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ABSTRACT
Analytical queries are crucial for many emerging Semantic Web
applications such as clinical-trial recruiting in Life Sciences that
incorporate patient and drug profile data. Such queries compare
aggregates over multiple groupings of data which pose challenges
in expression and optimization of complex grouping-aggregation
constraints. While these challenges have been addressed in rela-
tional models, the semi-structured nature of RDF introduces addi-
tional challenges that need further investigation. Each grouping re-
quired in an RDF analytical query maps to a graph pattern subquery
with related groups leading to overlapping graph patterns within the
same query. The resulting algebraic expressions for such queries
contain large numbers of joins, groupings and aggregations, posing
significant challenges for present-day optimizers.

In this paper, we propose an approach for supporting efficient
and scalable RDF analytics that follows the well known technique
of simplifying algebraic expressions of RDF analytical queries in a
way that enables better optimization. Specifically, the approach
is based on a refactoring of analytical queries expressed in the
relational-like SPARQL algebra based on a new set of logical op-
erators. This refactoring achieves shared execution of common
subexpressions that enables parallel evaluation of groupings as well
aggregations, leading to reduced I/O and processing costs, partic-
ularly beneficial for scale-out processing on distributed Cloud sys-
tems. Experiments on real-world and synthetic benchmarks con-
firm that such a rewriting can achieve up to 10X speedup over
relational-style SPARQL query plans executed on popular Cloud
systems.

1. INTRODUCTION
Growing amount of linked open data is enabling interesting ap-

plications that combine data from different domains for analysis.
For example, the ReDD-Observatory [38] discusses a study report-
ing the total number of deaths and the number of clinical trials for
Tuberculosis and HIV/AIDS in all countries, to analyze the dispar-
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SELECT ?country ?feature ((?sumF  (?cntT  ?cntF)) /
(?cntF  (?sumT  ?sumF)) As ?priceRatio)     

{{ 
SELECT  ?country (count(?price) As ?cntT) (sum(?price) As ?sumT)
{  

?product  rdf:type PT18.
?offer       bsbm:product ?product ;

bsbm:price ?price ;  
bsbm:vendor ?vend .

?vend       bsbm:country ?country .
} 

GROUP BY ?country  
} 
{ 

SELECT  ?country ?feature 
(count(?price2) As ?cntF)  (sum(?price2) As ?sumF)

{

?product2  rdf:type PT18 ;
bsbm:productFeature ?feature .

?offer2      bsbm:product ?product2 ;
bsbm:price ?price2 ;
bsbm:vendor ?vend2 .

?vend2      bsbm:country ?country .
} 
GROUP BY ?country ?feature 

}}

For all products 

of type 'PT18', 

compute the 

count and total 

price per country.

For all products of 

type 'PT18', 

compute the count 

and total price per 

feature and country.

?country (GP1)

AggrcntT, sumT

?country, ?feature (GP2) 

AggrcntF, sumF

⋈

(4 overlapping  joins)

GP2

GP1

(?country = ?country)

(4 joins) (5 joins)

(Query 1) For each country, retrieve product

features with the highest ratio between price

with and without that feature

Figure 1: (AQ1): An example SPARQL analytical query, For each
country, retrieve product features with the highest ratio between
price with that feature and price without that feature

ity between biomedical research and the disease burden in devel-
oping countries. This study involved information about clinical tri-
als and effectiveness of treatment options from ClinicalTrials.gov,
statistics about mortality for different countries from the Global
Health Observatory (GHO), published by the World Health Or-
ganization and biomedical research (MEDLINE publications and
other life science journals) available in the PubMed. The results
need to be grouped based on both country and disease, followed by
aggregations on the number of clinical trials and deaths due to the
concerned disease in each country, using the grouping-aggregation
constructs in SPARQL 1.1 [22]. Another Semantic Web appli-
cation, AlzPharm [26], queries several semantically-linked neu-
roscience datasets to find information relevant to neurodegenera-
tive diseases, e.g., identify the different groups of drugs used for
Alzheimer’s Disease when grouped by their molecular targets and
clinical usage.

Non-trivial analytical queries require multiple aggregations over
different groupings of data, some of which may be related, resulting
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SELECT ?country ?feature ((?sumF  (?cntT  ?cntF)) /
(?cntF  (?sumT  ?sumF)) As ?priceRatio)     

{{ 
SELECT  ?country (count(?price) As ?cntT) (sum(?price) As ?sumT)
{  

?product  rdf:type PT18.
?offer       bsbm:product ?product ;

bsbm:price ?price ;  
bsbm:vendor ?vend .

?vend       bsbm:country ?country .
} 

GROUP BY ?country  
} 
{ 

SELECT  ?country ?feature 
(count(?price2) As ?cntF)  (sum(?price2) As ?sumF)

{

?product2  rdf:type PT18 ;
bsbm:productFeature ?feature .

?offer2      bsbm:product ?product2 ;
bsbm:price ?price2 ;
bsbm:vendor ?vend2 .

?vend2      bsbm:country ?country .
} 
GROUP BY ?country ?feature 

}}

For all products 

of type 'PT18', 

compute the 

count and total 

price per country.

For all products of 

type 'PT18', 

compute the count 

and total price per 

feature and country.

?country (GP1)

AggrcntT, sumT

?country, ?feature (GP2) 

AggrcntF, sumF

⋈

(4 overlapping  joins)

GP2

GP1

(?country = ?country)

(4 joins) (5 joins)

(Query 1) For each country, retrieve product

features with the highest ratio between price

with and without that feature

Figure 2: A relational-algebra based query plan for AQ1

in redundant scans and joins over large relations. Consider an ex-
ample SPARQL analytical query AQ1 shown in Figure 1, adopted
from the Berlin SPARQL BI benchmark [1]. The query involves
two descriptions GP1 and GP2 for products of type ‘PT18’ with
grouping constraints on country and (country, feature) com-
binations, respectively. Each grouping constraint is defined over a
graph pattern (a combination of one or more triple patterns1 that
specifies constraints to retrieve relevant subgraphs). Queries with
multiple groupings involve multiple graph patterns. Further, if the
groupings are related then there is a significant amount of over-
lap in the graph pattern subqueries. Figure 2 shows a summarized
query plan with two major subqueries using the traditional evalu-
ation technique: a subquery for GP1 with four joins that matches
subgraphs about offers for products of type PT18, their price and
vendor information, followed by a grouping on vendor’s country.
The second subquery contains a similar graph pattern GP2 with five
joins (an extra join due to the addition of product feature) followed
by a grouping on country-feature. Answers from the two sub-
queries are then joined to compute the final price ratio, resulting in
a total of 10 joins and 2 grouping operations.

In contrast, in the relational model, such OLAP queries are eval-
uated over suitably organized (star or snowflake) schemas consist-
ing of n-ary relations. Different optimization strategies ranging
from specialized query constructs [20, 9, 10], efficient indexing [31,
37], materialized views [21, 12], and efficient evaluation in dis-
tributed data warehouses [7, 6] have been proposed. In the ab-
sence of such schema organizations for RDF, a naive approach is
to decompose the evaluation into two distinct phases: a graph pat-
tern evaluation phase that constructs a suitable set of n-ary rela-
tions, followed by relational-style optimizations. However, such an
approach prevents the possibility of optimizations across the two
phases, e.g., early projections, partial aggregations, etc. Therefore,
a holistic optimization strategy is likely to be more advantageous.

A promising direction is based on the observation made in [10]
that relational expressions tightly couple grouping and aggregation
specifications, often resulting in complex algebraic expressions that
confound query optimizers. The approach in this paper has a sim-
ilar spirit, i.e., grouping-aggregation specifications in RDF analyt-

1RDF data is modeled as a set of triples = (Subject, Property, Object). A triple pattern
is a triple with at least one variable denoted by a leading ‘?’

ical queries are decoupled to optimize subqueries. Further, with
a focus to support large scale RDF analytics, the paper overviews
how such a query reformulation can be evaluated on Cloud plat-
forms such as MapReduce [17]. The challenges with evaluating
complex queries with many join operations have been addressed
in several papers [4, 23, 33], and can be summarized as long, ex-
pensive execution workflows with multiple I/O and network data
transfer phases. Many techniques have been proposed to mitigate
these costs by sharing scans and computations [30, 28, 33] during
MapReduce-based processing. In this paper, we present a holistic
optimization that integrates the work on algebraic optimization of
graph pattern queries with algebraic optimization of OLAP queries.
Specifically, we make the following contributions:

• An algebraic rewriting of overlapping graph patterns (in a SPARQL
analytical query) using a composite graph pattern based on com-
mon substructures. A decoupled reformulation of the grouping-
aggregation definitions in a SPARQL analytical query expressed
using a composite graph pattern.

• A set of logical and physical operators for efficient evaluation of
a composite graph pattern, as well as parallel evaluation of inde-
pendent aggregations on a composite graph pattern. The suite of
operators and optimizations are integrated into RAPIDAnalytics,
an extension of Apache Pig.

• A comprehensive evaluation of RAPIDAnalytics using basic and
multi-aggregation SPARQL analytical queries on real-world as
well as synthetic benchmark datasets.

The rest of the paper is organized as follows: Section 2 provides
a background on complex OLAP queries and specific challenges in
processing such queries over the RDF data model. Section 3 intro-
duces an algebraic rewriting of SPARQL analytical queries based
on a non-relational data model and algebra, followed by formal
definitions of newly introduced logical operators. Section 4 de-
scribes the physical operators and optimizations to execute such a
query plan on MapReduce-based platforms. Section 5 presents the
comparative evaluation results between RAPIDAnalytics and other
popular approaches, and Section 6 presents concluding remarks.

2. BACKGROUND AND CHALLENGES

2.1 Optimization of Complex OLAP Queries
There has been a body of work to enable better expression and

evaluation [20, 19, 10, 6, 11] of complex OLAP queries includ-
ing introduction of constructs such as the CUBE BY [20], grouping
sets [9], etc., that allow the user to have a finer control over the
grouping and aggregation specifications. An earlier work on MD-
Join [10] showed that decoupling of the grouping definition and
aggregation computations not only allows more succinct expres-
sion of complex OLAP queries, but can also eliminate redundant
scans and joins over large fact tables.

Parallel / Distributed Evaluation of Relational OLAP Queries.
An earlier work on parallel evaluation of aggregates proposed adap-
tive algorithms [35] to handle a range of grouping selectivities (ra-
tio of result size to input size) across queries. Subsequent research [6]
on distributed evaluation of OLAP queries identified optimizations
that exploit knowledge about data distributions to reduce the amount
of data transfer between the local sites and the centralized coordi-
nator. In the context of MapReduce, an overlapping redistribution
scheme [14] was proposed to enable parallel evaluation of corre-
lated aggregations with sliding windows. MR-Cube [29] distributes
the cube computation of partially algebraic measures on MapRe-
duce. It also introduced a value-partitioning scheme to deal with
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reducer-unfriendly (cube) groups that tend to increase the load on
a reducer. The work on MR-Cube was integrated into Apache Pig2

and Apache Hive3 (GROUPING SETS, CUBE and ROLLUP clauses).
Such operations assume the existence of a fact relation on which
CUBE and other operations can be applied, which does not hold true
in the case of the RDF data model where triples are commonly rep-
resented as binary or ternary relations.

Expression and Evaluation of RDF Analytical Queries. The
RDF Data Cube vocabulary (QB) [16] was provided as a recom-
mendation to enable publication of statistical data in RDF adher-
ing to Linked data principles. The work on Open Cubes vocab-
ulary [18] enables representation of multidimensional data using
RDF Schema (RDFS). Other extensions [24] propose a multi di-
mensional model based on QB to support OLAP queries, mapping
them to SPARQL. Recent work on RDF analytics [15] proposed
a way to define an analytical schema on RDF graphs and formal-
ize analytical queries over such an analytical schema, by separat-
ing the grouping-aggregation definitions, similar to the relational
MD-Join [10] operator. An earlier work [36] extended Pig’s query
primitives to support MapReduce based execution of the MD-Join
operator.

Discussion. The MD-Join approach to eliminate redundant scans
and joins involving large fact relations, translates to reduction in
I/O and network transfer costs in MapReduce-based processing of
complex analytical queries. However, specifics of RDF analyt-
ics make it challenging to adopt such an approach. Unlike tra-
ditional OLAP systems where the fact and dimension tables are
available and suitably organized into star or snowflake schema,
the fine-grained data model in RDF necessitates several join op-
erations to reassemble the relevant fact and dimension informa-
tion, e.g., fact relation described by GP1 requires four join oper-
ations. A relational-style query plan that computes the detail rela-
tions described by GP1 and GP2, compiles into a lengthy MapRe-
duce execution workflow with 9 map-reduce cycles (one per star-
join). Such a sequential execution limits opportunities to share in-
put scans in general. Furthermore, RDF analytical queries often
involve (slightly) different join expressions for detail relations (re-
fer to GP1 and GP2). Thus, in order to fully exploit the benefit of a
decoupled reformulation using the MD-Join approach, we require
additional optimizations that enable shared execution of the graph
patterns in an RDF analytical query.

2.2 Shared Execution of Graph Pattern Queries
A commonly occurring pattern in OLAP queries involves com-

paring subtotals across multiple dimensions, which results in sub-
queries that compute groupings over an overlapping subset of di-
mensions, e.g., GP2 computes groupings on country-feature,
while GP1 is a roll-up on ALL features. In the context of RDF, re-
lated groupings result in subqueries with common subexpressions
(graph patterns with overlapping structure) enabling opportunities
for shared execution. For example, if two graph patterns in a query
have the same structure (same join expression), then the graph pat-
tern can be evaluated only once. In cases where graph patterns have
subsumption relationship in join expressions, there may be oppor-
tunities to rewrite the query in a way that allows shared execution
of common substructures. Even with structurally different graph
patterns, there may be sharing opportunities within a MapReduce
cycle.

Several techniques have been proposed to enable sharing of scans
and computations across a MapReduce workload in order to reduce
the associated I/O and network transfer costs, e.g., MRShare [30]
2
https://pig.apache.org/

3
https://hive.apache.org/

proposes sharing of input scans, sharing map functions and map
output, while executing a batch of grouping queries on a common
input table. YSmart [28] groups correlated operations in complex
queries, e.g., Joins and GROUP BYs accessing the same table, into
a single MapReduce job to reduce redundant scans, computations,
and network transfers (integrated into Hive 0.12.0).

A previous work [27] on multi-query optimization (MQO) of
SPARQL queries, rewrites the input graph pattern queries into a
set of queries QOPT using the SPARQL OPTIONAL4 clause. Given
a set of graph pattern queries Q with common substructures, the
basic idea of SPARQL MQO is to (i) rewrite the input queries into
a set of queries QOPT with OPTIONAL clauses (representing non-
overlapping structures), (ii) evaluate queries QOPT over the RDF
graph, and (iii) distribute the results ofQOPT to input queries inQ.
For example, two queries with the following set of triple patterns:
Q1:(?s p1 ?o)

Q2:(?s1 p1 ?o1)(?s1 p2 ?o2)

can be expressed using the OPTIONAL clause as follows:
QOPT :(?s p1 ?o) OPTIONAL(?s p2 o2)

where the non-overlapping triple pattern in Q2 is specified as op-
tional, i.e., resulting tuples may have NULL values for bindings
of second triple pattern. Results matching original queries are ex-
tracted from results of QOPT . Note that multi-valued properties in
the optional component may introduce duplicity and require special
handling.

Discussion. A possible strategy to optimize RDF analytical queries
is to rewrite and evaluate the individual graph patterns using the
SPARQL MQO approach, extract answers to original graph pat-
terns, and compute groupings over extracted subquery results. While
such a rewriting seems beneficial when compared to sequential
evaluation of individual graph patterns on MapReduce, our exper-
iments on Hive showed that evaluating QOPT ahead of time pre-
vents optimizations such as early projection and partial aggrega-
tions. This is becauseQOPT would need to be evaluated and stored
as an intermediate table, since Hive neither supports logical views
involving complex queries with multiple joins, nor does it support
materialized views.

2.3 Rationale of Our Approach
We argue that it is necessary to approach the problem of optimiz-

ing RDF analytics holistically, rather than a two-step approach of
independently optimizing the graph pattern matching phase and the
grouping-aggregation phases. Given that RDF analytical queries
often involve repeated computations over slightly different graph
patterns, query plans that enable shared execution of common sub-
patterns are likely to compile into efficient execution plans. An
important factor in this regard is the choice of algebra, the associ-
ated data model and the set of operators. One may use a relational-
like algebra or alternatives such as the Nested TripleGroup Data
Model and Algebra (NTGA) [33, 25]. We chose to use NTGA due
to its underlying “groups of triples” or triplegroup model that en-
ables concurrent computation of star-shaped join subpatterns (star-
joins) in a query. The NTGA query plans not only enable sharing of
scans and computations across multiple star subpatterns (resulting
in shortened map-reduce execution workflows), but also concisely
represent intermediate results in a denormalized form. In the next
section, we build on the foundations of sharing that is already inher-
ent in the NTGA approach and enhance its benefits by optimizing
complex grouping-aggregation constraints.

4The OPTIONAL clause is used in SPARQL to allow querying of predicates that
may not exist, i.e., answer is returned if there is a subgraph matching the OPTIONAL
graph pattern, else it is ignored.
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GP1 GP2 Does GP1 Overlap GP2? Composite GP’

AQ2 SELECT ?s1… WHERE
{  

?s1 ty PT18.(jtpa)

?s2 pr ?s1 .(jtpb)

?s2 pc ?o1 .

?s2 ve ?o2 .

} 

SELECT ?s1… WHERE
{

?s1 ty PT18 .(jtpα)

?s1 pf ?o3  .

?s2 pr ?s1  .(jtpβ)

?s2 pc ?o4  . 

} 

• { ty } in overlap of Stpa and Stpα
• { pr, pc } in overlap of Stpb and Stpβ
• Property of jtpa and jtpα match
• Property of jtpb and jtpβ match

• Role of ?s1 ∈ jtpa (subject) is same as role 
of ?s1 ∈ jtpα (subject)

• Role of ?s1 ∈ jtpb (oject) is same as role 

of ?s1∈ jtpβ (object)
Hence, GP1 overlaps GP2

SELECT ?s1… WHERE
{

?s1 ty PT18 .

?s1 pf ?o6 .

?s2 pr ?s1 . 

?s2 pc ?o7 .

?s2 ve ?s3 . 

} 

AQ3 SELECT ?s3… WHERE
{  

?s3 pr ?s1 . 

?s3 pc ?o5 .

?s3 ve ?s4 .(jtpc)

?s4 cn ?o6 .(jtpd)

} 

SELECT ?s3… WHERE
{  

?s3 pr ?s1 . 

?s3 pc ?o5 .

?s3 ve ?o6 .(jtpγ)

?s4 cn ?o6 .(jtpδ)

} 

• { pr, pc, ve } in overlap of Stpc and Stpγ
• { cn } in overlap of Stpd and Stpδ
• Property of jtpc and jtpγ match
• Property of jtpd and jtpδ match

• Role of ?s4∈ jtpc (object) is same as 
role of ?o6 ∈ jtpγ (object)

• Role of ?s4 ∈ jtpd (subject) is NOT same as 
role of ?o6 ∈ jtpδ (object)

Hence, GP1 does NOT overlap GP2

Not Applicable

Stpa

Stpb

Stpα

Stpβ

Stp’a

Stp’b

Stpc

Stpd

Stpγ

Stpδ

Figure 3: Structural overlap in graph patterns

Table 1: Quick Reference

Symbol Description
tp Triple pattern
jtpi Joining triple pattern in Stpi
jvij Variable joining tpi and tpj
GP Graph pattern
Stp Subject-rooted star subpattern
Stpabc Star pattern with property-set { a, b, c }
Stpabc Star pattern with primary properties a and b,

and secondary (optional) property c
Pprim Set of primary properties
Psec Set of secondary properties
tg Triplegroup
TG Set of triplegroups
TGabc Set of triplegroups with property-set { a, b, c }

Function Returns
var(tp) Set of variables in triple pattern tp
role(?v) Role of variable ?v (subject, property, or object)
prop(tp) Property of triple pattern tp
props(Stpi) Set of properties in Stpi
δ(?v) Variable substitution in a triple matching tp

3. ALGEBRAIC REWRITING OF SPARQL
ANALYTICAL QUERIES

We reformulate SPARQL analytical queries with multiple grouping-
aggregation constraints by, (i) identifying overlaps between graph
patterns in a query based on structural constraints, (ii) evaluating
a composite graph pattern that retrieves answers for original graph
patterns, and (iii) computing required groupings and aggregations
based on the composite graph pattern. Common notations and con-
venience functions used in this paper are summarized in Table 1.

Definition 3.1 (Overlapping Star Patterns) Let Stp1 and Stp2 be
two subject-rooted star subpatterns and let L be the intersection of
their property sets, i.e., L = props(Stp1) ∩ props(Stp2). Then,
Stp1 and Stp2 are considered to overlap if the following holds:

• Intersection of their property sets is non-empty, i.e., L 6= ∅.

• For any triple pattern tp1 = (s1, rdf:type, o1) ∈ Stp1, there
exists some tp2 = (s2, rdf:type, o2) ∈ Stp2, with the same object
component, i.e., o1 = o2.

Figure 3 represents two analytical queries AQ2 and AQ3, each
consisting of two graph patterns GP1 and GP2 (properties abbrevi-
ated). In the case of query AQ2, star pattern Stpa ∈ GP1 overlaps
with Stpα ∈ GP2 since both match on the object of rdf : type
triple. Similarly, star patterns Stpb and Stpβ overlap. The graph
patterns in AQ4 also have two overlapping star patterns, i.e., Stpc
structurally overlaps with Stpγ , and Stpd overlaps with Stpδ .

Additionally, analytical queries may contain FILTER clauses that
need to be considered while determining overlap between star pat-
terns. For example, consider a filter on GP1 to retrieve a subset
of products with price (property abbreviated as pc) > 5000, i.e.,
FILTER(?o5 > 5000). A possible strategy is to compute general-
ized composite star patterns (without filter) and apply restrictions
prior to the aggregation phase. Pushing the filter to a later phase in
the workflow may have implications on I/O and network transfer
costs associated with materialization of some irrelevant intermedi-
ate results. Another interesting case is that of unbound-property
star patterns containing triple patterns such as (?s1 ?p o1), used
to query unknown or don’t care relationships. Such queries need
special handling, specifically if the unbound-property triple pattern
participates in a join with other star patterns. Advanced optimiza-
tions for both these cases are out of scope of this paper. For the
rest of this paper, we consider optimization of multi-graph-pattern
queries involving bound-property star patterns with same filter con-
straints or filter constraints on a non-intersecting property.

Next, we generalize the notion of overlap to graph patterns by
capturing similarity of join structures between star patterns. In or-
der to do so, we introduce the concept of role-equivalence of join
variables. Given two triple patterns tp1 and tp2, a join variable jv1
is a variable in var(tp1) ∩ var(tp2). A join variable jv1 ∈ tp1 is
said to be role-equivalent to join variable jv3 ∈ tp3 if, (i) the cor-
responding triple patterns agree on the property component, i.e.,
prop(tp1) = prop(tp3), and (ii) the join variables play the same
role (subject, property, or object), i.e., role(jv1) in tp1 is the same
as role(jv3) in tp3.

Definition 3.2 (Overlapping Graph Patterns) Let graph pattern
GP1 involve star subpatterns Stpa, Stpb,..., such that jvab de-
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(a) Optional Group Filter:   

 σ  
({product, price}, {validFrom, validTo})(TG) 

  
 = 
 
 
 
 
 
 
 
 
 
 
 
 

 = TG’ 

tg1 =  (offer1,  product,  prod1), 
          (offer1,  price,       108),  
          (offer1,  validTo,   “08/08/2014”) 

tg2 =  (offer2,  product,  prod3), 
          (offer2,  price,       121) 

tg3 =  (offer3,  product,     prod1), 
          (offer3,  validFrom,  “02/08/2014” ),  
          (offer3,  validTo,       “08/08/2014”) 

tgall 

tgall 

(b) n-split: Example1 
χ({product, price}, { { validFrom}, {validTo} })(TG’)  
 
 
= 
 

                                                         

 
 

tg42 =   (offer8, product,  prod3), 
             (offer8,  price,       360), 
             (offer8, validTo,   “11/..”) 

tg12 =   (offer1, product,  prod1), 
             (offer1,  price,       108), 
             (offer1,  validTo,  “08/..”) 

tg21 =   (offer2,  product,  prod3), 
             (offer2,  price,       121) 

tg4 =  (offer8,  product,     prod3), 
          (offer8,  price,           360 ),  
          (offer8,  validFrom, “01/01/2014”), 
          (offer8,  validTo,      “11/01/2014”) 
 

tgall 

(c) n-split: Example2 
χ({product, price}, { {  }, {validTo} })(TG’)  
 
 
=                           

tg41 =   (offer8, product,  prod3), 
             (offer8,  price,       360), 
             (offer8, validFrom,“01/..”) 

tg11 =  (offer1,  product,  prod1), 
            (offer1,  price,       108) 

tg12 =   (offer1, product,  prod1), 
             (offer1,  price,       108), 
             (offer1,  validTo,  “08/..”) 

tg42 =   (offer8, product,  prod3), 
             (offer8,  price,       360), 
             (offer8, validTo,   “11/..”) 

tg41 =   (offer8, product,  prod3), 
             (offer8,  price,       360) 

opt 

Figure 4: NTGA logical operators to evaluate composite graph patterns

notes the variable that joins a triple pattern jtpa ∈ Stpa with jtpb
∈ Stpb. Let graph pattern GP2 involve star subpatterns Stpα,
Stpβ ,.... such that jvαβ denotes the variable that joins a triple
pattern jtpα ∈ Stpα with jtpβ ∈ Stpβ . Then, the graph patterns
GP1 andGP2 are said to overlap if the following conditions hold:

• Each star pattern Stpa ∈ GP1 overlaps with some star pattern
Stpα ∈ GP2

• Given a pair of overlapping star patterns Stpa and Stpα, their
join variables jvab and jvαβ are role-equivalent.

In the case of AQ2, graph patterns GP1 and GP2 overlap since
both star patterns overlap and have the same join structure, e.g.,
subject-object join between Stpa and Stpb in GP1 matches the join
structure between Stpα and Stpβ in GP2. In the case ofAQ3, both
star patterns overlap. However, Stpc joins Stpd using an object-
subject join, where as Stpγ joins Stpδ using an object-object join.
Since the join structures are not similar, we consider GP1 and GP2

to be non-overlapping. Though there may be possibilities to share
some scans and computations across non-overlapping graph pat-
terns, for the rest of the paper we consider optimization of overlap-
ping graph patterns.

Construction of a Composite Graph Pattern. Overlapping
graph patterns GP1 and GP2 can be re-written as a composite graph
pattern GP′ that captures the (non) overlapping substructures. For a
pair of overlapping star patterns Stpa ∈ GP1 and Stpα ∈ GP2,
we define a composite star pattern Stp′i such that:

• props(Stp′i) = Pprim ∪ Psec

• Pprim = props(Stpa) ∩ props(Stpα), set of primary proper-
ties defining common substructures across star patterns.

• Psec = { pi | pi ∈ props(Stpa) ∪ props(Stpα), pi /∈Pprim},
set of secondary properties defining non-overlapping structures.

For example, Stpa ∈ GP1 and Stpα ∈ GP2 can be rewritten as
Stp′a such that props(Stp′a) = { ty18, pf }, where ty18 (short for
rdf : type PT18) is the primary property and pf is the secondary
property (underlined). Similarly, Stpb ∈ GP1 and Stpβ ∈ GP2 can
be expressed as Stp′b with set of properties { pr, pc, ve}. Query
AQ1 can be re-written using a composite graph pattern:

GP′ = (Stp′1 1 Stp′2 1 Stp′3)

where props(Stp′1) = { ty18, pf }, props(Stp′2) = { pr, pc, ve},
and props(Stp′3) = { cn }.

Answers matching a composite graph pattern may contain super-
fluous subtuples that do not match either of the original patterns,
resulting in wrong aggregates. Hence, we need a way to validate
join combinations.

An NTGA-based rewriting of a SPARQL analytical query re-
quires support to compute and manipulate triplegroups that match
composite star patterns and composite graph patterns. Specifically,
we need support for the following operations – (i) A specialized
triplegroup-filter operator that validates secondary (optional) prop-
erties in a composite star pattern; (ii) An operator to extract subsets
of a triplegroup that match n original star patterns; (iii) A special
join operator that restricts joins on valid combinations of composite
star patterns; (iv) An operator in the spirit of MD-Join to compute
grouping-aggregations on triplegroups. Next, we formally define
the triplegroup-based logical operators. We assume our input to be
a set of subject triplegroups (triples grouped on subject column).

3.1 Logical Operators

Definition 3.3 (Optional Group Filter) Given a set of subject triple-
groups TG and a star pattern Stp containing a set of primary
properties Pprim, and a set of optional properties Popt, the op-
tional group-filter operator σγopt returns the subset of triplegroups
in TG that contains a non-empty subset of triples matching all
properties in Pprim and may contain triples matching properties
in Popt. Specifically,

σ
γopt
(Pprim,Popt)

(TG) := { tgi ∈ TG |
Pprim ⊆ props(tgi) ⊆ (Pprim ∪ Popt) }

where props(tgi) returns the set of properties in a triplegroup tgi.
Essentially, σγopt ensures that triplegroups contain a matching triple
for each of the primary properties and may contain matches for
properties inPopt. For example, given Pprim = {product, price},
triplegroup tg1, tg2, and tg4 are valid results for the σγopt expres-
sion in Figure 4(a). However, tg3 does not contain a matching
triple for the primary property price, and hence gets filtered out.
Note that valid triplegroups may have triples matching zero or more
of the two optional properties Popt = {validFrom, validTo}.
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Table 2: Evaluating composite graph patterns using α-Join

GP1 GP2 GP’ 1
γ
(α1∨α2)

(...)
Stp1:Stp2 Stp1:Stp2 Stp′1:Stp′2 α1 α2

ab:de ab:de ab:de − −
ab:de ab:def ab:def f =∅ f6=∅
ab:de abc:def abc:def c =∅ ∧ f=∅ c6=∅ ∧ f6=∅
abc:de ab:def abc:def c6=∅ ∧ f=∅ c =∅ ∧ f6=∅
abc:de ab:defg abc:defg c6=∅ ∧ f=∅ c =∅ ∧ f6=∅

∧ g=∅ ∧ g 6=∅

Definition 3.4 (n-split) Given a set of triplegroups TG, a set of
primary propertiesPprim, and n sets of secondary properties {Psec1 ,
Psec2 ,..., Psecn}, the n-split operator χ creates a set of n triple-
groups as follows:

χ(Pprim,{Psec1
,Psec2

,...,Psecn})(TG):= { tg′i, i ∈ [1, n]}

such that:

• tg′i = tgprim ∪ tgseci , where tgprim, tgseci ⊆ tg, tg ∈ TG

• props(tgprim) = Pprim and props(tgseci ) = Pseci

The n-split operator extracts n subsets of a triplegroup based
on n sets of secondary properties, one for each of the original
star patterns. Figure 4(b) shows triplegroups resulting from an n-
split operation on TG′ (n=2), with Pprim = {product, price},
and two sets of secondary properties – Psec1 = {validFrom},
and Psec2 = {validTo}. While triplegroup tg41 conforms to
the first pattern combination with properties { product, price,
validFrom }, triplegroups tg12 and tg42 match the second com-
bination { product, price, validTo}. Figure 4(c) shows an-
other example of the n-split operation with Psec1 = {} and Psec2={
validTo }, i.e., the first combination contains only primary (no
secondary) properties.

Let GPabcde and GPabdef be original graph patterns in a query and
let Stpabc and Stpdef be composite star patterns. The join (Stpabc
1 Stpdef) may result in pattern combinations such as abde that
do not match either of the original patterns and should be avoided.
We encode valid pattern combinations using α conditions, a set of
structural constraints on a TG equivalence class based on its sec-
ondary properties. For example, to ensure pattern combinations
abcde, triplegroups in TGabc must contain at least one triple with
property c, represented as a constraint α: c 6= ∅, for brevity.

Definition 3.5 (α-Join) Let TGx and TGy be two triplegroup equiv-
alence classes that join on variables jvx and jvy belonging to join-
ing triple patterns tpx and tpy , resp. Let α1, α2,...,αm be m con-
ditions involving secondary properties in the equivalence classes.
Then the α-Join operator 1

γ
{α1∨...∨αm} creates a joined triple-

group involving tgx ∈ TGx and tgy ∈ TGy if the following holds:

• Triplegroup tgx contains a matching triple for tpx, and triple-
group tgy contains a matching triple for tpy , such that their
variable substitutions match.

• tgx and tgy satisfy at least one of the α conditions.

Table 2 shows examples of graph patterns GP1 and GP2, their
composite graph pattern GP′, and α constraints for the α-Join oper-
ator. For example, conditions α1 and α2 in row (5) correspond to
the original graph patterns abcde and abdefg respectively, hence
avoiding materialization of triplegroups matching irrelevant pat-
terns such as abde, abdef, abdeg, abcdef, abcdefg, etc.

dtg1 = (Pr1.Off1.V1,    ty,      PT18),
(Pr1.Off1.V1,    pf,      Feat1),
(Pr1.Off1.V1,   pr ,     Prod1),
(Pr1.Off1.V1,    pc,     108),
(Pr1.Off1.V1,    ve,      V1),
(Pr1.Off1.V1,    cn,      UK)

 AgJ (TGBase, TG{ty18, pf, pr, pc, ve, cn}, l, , )  = TG{sumF, countF}

where  l = {SUM(?price), COUNT(?price)} and  = { pf != ⌀ }

dtg2 = (Pr2.Off2.V1,    ty,      PT18),
(Pr2.Off2.V1,    pr ,     Prod2),
(Pr2.Off2.V1,    pc,     360),
(Pr2.Off2.V1,    ve,      V1),
(Pr2.Off2.V1,    cn,      UK)

dtg3 = (Pr3.Off3.V2,     ty,      PT18),
(Pr3.Off3.V2,     pf,     {Feat1

Feat2},
(Pr3.Off3.V2,    pr ,     Prod3),
(Pr3.Off3.V2,    pc,     1008),
(Pr3.Off3.V2,    ve,      V2),
(Pr3.Off3.V2,    cn,      US)

Detail: TG{ty18, pf, pr, pc, ve, cn}

agtg1 = (Feat1.UK,   sumF,     414),
(Feat1.UK,   countF,  2)

agtg2 = (Feat1.US,   sumF,    1008),
(Feat1.US,   countF,  1)

agtg4 = (Feat2.US,   sumF,    1008),
(Feat2.US,   countF, 1)

TG{sumF, countF}

btg1 = (Feat1.UK,   sumF,     0),
(Feat1.UK,   countF,  0)

btg2 = (Feat1.US,   sumF,     0),
(Feat1.US,   countF,  0)

Base: TGBase

btg3 = (Feat2.UK,   sumF,     0),
(Feat2.UK,   countF,  0)

btg4 = (Feat2.US,   sumF,      0),
(Feat2.US,   countF,   0)

dtg4 = (Pr1.Off4.V1,    ty,      PT18),
(Pr1.Off4.V1,    pf,      Feat1),
(Pr1.Off4.V1,    pr ,     Prod1),
(Pr1.Off4.V1,    pc,     306),
(Pr1.Off4.V1,    ve,      V1),
(Pr1.Off4.V1,    cn,      UK)

agtg3 = (Feat2.UK,   sumF,     0),
(Feat2.UK,   countF,  0)

Figure 5: Example Triplegroup Agg-Join operation that computes
groupings based on feature-country combination

Definition 3.6 (TG Agg-Join) Let TGbase and TGdetail be two
triplegroup equivalence classes, θ be a condition involving vari-
able substitutions in TGbase and TGdetail, and let l be a list of ag-
gregation functions (f1, f2,...,fm) over aggregation variables a1,
a2, ..., am, respectively. Let α be a condition involving one of the
secondary properties in TGdetail. Then the triplegroup Agg-Join
operator,

γAgJ ( TGbase, TGdetail, l, θ, α)

creates a set of aggregated triplegroups ATG, where any aggre-
gated triplegroup agtgi ∈ ATG satisfies the following conditions:

• Each base triplegroup btgi ∈ TGbase is associated with a set of
triplegroups in TGdetail, using the following function :

RNG(btgi, TGdetail, θ, α) = { dtg ∈ TGdetail }

such that triplegroups btgi and dtg satisfy conditions in θ and α.

• Then, for each base triplegroup btgi ∈ TGbase, an aggregated
triplegroup agtgi ∈ ATG is produced with triples tik ∈ agtgi
that contain values corresponding to some aggregation function
fk and variable ak such that :

tik = (grpKey, createProp(fk, ak), fk_agtgi_ak)

whose values are computed as follows :

– grpKey is the subject of btgi; createProp(fk, ak) returns a
unique property based on combination of aggregation func-
tion and variable.

– Aggregate fk_agtgi_ak is computed by applying the function
fk on variable substitutions of ak in triplegroups matching
RNG(btgi, TGdetail, θ, α).
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σ


(TGSub, {ty18, pf} V {pr, pc, ve} V {cn})

⋈ (TGty18, pf, TGpr, pc, ve)
(1 V 2)

MR1

χ{prim}{sec}  (TGty18, pf, pr, pc, ve, cn)

MR3

MR4

MR5
⋈ (TGsumT, countT, TGsumF, countF )

⋈ (TGty18, pf, pr, pc, ve, TGcn)
(1 V 2)

MR2

 AgJ (TGcn,TGty18, pr,…,cn, l1, 1, 1)

 AgJ (TGpf,cn,TGty18,pf,…,cn, l2, 2, 2)

Optional group-filtering
Stp’1, Stp’2, Stp’3

-Join 
(Stp’1 ⋈ Stp’2)

Split into TGs matching 
GP1 and GP2

-Join 
(Stp’1 ⋈ Stp’2) ⋈ Stp’3

Agg-Join 
G2-Aggr2 (GP2)

Join aggregated TGs

Agg-Join 
G1-Aggr1 (GP1)

opt

MR1

MR2

Optional group-filter
Stp’1, Stp’2, Stp’3

-Join
(Stp’1 ⋈ Stp’2)

-Join
(Stp’1 ⋈ Stp’2) ⋈ Stp’3

 AgJ (TGpf,cn, TGty18,pf,…,cn, (l1, l2), (1,2), (1,2) )

Join aggregated TGs

MR3

MR4

Agg-Join
G’-Aggr’ (GP’)

σ


(TGSub, {ty18, pf} V {pr, pc, ve} V {cn})opt

⋈ (TGty18, pf, TGpr, pc, ve)
(1 V 2)

⋈ (TGty18, pf, pr, pc, ve, TGcn)
(1 V 2)

⋈ (TGsumT, countT, TGsumF, countF)

(a) (b)

Figure 6: Translation to MapReduce execution workflows: (a) Sequential and (b) Parallel evaluation of aggregations on a composite graph
pattern GP ′. Properties: ty18 (rdf : type PT18), pf (productFeature), pr (product), pc (price), ve (vendor), cn (country)

A base triplegroup btgi ∈ TGbase corresponds to a distinct group-
ing key and produces an aggregated triplegroup agtgi ∈ ATG.
Subset of triplegroups in TGdetail that contribute to an aggregated
triplegroup agtgi is computed using functionRNG(btgi, TGdetail,
θ, α), that returns the set of triplegroups in TGdetail that satisfy the
join condition θ as well as the α condition with respect to the base
triplegroup btgi. The α condition defines restrictions based on sec-
ondary properties in TGdetail.

Figure 5 illustrates an example TG Agg-Join operation between
TG equivalence classes TGBase (base) and TG{ty18,pf,pr,pc,ve,cn}
(detail), to compute groupings based on feature and country. The
RNG of a base triplegroup is calculated based on value bindings
of the grouping variables ?feature and ?country in detail triple-
groups (encoded as join condition θ). For triplegroup dtg1, bind-
ings δ1(?feature)={ Feat1 } and δ1(?country)={ UK }. The α
condition pf 6=∅ ensures the presence of the secondary property pf

(product feature). Triplegroup dtg2 does not satisfy theα condition
and hence does not contribute to any of the aggregated triplegroups.
The RNG of base triplegroups is as follows:

RNG(btg1, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = { dtg1, dtg4}
RNG(btg2, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = { dtg3 }
RNG(btg3, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = ∅
RNG(btg4, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = { dtg3 }

Given a base triplegroup btgi, the aggregated triplegroup is com-
puted by aggregating triplegroups in RNG of btgi. For example,
agtg1 is an aggregation of triplegroups dtg1 and dtg4 (RNG of
btg1). Note that RNG of btg3 is empty and the aggregated triple-
group agtg3 retains default values.

4. QUERY EXECUTION ON MAPREDUCE
In MapReduce, data processing tasks (or queries) are encoded

as a sequence of map-reduce function pairs which are executed
in parallel on a cluster of machines. Extended MapReduce sys-
tems such as Apache Hive and Pig support high-level query prim-
itives that are automatically compiled into a MapReduce execu-
tion workflow. The proposed logical operators were integrated into
an NTGA-based extension of Apache Pig, called RAPID+ [33,
25]. The extended system, called RAPIDAnalytics, includes pro-

posed optimizations to evaluate multi-aggregation SPARQL analyt-
ical queries. Both systems parse graph pattern queries in SPARQL
and support a set of logical and physical operators for both Pig and
NTGA. Interested readers can refer to [25] for architectural details
of RAPID+.

4.1 Translation to MapReduce Plans
As with other relational-style Hadoop extensions, query compi-

lation process in RAPIDAnalytics begins with a logical plan, which
is compiled into a physical plan with physical operators. A phys-
ical operator is either a single function or a function pair that cor-
responds to map and reduce phases of the logical operator. For
example, the optional group-filtering operator TG_OptGrpFilter
(σγopt ) is a single function and can be pipelined with other oper-
ators in either the map or the reduce phases. However, operators
such as the triplegroup Agg-Join TG_AgJ which require redistribu-
tion of input, are defined as map-reduce function pairs. The assign-
ment of the physical operators to MapReduce cycles constitutes a
MapReduce plan.

Next, we summarize the execution workflow of our example
queryAQ1 on MapReduce. As described earlier, overlapping graph
patterns GP1 and GP2 are re-written as a composite graph pattern:

GP′: Stpty18,pf 1 Stppr,pc,ve 1 Stpcn

Let TGSub be a set of subject triplegroups (set of triples grouped
by Subject column). Figure 6(a) shows the query plan with the as-
signment of operators to map-reduce (MR) cycles. The optional
group-filtering operator creates three sets of triplegroup equiva-
lence classes – TG{ty18,pf}, TG{pr,pc,ve}, and TG{cn}, that match
the composite star patterns. The two α-Join operators compute the
α-join between triplegroups to compute matches to the composite
graph pattern. The n-split operator extracts matches to the origi-
nal graph patterns GP1 and GP2. Subsequently, the two TG Agg-
Join operators (γAgJ ) compute the aggregations per country and
per feature-country, resp. The final ratio is computed by joining the
aggregated TG equivalence classes using a map-only phase.

An useful optimization [10, 5] is that a series of aggregations
on the same detail relation can be evaluated in parallel if they are
independent, i.e., the θ conditions of the second Agg-Join does not
involve values generated by the first Agg-Join. Figure 6(b) shows
the NTGA query plan and MapReduce execution plan that enables
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parallel execution of the TG Agg-Join operator by combining them
as a generalized operator (executed in MR cycle MR3):

γAgJ (TGg1, TG{ty18,pf,pr,pc,ne,cn}, (l1, l2), (θ1, θ2), (α1, α2))

4.2 Algorithms for Physical Operators
Algorithm 1 gives an overview of the job flow for key phases in

RAPIDAnalytics – Jobi, that computes the join between the triple-
group equivalence classes, and Jobk, that computes the aggregate
join between the triplegroup equivalence classes. If there is a struc-
tural overlap in the input graph patterns, the triplegroup equiva-
lence classes are computed based on the composite graph pattern.
This is achieved by evaluating the optional group-filtering operator,
TG_OptGrpFilter, based on the required and optional properties
in the composite graph pattern. Below are map-reduce algorithms
for the physical operators.

Algorithm 1: MR job workflow in RAPIDAnalytics
//Jobi:α-Join between TG equivalence classes
Map:

TG’← TG_OptGrpFilter(TG, <EC,{Pprim, Popt}>);
TG_AlphaJoin(TG′).Map();

Reduce:
TG”← TG_AlphaJoin(TG’).Reduce();

//Jobk:Agg-Join on TG equivalence classes
Map:

TG_AgJ(TG”).Map();
Reduce:

AggTG← TG_AgJ(TG”).Reduce();
//Jobn:Join Aggregated TGs
Map:

TG_Join(AggTG);

TG_AlphaJoin: The input to this operator is a set of annotated
triplegroups (matching a composite subpattern) whose join is to be
computed. In order to eliminate pattern combinations that do not
match any of the original graph patterns, all valid combinations
are encoded as a list of α conditions, one for each of the original
graph patterns. Algorithm 2 shows the map-reduce functions for
the TG_AlphaJoin operator that integrates α-based filtering of ir-
relevant triplegroups during the join between equivalence classes.

In the map phase, an input triplegroup is tagged either on the
Subject or Object value, based on the type of join. Each reduce()
receives annotated triplegroups corresponding to the same join key.
The algorithm iterates through triplegroups in the left equivalence
class (leftEC) and right equivalence class (rightEC), and computes
the join only if at least one of the α conditions is satisfied. For
example, two triplegroups with properties ab and de, are not joined
if the valid pattern combinations are abcde and abdef.
TG_AgJ: The input to this operator is a set of annotated triple-

groups that match the composite graph pattern. The output is a set
of aggregated triplegroups that contain the required aggregations.
Algorithm 3 shows the map-reduce functions for the TG_AgJ op-
erator. In order to reduce the number of intermediate triplegroups
that are shuffled to the reducers, we implement a hash-based aggre-
gation per mapper, i.e., instead of generating map output for each
map input triplegroup, we partially aggregate the triplegroups at
each mapper. The triplegroups are aggregated into a hashmap mul-
tiAggMap that is accessible across different map() invocations at a
mapper. This hash-based aggregation resembles a local combiner
within each mapper.

Each Agg-Join agj (identified by id) contains a θ condition,
from which the grouping key grp is extracted. In the map phase,

Algorithm 2: TG_AlphaJoin (Triplegroup α-Join)
Map (key:null, val: AnnTG atg)

if join on Subj then
emit 〈 atg.Sub, atg 〉;

else if join on Obj then
objList← extract objects corr. to join property from atg;
foreach obj ∈ objList do

emit 〈 obj, atg 〉;
Reduce (key:joinKey, val:List of AnnTGs TG′) ;

αList < α1, ..., αn >← α restrictions for current join;
leftList← extract leftEC AnnTGs from TG′;
rightList← extract rightEC AnnTGs from TG′;
foreach ltg ∈ leftList do

foreach rtg ∈ rightList do
if ∃ α ∈ αList such that ltg and rtg satisfy α then

emit 〈 joinTGs(ltg, rtg)〉;

as each input triplegroup atg is processed, aggregations are com-
puted if the α condition is satisfied. Once all aggregations for agj
are computed, triplegroup currAggTg is aggregated with existing
values in the mapper’s global hashmap multiAggMap. Once the
map() functions are complete, pre-aggregated entries in the global
hashmap multiAggMap are output. Each reduce() receives pre-
aggregated triplegroups corresponding to the same id-grp combi-
nation and further aggregates them.

Algorithm 3: TG_AgJ (Triplegroup Agg-Join)
Map (k:null, v: AnnTG atg)

//Initialize multiAggMap for Map()
//aggregation
foreach agj< id, aggList, theta, alpha > ∈ agjList do

if atg satisfies alpha then
grp← extract agj.theta from atg ;
curAggTg← Aggregate atg based on aggList;
Aggregate curAggTg to multiAggMap(k:id#grp);

Map.clean ()
Emit pre-aggregated entries in multiAggMap;

Reduce (k:id#grp, v:List of AggTGs TG) ;
grpAggTg← Aggregate TG based on aggList;
Emit aggregated triplegroup grpAggTg;

5. EMPIRICAL EVALUATION
This section presents a comprehensive evaluation of the proposed
algebraic optimizations for RDF analytical queries. The perfor-
mance of RAPIDAnalytics with two Hive approaches, (i) Hive (Naive),
SPARQL query translated into HiveQL, and (ii) Hive (MQO), an
MQO-based rewriting [27] of graph patterns using left outer joins,
followed by a second HiveQL query to compute associated group-
ing and aggregations. Evaluation also included RAPID+ (Naive) [25],
NTGA-based sequential evaluation of multiple graph patterns and
grouping-aggregation phases.

5.1 Setup
Experiments were conducted on NCSU’s VCL [34], where each

node in the cluster was a dual core Intel X86 machine with 2.33GHz
processor speed, 4GB memory, running Red Hat Linux. 10, 50, and
60-node Hadoop clusters (block size 128MB, 1GB heap-size for
child jvms) were used with Hive release 0.12.0 and Hadoop 0.20.2.

Testbed - Dataset and Queries. Two synthetic datasets were
generated by the Berlin SPARQL Benchmark (BSBM) [1] data
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Query GP1* Group BY GP2* Group BY

MG1:lo, 
MG2:hi

3:2 {feature} 2:2 ALL

MG3:lo, 
MG4:hi

3:3:1 {feature, country} 2:3:1 {country}

MG6 4:2:2 {cid, gene} 4:2:2 {cid}

MG7 4:2:2 {cid, drug} 4:2:2 {cid}

MG8 4:2:2 {cid, gene} 4:2:2 ALL

MG9 2:1 {gene} 2:1 ALL

MG10 3:1 {disease,  gene} 2:1 {gene}

MG11 2:2 {country} 2:1 ALL

MG12 2:2 {country, pubType} 2:1 {country}

MG13 3:1 {author,pubType} 3:1 {pubType}

MG14 3:1 {author,pubType} 3:1 {pubType}

MG15:lo 3:1 {authorlastname} 3:1 ALL

MG16:hi 3:1 {authorlastname} 3:1 ALL

MG17 3:2 {country} 3:1 ALL

MG18 3:2 {author, country] 2:2 {country}

* No. of triple patterns in Stp1 : Stp2 : … 

Figure 7: Evaluated RDF Analytical Queries

generator tool – BSBM-500K (43GB, 500K Products,∼175M triples)
and BSBM-2M (172GB, 2M Products, ∼700M triples). Evaluation
of real-world RDF analytical queries was conducted on a chemoge-
nomics RDF data warehouse, Chem2Bio2RDF [13], that is an ag-
gregation of data from multiple chemical, biological, and chemoge-
nomics data sources that link chemical compounds with targets,
genes, side-effects, diseases, and publications (60GB,∼340M triples).
Additional experiments were conducted on a second real-world dataset,
PubMed (Bio2RDF release 2) [8] (230GB, ∼1.7B triples).

The evaluation tested simple (G1-G9) as well as multi-grouping
queries (MG1-MG18) with varying selectivities, varying granu-
larity of groupings (GROUP BY ALL vs. GROUP BY feature), and
varying structures of associated graph patterns, as summarized in
Figure 7. Queries G1-G4 and MG1-MG4 were adapted from the
BSBM Business Intelligence Use Case 3.1 [1], an e-commerce use
case. Queries G5-G9 and MG6-MG10 were adapted based on
case studies [13] on the Chem2Bio2RDF dataset, with use cases
such as disease-specific drug discovery. Queries MG11-MG18
involve PubMed records. Additional details about all evaluated
queries in SPARQL and Hive scripts are available on the project
website [2].

Pre-processing. For Hive approaches, triples were vertically
partitioned (VP) [3] and loaded into Hive tables with property-
object partitions for rdf:type triples. All Hive tables were stored as
Optimized Row Columnar (ORC)5 file format which aggressively
compresses data (∼80-96% reduction in data size with default com-
pression) and has optimizations such as light-weight indexes to skip
row groups for predicate-based filtering, column-level aggregates
etc. For RAPIDAnalytics and RAPID+, triples were grouped on
subject column to generate subject triplegroups, stored in text files
based on equivalence class (set of properties). Further, rdf:type
triples with ProductType objects were grouped based on prefixes to
avoid creation of multiple small files. Additional details about the
5
https://cwiki.apache.org/confluence/display/Hive/

LanguageManual+ORC

pre-processing phase is available on the project website [2].

Query
BSBM Query Chem2Bio2RDF

500K 2M Hive R.A.
Hive R.A. Hive R.A. G5 144 124

G1:lo 1023 209 3261 215 G6 99 102
G2:hi 974 182 3002 158 G7 105 118
G3:lo 1632 287 6088 302 G8 142 104
G4:hi 1112 183 5419 170 G9 535 91

Table 3: Performance comparison of Hive and RAPIDAnalytics
(R.A.) with varying structures of groupings (in seconds)

5.2 Evaluation Results
Varying Structure of Groupings. Four single-grouping queries

were evaluated with varying selectivity of graph patterns and group
granularity (G1-G2 with GROUP BY ALL and G3-G4 with GROUP

BY feature). Queries G1 and G3 pertain to ProductType1 (low se-
lectivity), whileG2 andG4 pertain to ProductType9 (high selectiv-
ity). Table 3 shows a performance comparison of Hive and RAPI-
DAnalytics for BSBM-500K (10-node cluster). Hive requires 4 MR
cycles for all queries (MR1-MR2 for star patterns, MR3 to join
the stars, and MR4 to compute grouping-aggregation). In cases
where (n-1) of the joining relations are small enough to fit in mem-
ory, Hive uses a map-join (map-only MR cycle), e.g., all subqueries
involving ProductType1 and ProductType9. Also Hive enables op-
timizations such as push down of PROJECTs and partial aggregation
during preceding join operations. RAPIDAnalytics executes all four
queries in 2 cycles (MR1 for graph pattern processing and MR2

for the Agg-Join operation), with a consistent performance gain of
∼80% over Hive for all four queries.

Multiple Grouping-Aggregation Constraints. Figure 8(a-b)
shows a performance comparison of all four approaches for queries
MG1-MG4 with lo (low) and hi (high) query selectivity. Queries
MG1-MG2 require 3 MR cycles per graph pattern in Hive, fol-
lowed by 2 cycles for the grouping-aggregation (total 9 cycles).
MQO-based Hive approach executes the composite graph pattern
in 3 cycles, followed by 4 MR cycles to extract the distinct com-
binations matching the original patterns and compute the aggrega-
tions (total 7 cycles). RAPID+ requires 2 MR cycles per subquery
(1 MR for graph pattern matching, 1 MR for grouping-aggregation)
and a map-only cycle to join the aggregated results (total 5 MR cy-
cles). RAPIDAnalytics evaluatedMG1-MG2 in 3 cycles (MR1 to
compute the composite graph pattern, MR2 for parallel evaluation
of the two grouping-aggregations and a map-only MR3 to join the
aggregated triplegroups).

Queries MG3-MG4 involve complex graph patterns with 3 star
patterns. Sequential graph pattern processing in naive Hive re-
sults in a total of 11 MR cycles, while MQO-based Hive approach
takes half the number of cycles for evaluating the composite graph
pattern (8 MR cycles). RAPID+ requires 2 MR cycles per graph
pattern (7 MR cycles), while RAPIDAnalytics further reduces the
number of cycles to 4 by parallel evaluation of the two grouping-
aggregations. In general, the algebraic optimization in RAPIDAna-
lytics to group and aggregate on a composite graph pattern showed
30-45% gains over sequential evaluation of the different phases us-
ing naive RAPID+.

Scalability Study. Table 3 and Figure 8(b) show performance
comparisons of 8 queries on a larger dataset BSBM-2M. The com-
pression of input and intermediate results using the ORC File for-
mat, initializes less number of mappers (incur the overhead of de-
compression). RAPID+ and RAPIDAnalytics initiate more number
of mappers for most MR cycles leading to better utilization of re-
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Figure 8: A performance comparison for multi-grouping SPARQL analytical queries

sources. For multi-grouping queries, Hive (MQO) did better than
Hive for most cases with larger dataset due to higher savings in ma-
terialization of intermediate results, associated I/Os, and network
transfers. RAPIDAnalytics showed 90-93% performance gains over
Hive (MQO) for queries MG1-MG2 on BSBM-500K, which fur-
ther increased to 97% with BSBM-2M. Similar increase was seen
for queries MG3-MG4, where performance gains of RAPIDAn-
alytics over Hive (MQO) increased from 78-81% to 93% with the
larger setup.

Real-world RDF Analytics. Table 3 shows results for queries
G5-G9 on Chem2Bio2RDF. Query G5 with 6 join operations was
evaluated by Hive using map-only joins (due to small size VP ta-
bles). Similar optimizations were enabled by Hive for G6-G8,
with clear benefits seen in the case of G7, where RAPIDAnalyt-
ics takes 12 additional seconds when compared to Hive. Query
G9 involves medline properties with large VP tables, forcing Hive
to use full map-reduce cycles. RAPIDAnalytics shows 83% per-
formance gain over Hive for G9. Figure 8(c) shows results for
multi-aggregation queries, i.e., MG6-MG8 with high selectivity
(small VP relations), while queries MG9-MG10 involve large VP
relations. Naive Hive evaluates query MG6 using 13 MR cycles
(11 map-only), while MQO-based Hive approach requires 8 MR
cycles (6 map-only). RAPID+ evaluates MG6 using 7 MR cy-
cles (all map-reduce), with execution times almost comparable with
Hive (MQO). RAPIDAnalytics requires a total of 4 MR cycles. In
general, even though the Hive-based approaches evaluate most of
the joins in MG6 −MG8 as map-joins, RAPIDAnalytics shows
a performance gain of 40-50% over Hive (MQO) and 60% gains
over naive Hive for queries MG6-MG8. In case of queries MG9-
MG10, the findings are similar to BSBM datasets, with RAPID-
Analytics showing close to 90% performance gain over Hive ap-
proaches.

Results for the Pubmed dataset are summarized in Table 4. Queries
MG11 −MG12 and MG17 −MG18 compute groupings over
PubMed records, the associated grants, and the countries where
the grants are issued. Queries MG13-MG16 compute groupings
based on publication type and authors of PubMed records and ag-
gregate the number of Medical Subject (MeSH) Headings (query
MG13) or associated chemicals (queries MG14-MG16). Fur-
ther, selectivity of the queries were varied by querying different
types of publications, e.g., MG15 and MG16 have similar query
structure except that MG15 retrieves PubMed records with publi-
cation type “Journal Article” while MG16 concerns publications
of type “News” (higher selectivity than journal article). Across
all queries, RAPIDAnalytics showed improvements of above 93%
over both Hive approaches. Hive performed the worst for queries

Query PubMed (230GB dataset, 60-node cluster)
Hive Hive RAPID+ RAPID

(Naive) (MQO) (Naive) Analytics
MG11 2111 1753 229 124
MG12 2771 2898 229 126
MG13 120min* 15060 1102 651
MG14 18713 9124 756 462
MG15 13746 7320 619 338
MG16 10777 5795 464 237
MG17 2210 1851 226 118
MG18 5654 4817 306 202
* Eventually failed due to insufficient HDFS disk space.

Table 4: Evaluation of real-world queries on PubMed dataset (exe-
cution time in seconds)

MG13-MG16 that involve large VP relations (MeSH heading and
chemical), due to the initiation of less number of mappers based on
compressed (ORC) file sizes. Furthermore, while the Hive MQO
approach eventually finished execution for query MG13, the naive
Hive approach failed while computing the second graph pattern due
to insufficient disk space. This is because one of the star-join cy-
cles produces join output of size 190GB, which is materialized
twice in the case of sequential execution of graph patterns, thus in-
creasing the overall demand of required HDFS disk space. On the
contrary, RAPIDAnalytics benefits from the concise representation
of intermediate results using the NTGA approach while represent-
ing join results involving the multi-valued property MeSH heading.
Further, the shared execution of graph patterns in RAPIDAnalytics,
results in less number of materialization steps and less demand on
required disk space. Overall, RAPIDAnalytics resulted in 40-48%
performance gains over the sequential execution of graph patterns
in RAPID+.

Discussion. Though Hive(MQO) compiles into a shorter exe-
cution workflow when compared to naive Hive, in some cases the
performance is worse than sequential execution of subqueries. This
is because of Hive’s lack of support for materialized views or views
with complex join expressions, forcing the evaluation of the com-
posite graph pattern as a separate HiveQL query. A direct impli-
cation of this is that optimizations based on the final query such as
early projections and partial aggregations, which reduce the I/O and
materialization in the intermediate phases, are not applicable. An-
other observation is that vertical-partitioning coupled with the ORC
file format can be beneficial for queries that involve high-selectivity
properties. Irrespective of the selectivity of the involved properties,
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the algebraic optimization techniques in RDFAnalytics were found
to be beneficial for multi-grouping queries by enabling shared exe-
cution of graph patterns as well as the required aggregations. RAPI-
DAnalytics can further benefit by integration of optimizations such
as map-side joins and partial aggregations. While SPARQL ana-
lytical queries with unbound properties were not considered in this
work, proposed optimizations in this paper can be extended based
on NTGA-based optimizations in [32] to support composite graph
patterns involving unbound-property triple patterns.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an algebraic optimization of SPARQL

analytical queries that enables shared execution of common subex-
pressions across related groupings. Such a refactoring allows par-
allel evaluation of independent aggregations with savings in I/O
and processing costs, a critical requirement while supporting large
scale RDF analytics on Cloud platforms. Experiments on real-
world and synthetic benchmark datasets showed promising results
for SPARQL queries with multi-aggregation constraints. A natural
extension of this work is to support more complex OLAP queries
on RDF data models.
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Alexandra Roatiş. RDF Analytics: Lenses over Semantic Graphs. In
Proc. WWW, 2014.

[16] Richard Cyganiak, Dave Reynolds, and Jeni Tennison. The rdf data
cube vocabulary. W3C Recomm., 2013.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1), 2008.

[18] Lorena Etcheverry and Alejandro A Vaisman. Enhancing olap
analysis with web cubes. In The Semantic Web: Research and
Applications. 2012.

[19] Goetz Graefe, Usama M Fayyad, Surajit Chaudhuri, et al. On the
efficient gathering of sufficient statistics for classification from large
sql databases. In KDD, 1998.

[20] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh.
Data cube: A relational aggregation operator generalizing group-by,
cross-tab, and sub-total. In ICDE, 1996.

[21] Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman.
Implementing data cubes efficiently. ACM SIGMOD Record, 25(2),
1996.

[22] Steve Harris and Andy Seaborne. Sparql 1.1 query language. W3C
Recomm., 21, 2013.

[23] J. Huang, D.J. Abadi, and K. Ren. Scalable sparql querying of large
rdf graphs. VLDB Endowment, 4(11), 2011.

[24] Benedikt Kampgen, Sean ORiain, and Andreas Harth. Interacting
with statistical linked data via olap operations. In Interacting with
Linked Data, 2012.

[25] H.S. Kim, P. Ravindra, and K. Anyanwu. From sparql to mapreduce:
The journey using a nested triplegroup algebra. VLDB Endowment,
4(12), 2011.

[26] Hugo YK Lam, Luis Marenco, Tim Clark, et al. Alzpharm:
integration of neurodegeneration data using rdf. BMC
bioinformatics, 8(3), 2007.

[27] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and
Feifei Li. Scalable multi-query optimization for sparql. In IEEE
ICDE, 2012.

[28] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang. Ysmart: Yet
another sql-to-mapreduce translator. In IEEE ICDCS, 2011.

[29] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan. Distributed
cube materialization on holistic measures. In IEEE ICDE, 2011.

[30] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas.
Mrshare: Sharing across multiple queries in mapreduce. VLDB
Endowment, 3(1-2), 2010.

[31] Patrick O’Neil and Dallan Quass. Improved query performance with
variant indexes. ACM Sigmod Record, 26(2), 1997.

[32] P. Ravindra and K. Anyanwu. Scaling unbound-property queries on
big RDF data warehouses using mapreduce. In EDBT, 2015.

[33] P. Ravindra, H.S. Kim, and K. Anyanwu. An intermediate algebra
for optimizing rdf graph pattern matching on mapreduce. The
Semantic Web: Research and Applications, 2011.

[34] H.E. Schaffer, S.F. Averitt, M.I. Hoit, A. Peeler, E.D. Sills, and M.A.
Vouk. Ncsu’s virtual computing lab: a cloud computing solution.
Computer, 42(7), 2009.

[35] Ambuj Shatdal and Jeffrey F. Naughton. Adaptive parallel
aggregation algorithms. In ACM SIGMOD, pages 104–114, 1995.

[36] R. Sridhar, P. Ravindra, and K. Anyanwu. Rapid: Enabling scalable
ad-hoc analytics on the semantic web. The Semantic Web-ISWC,
2009.

[37] Ming-Chuan Wu and Alejandro P Buchmann. Encoded bitmap
indexing for data warehouses. In IEEE ICDE, 1998.

[38] Amrapali Zaveri, Ricardo Pietrobon, Soren Auer, Jens Lehmann,
Michael Martin, and Timofey Ermilov. Redd-observatory: Using the
web of data for evaluating the research-disease disparity. In
IEEE/WIC/ACM WI-IAT, 2011.

APPENDIX
A. SPARQL ANALYTICAL QUERIES

In this section, we provide a subset of evaluated SPARQL analytical
queries with multiple grouping-aggregation constraints. The complete set
of evaluated queries and Hive scripts are available on the project website [2].
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G5. Retrieve drug-like compounds in PubChem that share common targets
with Dexamethasone in the DrugBank (count targets per compound).
SELECT ?cid (COUNT(?cid) as ?active_assays {
?b CID ?cid; outcome ?a; Score ?s1; gi ?gi .
?u gi ?gi; geneSymbol ?g .
?di gene ?g; DBID ?dr .
?dr Generic_Name "Dexamethasone" .
} GROUP BY ?cid

G6. Retrieve compounds in PubChem that are active towards targets in a
given pathway (MAPK signalling pathway) in KEGG pathway dataset.
SELECT ?cid (COUNT(?cid) as ?active_assays) {
?b CID ?cid; outcome ?a; Score ?s1; gi ?gi .
?u gi ?gi .
?pathway protein ?u; Pathway_name ?pname .
FILTER regex(?pname,"MAPK signaling pathway","i")
} GROUP BY ?cid

G7. Retrieve pathways in the KEGG dataset that contain targets with drugs
associated with hepatotoxicity (analyse side-effect hepatomegaly).
SELECT ?pid (COUNT(?pid) as ?count) {
?sider side_effect ?se; cid ?cid .
FILTER regex(?se,"hepatomegaly","i")
?dr CID ?cid .
?target DBID ?dr; SwissProt_ID ?u .
?pathway kegg:protein ?u; pathwayid ?pid .
} GROUP BY ?pid

MG1. Compare the average price of products per feature vs. price across
all features (ProductType1).
SELECT ?f ?sumF ?cntF ?sumT ?cntT {
{ SELECT ?f (COUNT(?pr2) ?cntF) (SUM(?pr2) ?sumF)
{?p2 type ProductType1; label ?l2; productFeature ?f.
?off2 product ?p2; price ?pr2 .

} GROUP BY ?f
}
{ SELECT (COUNT(?pr) As ?cntT) (SUM(?pr) As ?sumT)
{?p1 type ProductType1; label ?l1 .
?off1 product ?p1; price ?pr .

} } }

MG3. Compare the average price of products per country-feature vs. price
per country across all features (for products of type ProductType1).
SELECT ?f ?c ?sumF ?cntF ?sumT ?cntT {
{ SELECT ?f ?c (COUNT(?pr2) ?cntF) (SUM(?pr2) ?sumF)
{?p2 type ProductType1; label ?l2; productFeature ?f.
?off2 product ?p2; price ?pr2; vendor ?v2 .
?v2 country ?c .

} GROUP BY ?f ?c
}
{ SELECT ?c (COUNT(?pr) As ?cntT) (SUM(?pr) As ?sumT)
{?p1 type ProductType1; label ?l1 .
?off1 product ?p1; price ?pr; vendor ?v1 .
?v1 country ?c .

} GROUP BY ?c
} }

MG6. Compare the count of targets for a chemical compound and gene
combination vs. targets per compound (across all genes).
SELECT ?cid ?g1 ?aPerCG ?aPerC {
{ SELECT ?cid ?g1 (COUNT(?cid) as ?aPerCD)
{?b1 CID ?cid; outcome ?a1; Score ?s1; gi ?gi1 .
?u1 gi ?gi1; geneSymbol ?g1 .
?di1 gene ?g1; DBID ?dr1 .

} GROUP BY ?cid ?g1
}
{ SELECT ?cid (COUNT(?cid) as ?aPerG)
{?b CID ?cid; outcome ?a; Score ?s; gi ?gi .
?u gi ?gi; geneSymbol ?g .
?di gene ?g; DBID ?dr .

} GROUP BY ?cid
} }

MG9. Compare no. of medline publications per gene vs. total count.
SELECT ?gs ?pPerGene ?pT {
{ SELECT ?gs (COUNT(?gs) as ?pPerGene)
{?g geneSymbol ?gs .
?pmid gene ?g; side_effect ?se .

} GROUP BY ?gs
}
{ SELECT (COUNT(?gs1) as ?pT)
{?g1 geneSymbol ?gs1 .
?pmid1 gene ?g1; side_effect ?se1 .

} } }

MG11. Compare the count of journals funded by grant agencies of a coun-
try with the total count of journals published.
SELECT ?c ?cntC ?cntT {
{ SELECT ? (COUNT(?g) as ?cntC)
{?pub journal ?j; grant ?g .
?g grant_agency ?ga; grant_country ?c .

} GROUP BY ?c
}
{ SELECT (COUNT(?g1) as ?cntT)
{?pub1 journal ?j1; grant ?g1 .
?g1 grant_agency ?ga1 .

} } }

MG13. Compare the number of medical subject headings (MeSH) associ-
ated per author and publication type with total MeSH per publication type.
SELECT ?a ?pty ?perPT ?perAPt {
{ SELECT ?a ?pty (count(?m) as ?perAPT)
{?pub pub_type ?pty; mesh_heading ?m; author ?a .
?a last_name ?ln .

} GROUP BY ?a ?pty
}
{ SELECT ?pty (count(?m1) as ?perPT)
{?p1 pub_type ?pty; mesh_heading ?m1; author ?a1 .
?a1 last_name ?ln1.

} GROUP BY ?pty
} }

MG16. Compare the number of compounds associated with publications
of type “News” (higher selectivity than Journal Articles).
SELECT ?ln ?perA ?allA {
{ SELECT ?ln (count(?chem) as ?perA)
{?pub pub_type “News”; chemical ?ch; author ?a .
?a last_name ?ln .

} GROUP BY ?ln
}
{ SELECT (count(?chem1) as ?allA)
{?pub1 pub_type “News”; chemical ?ch1; author ?a1 .
?a1 last_name ?ln1.

} } }

MG18. Count journal articles per author and grant-awarding country and
compare with total journal articles per county (across authors).
SELECT ?c ?a ?perC ?perAC {

{ SELECT ?c ?a (count(?g) as ?perAC)

{?p pub_type “Journal Article”; author ?a; grant ?g.

?g grant_agency ?ga; grant_country ?c .

} GROUP BY ?c ?a

}

{ SELECT ?c (count(?g1) as ?perC)

{?pub1 pub_type “Journal Article”; grant ?g1 .

?g1 grant_agency ?ga1; grant_country ?c .

} GROUP BY ?c

} }
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