ABSTRACT

Keyword-search engines (e.g., Web-search) usually can be outperformed by a specialized system optimized for a specific domain, type of data, or queries [8, 2, 12, 5, 11, 9]. For example, Halevy et al. in [13] demonstrate how a specialized Google Fusion Tables spatial search can outperform the general-purpose Google Web-search on bike trails search in San Francisco Bay Area. At the same time, Web content providers usually exhibit a specific focus for their postings. For example, information at http://www.csail.mit.edu is devoted to Computer Science research and education, Han-nah Montana is mostly tweeting about music, and the same is true for most sources.

This paper describes the work in progress on a new Type-aware Web-search system that uses topical focus of information sources to process a large class of queries better than a regular Web search-engine. It leverages semantic profiles similar to [10, 6, 7] and a new Type-aware Locality-Sensitive Hashing (TLSH) scheme to accomplish it.

1. INTRODUCTION

Figure 1 illustrates search-results from one of the Web search engines for query Frozen in Phoenix where a user is trying to find a theater to watch a movie. You can see the search-results are not the best (about ice cream and frozen yogurt). It happened, because the generic Web-search engine employs simple term matching of the query with the Web pages, and did not take into account type information, which can be done to get more relevant results. Table 1 illustrates the Web-search results of a type-aware search-engine described here for queries Careers of People with Ph.D. You can see, it returns precisely what the user has been asking for in these queries. A regular Web-search engine would return career-pages of companies and recruiting agencies, resulting from term matching to careers.

Categories and Subject Descriptors

H.2 [Database Management]: Heterogeneous Databases

Figure 1: Search-results for Frozen in Phoenix

Query: Careers of People with Ph.D.
Results: - Romania News Watch: ...Ponta obtained his PhD from the University of Bucharest while acting as Secretary of State in the government of an earlier prime minister...

Table 1: Type-aware Search Results

2. ARCHITECTURE

The crawled Web pages are processed by a Natural Language Processing domain-dependent parser, which emits the entity data along with the text fragments they came from and saves the result into a large-scale storage (see Figure 2 for a schematic). Both a large-scale semi-structured sharded storage engine as well as a parallel relational engine are used.

The earlier work in [10] introduces semantic profiles intended to capture the semantics of an information source and store it in a compact and reusable manner. It summarizes and accumulates all types of entities from the source. For example, the newspaper New York Times often publishes about companies, products, and organizations; The Finance usually tweets about dividends and products; The Oregonian publishes about sports, holidays, music, and hence their profiles are comprised of these types. These profiles are calculated and saved for each source. Due to space limitations, interested readers are referred to [10] for more details on profile construction.

Next, the hashing routines treat each profile as a vector and assign it to one of the hash tables. Similarly, the incoming query is represented as a vector, the query processing module computes the set of relevant hash tables for a query, the relevance score of the documents from these hash tables...
and the query is computed, and finally the documents are ranked by this relevance score and output to the user.

3. TYPE-AWARE WEB-SEARCH

Type-aware Locality Sensitive Hashing: Locality-Sensitive Hashing (LSH) [14] is an algorithm that enables searching for near neighbors in a high-dimensional vector space \(S^n \) with dimensionality \(n \). Formally, given a query \(q \in S^n \), return the nearest neighbors of \(q \) within certain radius \(R \). LSH performance crucially depends on a family of hash functions \(F \) that it uses to map the input vectors to its internal data structures. In order for the algorithm to perform well, \(F \) usually has to reduce the dimensionality of the original vector space still satisfying the locality-sensitive requirements on the reduced vector space. \(F \) is considered to be locality-sensitive if collision of two vectors \(v_1 \) and \(v_2 \) under a random choice of a hash function from \(F \) depends only on the distance between \(v_1 \) and \(v_2 \). Refer to [3] for an overview of locality-sensitive hash-function families.

Here, a new two-tier family of hash functions \(\Psi \) is described and used. First, it maps the original vector space \(V \) of terms into a vector space of types - \(T \), hence reduces dimensionality (there are much less types than terms). Second, \(k \) random unit vectors \(u \in T \) are generated, which defines a family of hash-functions \(h \in \Psi \) as follows:

\[
 h(v) = \text{sign}(u \cdot v) / \|u\| : u, v \in T.
\]

Refer to [4] for a proof of its locality-sensitivity. Angular distance measure is used here for this vector space.

Query Processing: The queries and Web documents are represented as vectors in a high-dimensional vector space \(S^n \) with dimensionality \(n \) (number of types). To return vectors (Web documents) within radius \(R \) of the query \(q \) the algorithm concatenates \(k \) hash functions \(h_1, \ldots, h_k \) described above into a composite hash function:

\[
 h_c(v) = h_1(v), \ldots, h_k(v),
\]

hence creating a family of hash functions \(h_c \in \Phi \).

Next, for query \(q \) it computes all functions from \(h_c \) and considers the documents only from the corresponding hash tables. It returns all vectors \(v \) from those hash tables that are within angular distance \(R \) from \(q \). The evaluation below justifies that using this semantic hashing/retrieval algorithm outperforms a generic Web-search engine by relevance of search-results.

Relevance Evaluation: Here, relevance gain of TLSH hashing/retrieval scheme compared to a general purpose Web-search engine for “type-containing” queries (i.e., containing a Named-entity) is quantitatively evaluated. An experiment was conducted to calculate NDCG (Normalized Discounted Cumulative Gain) [1] on a static set of queries with respect to a general purpose Web-search engine, which provides quantitative insight into their performance difference. NDCG is one of the standard widely used search relevance measures, which is employed by major search engines and, similarly to \(F \)-measure, measures both precision and recall of retrieval. NDCG is well suited for search evaluation, because it rewards relevant results in the top positions more than those ranked lower. Due to space limitations, interested readers are referred to [1] for details about NDCG computation. Total NDCG gain over all queries turned out to be very large > 6%. Usually for two industrial Web-search engines NDCG difference more than 4% is considered to be significant.

4. REFERENCES

