetching clients (c), eventlist size (l), snapshot or
eventlist partition size (ps), and Spark cluster size (ma).

We conducted all experiments on an Amazon EC2 cluster. Cas-
sandra ran on machines containing 4 cores and 15GB of available
memory. We did not use row caching and the actual memory con-
sumption was much lower that the available limit on those ma-
chines. Each fetch client ran on a single core with up to 7.5GB
available memory. The machines with TAF nodes running Spark
workers ran on a single core and 7.5GB of available memory each.

Snapshot retrieval: Figure 9 shows the snapshot retrieval times for
Dataset 1 for different values of the parallel fetch factor, c. We ob-
serve that the retrieval cost is directly proportional to the size of the
output. Further, using multiple clients to retrieve the snapshots in
parallel gives near-linear speedup, especially with low parallelism.
This demonstrates that TGI can exploit available parallelism well.
We expect that with higher values of m (i.e., if the index were dis-
tributed across a more machines), linear speedup would be seen for
larger values of c (this is corroborated by the next set of experi-
ments). Figure 11c shows snapshot retrieval times for Dataset 4.

Figure 10 shows snapshot retrieval performance for three differ-
ent sets of values for m and r. We can see that while there is no
considerable difference in performance across the different config-
urations, using two storage machines slightly decreases the query
latency over using one machine, in the case of a single query client,
c = 1. For higher c values, we see that m = 2 has a slight edge over
m = 1. Also, the behavior for the two m = 1 and m = 2;r = 2 cases
are quite similar for same c values. However, we observed that the

latter case allows a higher possibility of c value whereas the for-
mer peaks out at a lower c value. Further, compression for deltas is
negligible for TGI. We omit the detailed points of our investigation,
but Figure 11a is representative of the general behavior.

In the special case of ps→ ∞, TGI becomes structurally equiva-
lent to a DeltaGraph. While DeltaGraph provides the most efficient
way of performing snapshot retrieval, we show that using lower val-
ues of ps in TGI only has a marginal impact on the performance of
snapshot retrieval (Figure 11b). This occurs due to the TGI design
policy of storing all the partitions of a delta contiguously in a clus-
ter and avoiding any additional seek costs. Hence, DeltaGraph is
subsumed as a part of TGI and we omit further comparisons in this
respect. Also note that the internals of snapshot retrieval through
DeltaGraph have been thoroughly explored in our prior work [21].

Node History Retrieval: Smaller eventlists or partition sizes pro-
vide a lower latency time for retrieving different versions of a node,
which can be seen in Figure 12a and Figure 12c, respectively. This
is primarily due to the reduction in effort for fetching and dese-
rialization. A higher parallel fetch factor is effective in reducing
the latency for version retrieval (Figure 12b). Note that the perfor-
mances of version and snapshot retrieval for varying partition sizes
are opposite. However, smaller eventlist sizes benefit both version
and snapshot retrieval. Node version retrieval for Dataset 4 shows
a similar behavior, which can be seen in Figure 14.

Neighborhood Retrieval: We compared the performance of re-
trieving 1-hop neighborhoods, both static and specific versions, us-
ing different graph partitioning and replication choices. A topolog-
ical, flow-based partitioning accesses fewer graph partitions com-
pared to a random partitioning scheme, and a 1-hop neighborhood
replication restricts the access to a single partition.This can be seen
in Figure 13a for 1-hop neighborhood retrieval latencies. As dis-
cussed in Section 4, the 1-hop replication does not affect other
queries involving snapshots or individual nodes, as the replicated
portion is stored separately from the original partition. In case of a
2-hop neighborhood retrieval, there are similar performance bene-
fits over random partitioning.

Increasing Data Over Time: We observed the fetch performance
of TGI with an increasing size of the index. We measured the laten-
cies for retrieving certain snapshots upon varying the time duration
of the graph dataset, as shown in Figure 13b. Datasets 2 and 3 con-
tain additional 333 million and 733 million events over dataset 1,
respectively. Only a marginal difference in snapshot retrieval per-
formance demonstrates TGI’s scalability for large datasets.

Conducting Scalable Analytics: We examined TAF’s perfor-
mance through an analytical task for determining the highest lo-
cal clustering coefficient in historical graph snapshot. Figure 13c
shows compute times for the given task on different graph sizes, as
well as varying size of the Spark cluster. Speedups due to parallel
execution can be observed, especially for larger datasets.

Temporal Computation: Earlier in the chapter, we presented two
separate ways of computing a quantity over changing versions of a
graph (or node). Those include, evaluating the quantity on different
versions of the graph separately, and alternatively, performing it in
an incremental fashion, utilizing the result for the previous version
and updating it with respect to the graph updates. This can be seen
for a simple node label counting task in Figure 6. the benefits due
to the incremental (NodeComputeDelta operator) computation
over a version-based computation (NodeComputeTemporal
operator) can be seen in Figure 15.

74

c=1
c=2
c=4
c=8

R
et

rie
va

l T
im

e
(s

ec
)

0

50

100

150

Retrieved Snapshot Size (node count)
0 10 20×106

m=1; r=1

(a) m=1; r=1; ps=500

c=1
c=2
c=4
c=8

R
et

rie
va

l T
im

e
(s

ec
)

0

50

100

150

200

Retrieved Snapshot Size (node count)
0 10 20×106

m=2; r=1

(b) m=2; r=1; ps=500

c=1
c=4
c=8
c=16

R
et

rie
va

l T
im

e
(s

ec
)

0

50

100

150

Retrieved Snapshot Size (node count)
0 10 20×106

m=2; r= 2

(c) m=2; r=2; ps=500
Figure 10: Snapshot retrieval times across different m and r values on Dataset 1.

uncompressed
compressed

R
et

rie
va

l T
im

e
(s

ec
)

0

20

40

Retrieved Snapshot Size (node count)
0 10 20×106

m=2; c=8; r=1

(a) Compressed vs. uncompressed storage.

ps=1000
ps=2000
ps=4000

R
et

rie
va

l T
im

e
(s

ec
s)

0

20

40

Snapshot Size (node count)
0 10 20×106

m=4; c=8

(b) Effect of partition sizes.

Friendster

R
et

rie
va

l T
im

e
(s

ec
s)

0

100

200

300

Snapshot Size (node count)
0 10 20 30 40×106

(c) Snapshot retrieval; m = 6; c = 1, ps = 500.
Figure 11: Snapshot retrieval across various parameters. r = 1; Dataset 1 for (a) and (b); Dataset 4 for (c).

l=10000
l=5000
l=2500

R
et

rie
va

l T
im

e
(s

ec
s)

0

1

2

3

Number of change points
0 50 100

(a) Effect of eventlist size, l. r = 1, c = 1,
m = 4, ps = 500.

c=1
c=2
c=4

R
et

rie
va

l T
im

e
(s

ec
s)

0

0.5

1.0

1.5

Version Changes
0 50 100

(b) Speedups due to varying parallel fetch
factor, c. m = 4, ps = 500, r = 1, l = 5000.

100 version changes

R
et

rie
va

l T
im

e
(s

ec
s)

3.5
4.0
4.5
5.0
5.5

Partition Size
0 5000 10000

(c) Effect of partition sizes.m = 4, r = 1,
l = 10000, c = 1.

Figure 12: Node version retrieval across various parameters.

Average across 250 random nodes

Fe
tc

h
Ti

m
e

(s
ec

)

0

0.5

1.0

1.5

Partitioning and Replication Type
Random Maxflow Maxflow+Replication

(a) Retrieval times for 1-hop neighbor-
hood with different partitioning and
replication strategies.

Dataset 1
Dataset 2
Dataset 3

R
et

rie
va

l T
im

e
(s

ec
)

0

20

40

Retrieved Snapshot Size (Node Count)
0 10 20×106

(b) Snapshot retrieval for varying sizes
of datasets.

N=76740
N=133810
N=201603

Ti
m

e
Ta

ke
n

(s
ec

)

0

20

40

60

Spark Workers
1 2 3 4 5

(c) TAF computation times for Local Clus-
tering Coefficient on varying graph sizes
(N=node count) using different cluster sizes.

Figure 13: Experiments for partitioning strategies and growing data size (m = 4, r = 2, c = 4, ps = 500); TAF analytics computation.

c=1
c=2

R
et

rie
va

l T
im

e
(s

ec
)

0

1

2

Version Changes
0 50 100 150

Figure 14: Node versions; Dataset 4; m = 6,r = 1,c = 1,ps = 500.

NodeComputeTemporal
NodeComputeDelta

Ti
m

e
Ta

ke
n

(s
ec

)

0

20

40

Version Count
0 5 10 15 20

Figure 15: Label counting for 2-hop neighborhoods using
(NodeComputeTemporal) and (NodeComputeDelta), re-
spectively. We report cumulative time taken (excluding fetch time)
for varying version counts on Dataset 4 with 2 Spark workers.

75

7. CONCLUSION
Graph analytics are increasingly considered crucial in obtaining

insights about how interconnected entities behave, how informa-
tion spreads, what are the most influential entities in the data, and
many other characteristics. Analyzing the history of a graph’s evo-
lution can provide significant additional insights, especially about
the future. Most real-world networks however, are large and highly
dynamic. This leads to creation of very large histories, making it
challenging to store, query, or analyze them. In this paper, we pre-
sented a novel Temporal Graph Index that enables compact storage
of very large historical graph traces in a distributed fashion, sup-
porting a wide range of retrieval queries to access and analyze only
the required portions of the history. Our experiments demonstrate
its efficient retrieval performance across a wide range of queries,
and can effectively exploit parallelism in a distributed setting. We
also presented a distributed analytics framework, built on top of
Apache Spark, that allows analysts to quickly write complex tem-
poral analysis tasks and execute them scalably over a cluster.
Acknowledgments: This work was supported by NSF under grant
IIS-1319432, an IBM Collaborative Research Award, and an Ama-
zon AWS in Education Research grant.

8. REFERENCES
[1] J.-w. Ahn, C. Plaisant, and B. Shneiderman. A task

taxonomy for network evolution analysis. IEEE Transactions
on Visualization and Computer Graphics, 2014.

[2] L. Arge and J. Vitter. Optimal dynamic interval management
in external memory. In FOCS, 1996.

[3] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental
and personalized pagerank. VLDB, 2010.

[4] A. Barrat, M. Barthelemy, and A. Vespignani. Dynamical
processes on complex networks. 2008.

[5] T. Y. Berger-Wolf and J. Saia. A framework for analysis of
dynamic social networks. In SIGKDD, 2006.

[6] G. Blankenagel and R. Guting. External segment trees.
Algorithmica, 1994.

[7] Z. Cai, D. Logothetis, and G. Siganos. Facilitating real-time
graph mining. In CloudDB, 2012.

[8] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: taking
the pulse of a fast-changing and connected world. In
EUROSYS, 2012.

[9] D. Eisenberg, E. M. Marcotte, I. Xenarios, and T. O. Yeates.
Protein function in the post-genomic era. Nature, 2000.

[10] B. Gedik and R. Bordawekar. Disk-based management of
interaction graphs. TKDE, 2014.

[11] A. Ghrab, S. Skhiri, S. Jouili, and E. Zimányi. An
analytics-aware conceptual model for evolving graphs. In
Data Warehousing and Knowledge Discovery. 2013.

[12] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: graph processing in a
distributed dataflow framework. In OSDI, 2014.

[13] F. Grandi. T-SPARQL: A TSQL2-like temporal query
language for RDF. In ADBIS, 2010.

[14] D. Greene, D. Doyle, and P. Cunningham. Tracking the
evolution of communities in dynamic social networks. In
ASONAM, 2010.

[15] T. Gross, C. J. D. D’Lima, and B. Blasius. Epidemic
dynamics on an adaptive network. Physical review, 2006.

[16] R. Gulati and M. Gargiulo. Where do interorganizational
networks come from? American journal of sociology, 1999.

[17] H. He and A. Singh. Graphs-at-a-time: query language and
access methods for graph databases. In SIGMOD, 2008.

[18] W. Huo and V. Tsotras. Efficient temporal shortest path
queries on evolving social graphs. In SSDBM, 2014.

[19] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos.
Gbase: a scalable and general graph management system. In
ACM SIGKDD, 2011.

[20] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer,
D. Kossmann, F. Färber, and N. May. Timeline index: A
unified data structure for processing queries on temporal data
in SAP HANA. In ACM SIGMOD, 2013.

[21] U. Khurana and A. Deshpande. Efficient snapshot retrieval
over historical graph data. In IEEE ICDE, 2013.

[22] U. Khurana and A. Deshpande. Storing and analyzing
historical graph data at scale. CoRR, abs/1509.08960, 2015.

[23] G. Koloniari and E. Pitoura. Partial view selection for
evolving social graphs. In GRADES workshop, 2013.

[24] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In OSDI, 2012.

[25] A. Labouseur, J. Birnbaum, J. Olsen, P., S. Spillane,
J. Vijayan, J. Hwang, and W. Han. The G* graph database:
efficiently managing large distributed dynamic graphs.
Distributed and Parallel Databases, 2014.

[26] K. Lerman and R. Ghosh. Information contagion: An
empirical study of the spread of news on digg and twitter
social networks. ICWSM, 2010.

[27] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. Hellerstein. Distributed GraphLab: a framework for
machine learning and data mining in the cloud. VLDB, 2012.

[28] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer.
LLAMA: Efficient Graph Analytics Using Large
Multiversioned Arrays . In ICDE, 2015.

[29] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In ACM SIGMOD, 2010.

[30] Y. Miao, W. Han, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, et al. Immortalgraph: A system for storage
and analysis of temporal graphs. ACM TOS, July 2015.

[31] G. Ozsoyoglu and R. Snodgrass. Temporal and real-time
databases: a survey. IEEE TKDE, 1995.

[32] R. K. Pan and J. Saramäki. Path lengths, correlations, and
centrality in temporal networks. Physical Review E, 2011.

[33] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. In The Semantic Web. 2006.

[34] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying
historial evolving graph sequences. In VLDB, 2011.

[35] B. Salzberg and V. Tsotras. Comparison of access methods
for time-evolving data. ACM Computing Surveys, 1999.

[36] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph
engine on a memory cloud. In ACM SIGMOD, 2013.

[37] R. Snodgrass and I. Ahn. A taxonomy of time in databases.
In SIGMOD, 1985.

[38] I. W. Taylor, R. Linding, D. Warde-Farley, Y. Liu,
C. Pesquita, D. Faria, S. Bull, T. Pawson, Q. Morris, and J. L.
Wrana. Dynamic modularity in protein interaction networks
predicts breast cancer outcome. Nature biotechnology, 2009.

[39] V. Tsotras and N. Kangelaris. The snapshot index: an I/O-
optimal access method for timeslice queries. Inf. Syst., 1995.

[40] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
USENIX conference on Hot topics in cloud computing, 2010.

76

	Storing and Analyzing Historical Graph Data at ScaleUdayan Khurana, Amol Deshpande

