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ABSTRACT
Web 2.0 users conveniently consume content through subscribing
to content generators such as Twitter users or news agencies. How-
ever, given the number of subscriptions and the rate of the sub-
scription streams, users suffer from the information overload prob-
lem. To address this issue, we propose a novel and flexible di-
versification paradigm to prune redundant posts from a collection
of streams. A key novelty of our diversification model is that it
holistically incorporates three important dimensions of social posts,
namely content, time and author. We show how different applica-
tions, such as microblogging, news or bibliographic services, re-
quire different settings for these three dimensions. Further, each
dimension poses unique performance challenges towards scaling
the diversification model for many users and many high-throughput
streams. We show that hash-based content distance measures and
graph-based author distance measures are both effective and effi-
cient for social posts. We propose scalable real-time stream pro-
cessing algorithms leveraging efficient indexes that input a social
post stream and output a diversified version of the stream, diversi-
fied across all three dimensions. Next, we show how these tech-
niques can be extended to serve multiple users by appropriately
reusing indexing and computation where possible. Through exten-
sive experiments on real Twitter data, we show that our diversifica-
tion model is effective and our solutions are scalable. We show that
different algorithms perform best for different application settings.

1. INTRODUCTION
Tremendous amounts of online social data are generated every

day. For instance, Twitter has reported over 280 million monthly
active users in its microblogging service and 500 million Tweets
posted per day1. One common way to consume social data is through
implicit or explicit subscription. For example, almost all news
agencies offer RSS feeds for people to subscribe. Google Scholar
continuously recommends new publications to its users based on a
user’s profile and publication history. In a microblogging system
like Twitter, one can subscribe to other users’ posts by following
them.
1https://about.twitter.com/company
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All posts matching a user’s subscriptions are typically displayed
in a convenient central place, such as the user’s timeline in Twit-
ter or Facebook. These timelines are updated in real time. A key
challenge is that a user could be easily overwhelmed by the num-
ber of posts in the timeline, especially if the user is subscribed to
many post producers. Further, a user’s timeline often contains lots
of posts that carry no new information with respect to other similar
posts. This data overload issue also happens in other applications
with smaller data throughput such as news and research papers. For
instance, it has been shown that a primary care physician should
read hundreds of medical publications per day to keep up with the
medical literature [2].

To alleviate the data overload problem, in this paper we pro-
pose a novel way to efficiently and effectively diversify social post
streams by pruning redundant posts. By social post streams we
mean a broad class of content generated by services where each
post, in addition to its textual content, has a unique author and a
unique timestamp, and where authors are associated through vari-
ous social relationships. For instance, in Google Scholar authors
are connected by relations such as co-authorship or overlapping
research interests. In microblogging sites users are connected by
follower/followee relations.

Given a stream consisting of all the posts from a user’s subscrip-
tions, our goal is to output in real-time a subset of the stream in
which (i) all posts are dissimilar to each other and (ii) any post in
the whole stream will be either included or covered by a post in the
sub-stream. A post covers another post if the two posts are simi-
lar in all three similarity dimensions: (a) content, (b) time and (c)
author.

Two posts have similar content if their text components are sim-
ilar. Intuitively, all other dimensions being equal, users want to
avoid seeing two posts with very similar content. Similarly, the
timestamp distance of two posts is important in social post diver-
sification. Two posts that have similar content but are far away in
terms of post time, may both be of interest to the user. Note that
time is widely used for diversifying search results in microblogging
systems [10, 14, 4].

The author similarity is a more subtle dimension that to the best
of our knowledge has not been used before for computing diver-
sity in social media. For example, CNN and Fox News, which
both have official Twitter accounts, are dissimilar to each other be-
cause they generally have different political views. We compute the
distance between two authors through their social connections. In
particular, we compare the sets of friends (or followers in the case
of Twitter) of the two authors, which has been shown to be a good
author similarity measure in social networks [21, 9].

Challenges: To summarize, in our model two posts are redun-
dant with respect to each other if they are similar in all of the three
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(a) SPSD (b) M-SPSD

Figure 1: Settings of SPDP and M-SPDP.

Problem 2 [Multiple-Users Social Post Stream Diversification
(M-SPSD)] Given a social post stream P, diversity thresholds λc,
λt and λa, and a set of users where each user is subscribed to a
subset of the authors, compute a diversified sub-stream for each
user.

3. CONTENT DISTANCE ESTIMATION FOR
MICROBLOGGING POSTS

Among the three diversity dimensions, the content distance is
the most expensive to compute, because it must be computed for
each new post. This is especially true given our real-time decision
semantics described above. In contrast, the author similarity be-
tween each pair of authors may be precomputed (e.g., once every
week), as it changes slowly over time. For that reason, we cannot
afford to use traditional content similarity measures such as cosine
similarity. Instead, we turn to hash-based distance measures. In
this section we present the details of the employed content distance
technique along with an analysis of its effectiveness for microblog-
ging data.

We define the content distance between two posts Pi and Pj as
the Hamming distance of their SimHash [17] fingerprints. Previous
work has applied SimHash on web documents [11] and showed that
it is efficient and effective. We represent the SimHash of text(Pi)
as Si, which is a 64-bit fingerprint. The Hamming distance of two
SimHash fingerprints is the number of different bits between them.
According to the experimental analysis in [19], the cosine distance
between two texts positively correlates to the Hamming distance of
their corresponding SimHash fingerprints.
Distribution of SimHash distances in Twitter

First, we study the distribution of SimHash distances on Twitter
data. We collected a dataset of 200 thousand tweets from the Twit-
ter Streaming API, which returns a stream of randomly selected
substream of Twitter ([12] showed that the stream is not exactly
random but this is not too important for our problem). The distri-
bution of the Hamming distances for these tweets is depicted in Fig-
ure 2, which shows a perfect normal distribution with mean value
32, as expected, and with most of the distances between 24 to 40.
User Study

To further evaluate the effectiveness of SimHash for social posts,
we conducted a user study to learn the relationship between the
SimHash distance between two posts and the perceived dissimilar-
ity between the posts. A second goal of the study is to learn what is
a good SimHash distance threshold (e.g., a threshold of 3 bits was

Figure 2: Hamming distance distribution

chosen to define redundant Web pages [11]) and if any preprocess-
ing of the tweet text (e.g., expand shortened URLs) may improve
the effectiveness of SimHash.

Setup and Methods: In particular, we collected a dataset of 2000
pairs of tweets randomly selected from the 200,000 tweets returned
by the Twitter Streaming API, with SimHash distances between 3
and 22 – 100 tweets from each distance value. We chose 3 to 22
because this is the range where we expect to find posts that are very
similar (redundant with respect to each other). This range choice is
supported by our results below. We recruited 12 undergraduate and
graduate students.

We evenly divided these 2000 pairs into 4 groups and distributed
them to the 12 students for labeling. The author and timestamp of
the posts are hidden. Some examples of these pairs are shown in
Table 1. Each group of tweets is labeled by 3 students. The students
were asked to mark whether the two tweets in a pair are redundant
with respect to each other.

To help the users more accurately label the similarity between
two posts, we showed the expanded URL (instead of the shortened
one shown in Table 1). We used a majority vote, that is, if at least
2 out of the 3 students labelled a pair as redundant, we labelled the
pair as near-duplicates.

Results: Out of the 2000 pairs, the users marked 949 pairs as
redundant. Figure 3 shows the precision and recall achieved by
various SimHash distance values. For each Hamming distance h,
the precision is defined as the fraction of pairs with Hamming dis-
tance no more than h that are true near-duplicates. Recall is the
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Table 1: Example tweet pairs and their Hamming distances

Tweet pair Hamming distance
Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/9w2JrurhKm

Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/E1vKp9JJfe
3

“In order to succeed, your desire for success should be greater than your fear of failure” Bill Cosby

In order to succeed, your desire for success should be greater than your fear of failure. #quote #success -
Bill Cosby

8

Alibaba’s growth accelerates, U.S. IPO filing expected next week http://t.co/mUcmLJ4cpc #Technology #Reuters

Alibaba’s growth accelerates, U.S. IPO filing expected next week: SAN FRANCISCO (Reuters) - Alibaba
Group Hold... http://t.co/aLAV8w4gWF

13

fraction of the total number of near-duplicate pairs that are detected
with Hamming distance at most h. This graph shows that SimHash
distance is an effective measure to identify similar posts.

Figure 3: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from raw texts of tweets

Next, we study if various text preprocessing methods may im-
prove the precision or recall of SimHash distance measure for mi-
croblogs. We first normalize the text by (a) changing all text to
lowercase, (b) removing extra white spaces between words, and (c)
removing non-alphanumeric characters (such as �;;�;+; =, etc.).
Figure 4 plots the precision and recall after we apply the normal-
ization. We see that this graph achieves higher precision and recall
values than the original analysis in Figure 3. We also see that the
the two lines cross for distance = 18, which achieves precision
= 0:96 and recall = 0:95.Hence, we use �c = 18 as the default
content distance threshold in the experiments in Section 6.

We also tried other methods of text preprocessing such as ex-
panding shortened URLs (URLs in tweets are shortened by Twit-
ter), varying the weights of user mentions and hashtags (by creat-
ing artificial copies), and expanding abbreviations. However, these
methods had no significant impact to the precision and recall.

For completeness, we compared the effectiveness of SimHash to
that of cosine similarity (which is much slower as discussed above)
in terms of detecting posts with near-duplicate content (redundant).
We tried different cosine threshold values and found that the preci-
sion and recall lines across at cosine similarity 0.7, where all posts
with cosine similarity above 0.7 are marked as redundant. This
achieves precision and recall of 0.96 and 0.95 respectively, which
is the same as what we achieved using SimHash above. This means
that, for detecting near-duplicate in our dataset, SimHash achieves
effectiveness similar to cosine similarity. Hence, given the time
performance advantage of SimHash, it is the best choice for our
problem.

The high threshold value of �c = 18 for SimHash precludes the

Figure 4: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from normalized texts of tweets

use of the efficient SimHash index proposed in [11] which relies
on building several copies of the SimHash values table for several
permutations of the bits, since the number of these copies is expo-
nential in �c (which was only 3 in [11]). Hence, as we discuss in
Section 4, other indexing and searching techniques are required.

4. ALGORITHMS FOR SPSD
In this section, we describe our algorithmic solutions for the

SPSD problem. As explained earlier in Section 3, due to the high
Hamming distance threshold we are unable to use existing SimHash
indexing techniques, and we must rely on comparing the SimHash
value of each new post with those of all the previous ones, leading
inevitably to linear time complexity per post in the worst case. We
reduce the number of these comparisons by leveraging the other
two dimensions, time and author. We first discuss how we han-
dle time diversity, which is simpler, and then we present various
approaches for handling author diversity.
Handling Time Diversity. According to the diversity model, at
the arrival of a post Pi it can only be covered by the previous posts
within a �t time distance. Thus, it is sufficient to store only the
posts from previous �t time in memory for checking the coverage
of a new post. One possible implementation is that we could store
the posts in a circular array. We track two post indices for the oldest
post within a �t distance to current time (a) and the most recent
post (b). At the arrival of each post Pi, we compare it to the posts
from most recent post to the oldest (i.e., from index b to a). If we
encouter a post Pj with ti � tj > �t, we update a to be index of
the post right after Pj . And we insert a non-redundant post to the
array with index (b+ 1) and update b = b+ 1.

Now that we have discussed how to handle time diversity, we
focus on the author diversity among the posts in the last �t time
units. The author similarity relations between all authors form an
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this, they construct a rich set of syntactic, semantic and contextual
features. They aim to distinguish different levels of near-duplicates,
e.g. exact copy, strong near-duplicate, or weak near-duplicate.

8. CONCLUSION
In this paper, we studied the novel problem of diversifying so-

cial post streams by incorporating diversity in three dimensions:
content, time and author. We illustrated the challenges of solving
the problem and proposed various algorithms to efficiently handle
these challenges. We showed the tradeoffs between our proposed
algorithms and argued the use cases for them. We also studied the
problem of applying the proposed diversification model for mul-
tiple users in a social system. Extensive experiments proved the
effectiveness of our model and efficiency of proposed algorithms.
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