
Cohesive Keyword Search on Tree Data

Aggeliki Dimitriou
School of Electrical and Computer Engineering
National Technical University of Athens, Greece

angela@dblab.ntua.gr

Ananya Dass
Department of Computer Science

New Jersey Institute of Technology, USA
ad292@njit.edu

Dimitri Theodoratos
Department of Computer Science

New Jersey Institute of Technology, USA
dth@njit.edu

Yannis Vassiliou
School of Electrical and Computer Engineering
National Technical University of Athens, Greece

yv@cs.ntua.gr

ABSTRACT
Keyword search is the most popular querying technique on
semistructured data. Keyword queries are simple and con-
venient. However, as a consequence of their imprecision,
there is usually a huge number of candidate results of which
only very few match the user’s intent. Unfortunately, the
existing semantics for keyword queries are ad-hoc and they
generally fail to “guess” the user intent. Therefore, the qual-
ity of their answers is poor and the existing algorithms do
not scale satisfactorily.

In this paper, we introduce the novel concept of cohesive
keyword queries for tree data. Intuitively, a cohesiveness
relationship on keywords indicates that they should form a
cohesive whole in a query result. Cohesive keyword queries
allow term nesting and keyword repetition. Cohesive key-
word queries bridge the gap between flat keyword queries
and structured queries. Although more expressive, they are
as simple as flat keyword queries and not require any schema
knowledge. We provide formal semantics for cohesive key-
word queries and rank query results on the proximity of
the keyword instances. We design a stack based algorithm
which efficiently evaluates cohesive keyword queries. Our
experiments demonstrate that our approach outperforms in
quality previous filtering semantics and our algorithm scales
smoothly on queries of even 20 keywords on large datasets.

1. INTRODUCTION
Keyword search has been by far the most popular tech-

nique for retrieving data on the web. The success of keyword
search relies on two facts: First, the user does not need
to master a complex structured query language (e.g., SQL,
XQuery, SPARQL). This is particularly important since the
vast majority of people who retrieve information from the
web do not have expertise in databases. Second, the user
does not need to have knowledge of the schema of the data
sources over which the query is evaluated. In practice, in the

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

web, the user might not even be aware of the data sources
which contribute results to her query. The same keyword
query can be used to extract data from multiple data sources
which have different schemas and they possibly adopt dif-
ferent data models (e.g., relational, tree, graph, flat docu-
ments).

There is a price to pay for the simplicity, convenience and
flexibility of keyword search. Keyword queries are imprecise
in specifying the query answer. They lack expressive power
compared to structured query languages. As a consequence,
there is usually a very large number of candidate results
from which very few are relevant to the user intent. This
weakness incurs at least two major problems: (a) because of
the large number of candidate results, previous algorithms
for keyword search are of high complexity and they cannot
scale satisfactorily when the number of keywords and the
size of the input dataset increase, and (b) correctly identi-
fying the relevant results among the plethora of candidate
results, becomes a very difficult task. Indeed, it is practi-
cally impossible for a search system to“guess”the user intent
from a keyword query and the structure of the data source.

The focus of this work is on keyword search over web data
which are represented as trees. Currently, huge amounts
of data are exported and exchanged in tree-structure form
[31, 33]. Trees can conveniently represent data that are
semistructured, incomplete and irregular as is usually the
case with data on the web. Multiple approaches assign
semantics to keyword queries on data trees by exploiting
structural and semantic features of the data in order to au-
tomatically filter out irrelevant results. Examples include
Smallest LCA [18, 40, 37, 10], Exclusive LCA [16, 41, 42],
Valuable LCA [11, 20], Meaningful LCA [24, 38], MaxMatch
[28], Compact Valuable LCA [20] and Schema level SLCA
[15]. A survey of some of these approaches can be found
in [29]. Although filtering approaches are intuitively rea-
sonable, they are sufficiently ad-hoc and they are frequently
violated in practice resulting in low precision and/or recall.
A better technique is adopted by other approaches which
rank the candidate results in descending order of their esti-
mated relevance. Given that users are typically interested
in a small number of query results, some of these approaches
combine ranking with top-k algorithms for keyword search.
The ranking is performed using a scoring function and is
usually based on IR-style metrics for flat documents (e.g.,
tf*idf or PageRank) adapted to the tree-structure form of
the data [16, 11, 3, 5, 21, 10, 38, 23, 29, 32]. Nevertheless,

Series ISSN: 2367-2005 137 10.5441/002/edbt.2016.15

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.15

scoring functions, keyword occurrence statistics and proba-
bilistic models alone cannot capture effectively the intent of
the user. As a consequence, the produced rankings are, in
general, of low quality [38].

Our approach. In this paper, we introduce a novel ap-
proach which allows the user to specify cohesiveness rela-
tionships among keywords in a query, an option not offered
by the current keyword query languages. Cohesiveness rela-
tionships group together keywords in a query to define in-
divisible (cohesive) collections of keywords. They partially
relieve the system from guessing without affecting the user
who can naturally and effortlessly specify such relationships.

For example, consider the keyword query {XML John Smith

George Brown} to be issued against a large bibliographic
database. The user is looking for publications on XML re-
lated to the authors John Smith and George Brown. If the
user can express the fact that the instances of John and
Smith should form a unit where the instances of the other
keywords of the query George, Brown and XML cannot slip
into to separate them (that is, the instances of John and
Smith form a cohesive whole), the system would be able to
return more accurate results. For example, it will be able
to filter out publications on XML by John Brown and George

Smith. It will also filter out a publication which cites a pa-
per authored by John Davis, a report authored by George

Brown and a book on XML authored by Tom Smith. This
information is irrelevant and no one of the previous filtering
approaches (e.g., ELCA, VLCA, CVLCA, SLCA, MLCA,
MaxMach etc.) is able to automatically exclude it from the
answer of the query. Furthermore, specifying cohesiveness
relationships prevents wasting time searching for these irrel-
evant results. We specify cohesiveness relationships among
keywords by enclosing them between parentheses. For ex-
ample, the previous keyword query would be expressed as
(XML (John Smith) (George Brown)).

Note that the importance of bridging the gap between
flat keyword queries and structured queries in order to im-
prove the accuracy (and possibly the performance) of key-
word search has been recognized before for flat text docu-
ments. Google allows a user to specify, between quotes, a
phrase which has to be matched intact against the text doc-
ument. However, specifying a cohesiveness relationship on
a set of keywords is different than phrase matching over flat
text documents in IR. Indeed, a cohesiveness relationship on
a number of keywords over a data tree does not impose any
syntactic restriction (e.g., the order of the keywords) on the
instances of these keywords on the data tree. It only requires
that the instances of these keywords form a cohesive unit.
We provide formal semantics for queries with cohesiveness
relationships on tree data in Section 2.

Cohesiveness relationships can be nested. For instance the
query (XML (John Smith) (citation (George Brown))) looks
for a paper on XML by John Smith which cites a paper by
George Brown. The cohesive keyword query language conve-
niently allows also for keyword repetition. For instance, the
query (XML (John Smith) (citation (John Brown))) looks
for a paper on XML by John Smith which cites a paper by
John Brown.

Cohesive queries better express the user intent while be-
ing as simple as flat keyword queries. However, despite their
increased expressive power, they enjoy both advantages of
traditional keyword search: they do not require any previous
knowledge of a query language or of the schema of the data

sources. The users can naturally and effortlessly specify co-
hesiveness relationships when writing a query. The benefits,
though, in query answer quality and performance compared
to other flat keyword search approaches are impressive.

Contribution. The main contributions of our paper are as
follows:
• We formally introduce a novel keyword query language

which allows for cohesiveness relationships, cohesiveness
relationship nesting and keyword repetition. Our seman-
tics interpret the subtrees rooted at the LCA of the in-
stances of cohesively related keywords in the data tree
as impenetrable units where the instances of the other
keywords cannot slip in.

• We rank the results of cohesive keyword queries on tree
data based on the concept of LCA size. The LCA size
reflects the proximity of keywords in the data tree and,
similarly to keyword proximity in IR, it is used to deter-
mine the relevance of the query results.

• We design an efficient multi-stack-based algorithm which
exploits a lattice of stacks—each stack corresponding to a
different partition of the query keywords. Our algorithm
does not rely on auxiliary index structures and, there-
fore, can be exploited on datasets which have not been
preprocessed.

• We show how cohesive relationships can be leveraged to
lower the dimensionality of the lattice and dramatically
reduce its size and improve the performance of the algo-
rithm.

• We analyze our algorithm and show that for a constant
number of keywords it is linear on the size of the input
keywords’ inverted lists, i.e., to the dataset size. Our
analysis further shows that the performance of our algo-
rithm essentially depends on the maximum cardinality of
the largest cohesive term in the keyword query.

• We run extensive experiments on different real and bench-
mark datasets to assess the effectiveness of our approach
and the efficiency and scalability of our algorithm. Our
results show that our approach largely outperforms pre-
vious filtering approaches, which do not benefit from co-
hesiveness relationships, achieving in most cases perfect
precision and recall. They also show that our algorithm
scales smoothly when the number of keywords and the
size of the dataset increase achieving interactive response
times even with queries of 20 keywords having in total
several thousands of instances on large datasets.

2. DATA AND QUERY MODEL
We consider data modeled as an ordered labeled tree. Ev-

ery node has an id, a label and possibly a value. For iden-
tifying tree nodes we adopt the Dewey encoding scheme [9],
which encodes tree nodes according to a preorder traversal
of the data tree. The Dewey encoding scheme naturally ex-
presses ancestor-descendant and parent-child relationships
among tree nodes and conveniently supports the processing
of nodes in stacks [16].

A keyword k may appear in the label or in the value of a
node n in the data tree one or multiple times, in which case
we say that node n constitutes an instance of k. A node may
contain multiple distinct keywords in its value and label, in
which case it is an instance of multiple keywords.

138

bib
1

author
JohnSmith

19

13

Title
Information
retrieval in

tree
structured

data

12

article
11

references

18

Title
A novel
search

algorithm

15

author
Mary Davis

16 author
George

Williams

17

article
14

article
6

Title
XML

Keyword

search

7

author
Paul

Simpson

8
author
Mary

Cooper

9

author
Mark Davis

10

Title
Keyword
search in

XML data

3

article
2

author
Mary Davis

5

author
Paul Cooper

4
author

Paul

Cooper

Figure 1: Example data tree D1

2.1 Cohesive semantics
A cohesive keyword query is a keyword query, which be-

sides keywords may also contain groups of keywords called
terms. Intuitively, a term expresses a cohesiveness relation-
ship on keywords and/or terms. More formally, a cohesive
keyword query is recursively defined as follows:

Definition 1 (Cohesive keyword query). A term is
a multiset of at least two keywords and/or terms. A cohe-
sive keyword query is: (a) a set of a single keyword, or
(b) a term. Sets and multisets are delimited within a query
using parentheses.

For instance, the expression ((title XML) ((John Smith)

author)) is a keyword query. Some of its terms are T1 =

(title XML), T2 = ((John Smith) author), T3 = (John

Smith), and T3 is nested into T2.
A keyword may occur multiple times in a query. For exam-

ple, in the keyword query ((journal (Information Sys-

tems) ((Information Retrieval) Smith)) the keyword In-

formation occurs twice, once in the term (Information

Systems) and once in the term (Information Retrieval).
In the rest of the paper, we may refer to a cohesive key-

word query simply as query. The syntax of a query Q is
defined by the following grammar where the non-terminal
symbol T denotes a term, and the terminal symbol k de-
notes a keyword:

Q → (k) | T
T → (S S)
S → S S | T | k

We now move to define the semantics of cohesive keyword
queries. Keyword queries are embedded into data trees. In
order to define query answers, we need to introduce the con-
cept of query embedding. In cohesive keyword queries, m
occurrences of the same keyword in a query are embedded
to one or multiple instances of this keyword as long as these
instances collectively contain at least m times this keyword.
Cohesive keyword queries may also contain terms, which,
as mentioned before, express a cohesiveness relationship on
their keyword occurrences. In tree structured data, the key-
word instances in the data tree (which are nodes) are rep-
resented by their LCA [36, 16, 29]. The instances of the

keywords of a term in the data tree should form a cohe-
sive unit. That is, the subtree rooted at the LCA of the
instances of the keywords which are internal to the term
should be impenetrable by the instances of the keywords
which are external to the term. Therefore, if l is the LCA
of a set of instances of the keywords in a term T , i is one of
these instances and i′ is an instance of a keyword not in T ,
then lca(i′, i) = lca(i′, l) 6= l.

As an example, consider query Q1 =(XML keyword search

(Paul Cooper) (Mary Davis)) issued against the data tree
D1 of Figure 1. In Figure 1, keyword instances are shown
in bold and the instances of the keywords of a term below
the same article are encircled. The mapping that assigns
Paul to node 8, Mary and Cooper to node 9 and Davis to
node 10 is not an embedding of Q1 since Mary slips into the
encircled subtree of Paul and Cooper rooted at article node
6: the two circles of article node 6 overlap. These ideas are
formalized below.

Definition 2 (Query embedding). Let Q be a key-
word query on a data tree D. An embedding of Q to D
is a function e from every keyword occurrence in Q to an
instance of this keyword in D such that:

a. if k1, . . . , km are distinct occurrences of the same keyword
k in Q and e(k1) = . . . = e(km) = n, then node n con-
tains keyword k at least m times.

b. if k1, . . . , kn are the keyword occurrences of a term T , k is
a keyword occurrence not in T, and l = lca(e(k1), . . . , e(kn))
then: (i) e(k1) = . . . = e(kn), or (ii) lca(e(k), l) 6= l.

Given an embedding e of a query Q involving the keyword
occurrences k1, . . . , km on a data tree D, the minimum con-
necting tree (MCT) M of e on D is the minimum subtree
of D that contains the nodes e(k1), . . . , e(km). Tree M is
also called an MCT of query Q on D. The root of M is
the lowest common ancestor (LCA) of e(k1), . . . , e(km) and
defines one result of Q on D. For instance, one can see that
the article nodes 2 and 11 are results of the example query
Q1 on the example tree D1. In contrast, the article node 6
is not a result of Q1.

We use the concept of LCA size to rank the results in
a query answer. Similarly to metrics for flat documents in
information retrieval, LCA size reflects the proximity of key-
word instances in the data tree. The size of an MCT is the
number of its edges. Multiple MCTs of Q on D with dif-
ferent sizes might be rooted at the same LCA node l. The
size of l (denoted size(l)) is the minimum size of the MCTs
rooted at l.

For instance, the size of the result article node 2 of query
Q1 on the data tree D1 is 3 while that of the result article
node 11 is 6 (note that there are multiple MCTs of different
sizes rooted at node 11 in D1).

Definition 3. The answer to a cohesive keyword query
Q on a data tree D is a list [l1, . . . , ln] of the LCAs of Q on
D such that size(li) ≤ size(lj), i < j.

For example, article node 2 is ranked above article node
11 in the answer of Q1 on D1.

2.2 Result ranking using cohesive terms
The LCA size naturally reflects the overall proximity of

the query keyword instances in the subtree of a result LCA.
Every result LCA contains partial LCAs corresponding to

139

X QS J

XQJ S

X Q JSX QJ SXJ Q S XS Q JXQ J S

XQS J XQ JS QXJS XS QJ X QJS XJ QS

XQJS

X Q J S

(a) (XMLQuery John Smith)

XQJS

X Q J S

XQ J S X Q JS

XQ JS QXJS X QJS

(b) (XMLQuery (John Smith))

XQJS

X Q J S

XQ JS

XQJS

X Q J S

XQ JS

XQ J S X Q JS

(c) ((XMLQuery) (John Smith))

Figure 2: Lattices of keyword partitions for the query (XML Query John Smith) with different cohesiveness relationships

the nested cohesive terms in the query. These partial LCAs
contribute with their size to the overall size of the LCA.
However, we would like to take also into account how com-
pactly the keyword instances are combined to form partial
LCAs for each one of the nested cohesive terms. Consider,
for instance, Figure 1 and the query Q1 =(XML keyword

search (Paul Cooper) (Mary Davis)). Article node 2 is
an LCA for Q1 and author node 4 is a partial LCA for the
cohesive term (Paul Cooper) contributing with LCA size 0
to the total size of the LCA node 2. The fact that the key-
word instances of Paul and Cooper are compactly connected
to form a partial LCA of size 0 is also important, as is that
the total size of the result is small.

To reflect the importance of intra-cohesive-term proxim-
ity, we propose a new ranking scheme which takes also into
account the cohesive terms and their sizes in a query result.
Our ranking method does not require the preprocessing of
the dataset and does not constrain the result representation
to specific index terms [4].

We represent each query result as a vector in the cohesive
term space for a given query Q. Let Q be a query with m
cohesive terms, including the outermost term, i.e., the query
itself. Each LCA lj of a data tree D with respect to Q is
represented by the following vector:

−→
lj = (C1s1,j , C2s2,j , . . . , Cmsm,j)

where Ci is the weight of the term Ti in the query Q with
respect to the dataset D and si,j is the size of the the par-
tial LCA for the term Ti within the LCA lj . Intuitively, the
parameter Ci reflects the compactness of the term Ti in the
dataset D. That is, how closely the instances of the key-
words in Ti appear in the partial LCAs for Ti in the dataset
D. Let Pi be the set of the LCAs of a term Ti in D. Then,
Ci is defined as follows:

Ci =
|Pi|

1 +
∑

p∈Pi
size(p)

The smaller the average size of the LCAs of a term in a
dataset D the more compact the term is in D. The vector−→
lj of an LCA lj is used to define the score of lj :

score(lj) = |
−→
lj |

The query results are ranked in ascending order of their
score. The weight Ci rewards results which demonstrate
small sizes for non-compact terms and penalizes results that
demonstrate large sizes for terms, which are expected to be
compact.

3. THE ALGORITHM
We designed algorithm CohesiveLCA for keyword queries

with cohesiveness relationships. Algorithm CohesiveLCA
computes the results of a cohesive keyword query and ranks
them in descending order of their LCA size. The idea behind
CohesiveLCA is that LCAs of keyword instances in a data
tree can result from combining LCAs of subsets of these in-
stances (i.e., partial LCAs of the query) in a bottom-up way
in the data tree. CohesiveLCA progressively combines par-
tial LCAs to eventually return full LCAs of instances of all
query keywords higher in the data tree. During this process,
LCAs are grouped based on the keywords contained in their
subtrees. The members of these groups are compared among
each other in terms of their size. CohesiveLCA exploits a
lattice of partitions of the query keywords.

The lattice of keyword partitions. During the execu-
tion of CohesiveLCA, multiple stacks are used. Every stack
corresponds to a partition of the keyword set of the query.
Each stack entry contains one element (partial LCA) for ev-
ery keyword subset belonging to the corresponding partition.
Stack based algorithms for processing tree structured data
push and pop stack entries during the computation accord-
ing to a preorder traversal of the data tree. Dewey codes are
exploited to index stack entries which at any point during
the execution of the algorithm correspond to a node in the
data tree. Consecutive stack entries correspond to nodes
related with parent-child relationships in the data tree.

The stacks used by algorithm CohesiveLCA are naturally
organized into a lattice, since the partitions of the keyword
set (which correspond to stacks) form a lattice. Coarser
partitions can be produced from finer ones by combining
two of their members. Partitions with the same number
of members belong to the same coarseness level of the lat-
tice. Figure 2a shows the lattice for the keyword set of the
query (XML Query John Smith). CohesiveLCA combines par-
tial LCAs following the source to sink paths in the lattice.

Reducing the dimensionality of the lattice. The lat-
tice of keyword partitions for a given query consists of all
possible partitions of query keywords. The partitions reflect
all possible ways in which query keywords can be combined
to form partial and full LCAs. Cohesiveness relationships
restrict the ways keyword instances can be combined in a
query embedding to form a query result. Keyword instances
may be combined individually with other keyword instances
to form partial or full LCAs only if they belong to the same
term: if a keyword a is “hidden” from a keyword b inside a

140

term Ta, then an instance of b can only be combined with
an LCA of all the keyword instances of Ta and not indi-
vidually with an instance of a. These restrictions result in
significantly reducing the size of the lattice of the keyword
partitions as exemplified next.

Figures 2b and 2c show the lattices of the keyword parti-
tions of two queries. The queries comprise the same set of
keywords XML, Query, John and Smith but involve different
cohesive relationships. The lattice of Figure 2a is the full
lattice of 15 keyword partitions and allows every possible
combination of instances of the keywords XML, Query, John
and Smith. The query of Figure 2b imposes a cohesiveness
relationship on John and Smith. This modification renders
several partitions of the full lattice of Figure 2a meaning-
less. For instance, in Figure 2b, the partition [XJ, Q, S]

is eliminated, since an instance of XML cannot be combined
with an instance of John unless the instance of John is al-
ready combined with an instance of Smith, as is the case
in the partition [XJS, Q]. The cohesiveness relationship on
John and Smith reduces the size of the initial lattice from 15
to 7. A second cohesiveness relationship between XML and
Query further reduces the lattice to the size of 3, as shown
in Figure 2c. Note that in this case, besides partitions that
are not permitted because of the additional cohesiveness re-
lationship (e.g., [XJS, Q]), some partitions may not be pro-
ductive, which makes them useless. [XQ, J, S] is one such
partition. The only valid combination of keyword instances
that can be produced from this partition is [XQ, JS], which
is a partition that can be produced directly from the source
partition [X, Q, J, S] of the lattice. The same holds also
for the partition [X, Q, JS]. Thus, these two partitions can
be eliminated from the lattice.

Algorithm description. Algorithm CohesiveLCA ac-
cepts as input a cohesive keyword query and the inverted
lists of the query keywords and returns all LCAs which sat-
isfy the cohesiveness relationships of the query, ranked on
their LCA size.

The algorithm begins by building the lattice of stacks
needed for the cohesive keyword query processing (line 2).
This process will be explained in detail in the next para-
graph. After the lattice is constructed, an iteration over the
inverted lists (line 3) pushes all keyword instances into the
lattice in Dewey code order starting from the source stack of
the lattice, which is the only stack of coarseness level 0. For
every new instance, a round of sequential processing of all
coarseness levels is initiated (lines 6-9). At each step, entries
are pushed and popped from the stacks of the current coarse-
ness level. Each stack has multiple columns corresponding
to and named by the keyword subsets of the relevant key-
word partition. Each stack entry comprises a number of
elements one for every column of the stack. The constructor
PartialLCA produces a partial LCA element taking as pa-
rameters the Dewey code of a node, the term corresponding
to a keyword partition, the size of the partial LCA and its
provenance. Popped entries contain partial LCAs that are
propagated to the next coarseness levels. An entry popped
from the sink stack (located in the last coarseness level)
contains a full LCA and constitutes a query result. After
finishing the processing of all inverted lists, an additional
pass over all coarseness levels empties the stacks producing
the last results (line 10).

Procedure push() pushes an entry into a stack after en-
suring that the top stack entry corresponds to the parent of

the partial LCA to be pushed (lines 11-16). This process
triggers pop actions of all entries that do not correspond
to ancestors of the entry to be pushed. Procedure pop()
is where partial and full LCAs are produced (lines 17-34).
When an entry is popped, new LCAs are formed (lines 21-
28) and the parent entry of the popped entry is updated to
incorporate partial LCAs that come from the popped child
entry (lines 29-34). The construction of new partial LCAs
is performed by combining LCAs stored in the same entry.

Construction of the lattice. The key feature of Cohe-
siveLCA is the dimensionality reduction of the lattice which
is induced by the cohesiveness relationships of the input
query. This reduction, as we also show in our experimental
evaluation, has a significant impact on the efficiency of the
algorithm. Algorithm CohesiveLCA does not näıvely prune
the full lattice to produce a smaller one, but wisely con-
structs the lattice needed for the computation from smaller
component sublattices. This is exemplified in Figure 3.

Consider the data tree depicted in Figure 1 and the query

Algorithm 1: CohesiveLCA

1 CohesiveLCA(Q: cohesive keyword query, invL: inverted
lists)

2 buildLattice()
3 while currentNode ← getNextNodeFromInvertedLists()

do
4 curPLCA ← PartialLCA(currentNode.dewey,

currentNode.kw, 0, null)
5 push(initStack, curPLCA)
6 for every coarsenessLevel cL do
7 while pl ← next partial LCA of cL do
8 for every stack S of cL containing pl.term

do
9 push(S, pl)

10 emptyStacks()

11 push(S: stack, pl: partial LCA)
12 while S.dewey not ancestor of pl.node do
13 pop(S)

14 while S.dewey 6= pl.node do
15 addEmptyRow(S)

16 replaceIfSmallerWith(S.topRow, pl.term, pl.size)

17 pop(S: stack)
18 p ← S.pop()
19 if S.columns = 1 then
20 addResult(S.dewey, p[0].size)

21 if S.columns > 1 then
22 for i←0 to S.columns do
23 for j←i to S.columns do
24 if p[i] and p[j] contain sizes and

p[i].provenance ∩ p[j].provenance = ∅ then
25 t ← findTerm(p[i].term, p[j].term)
26 sz ← p[i].size+p[j].size
27 prv ← p[i].provenance ∪ p[j].provenance
28 pLCA ← PartialLCA(S.dewey, t, sz, prv)

29 if S is not empty and S.columns > 1 then
30 for i=0 to S.columns do
31 if p[i].size+1 < S.topRow[i].size then
32 S.topRow[i].size ← p[i].size+1
33 S.topRow[i].provenance ←

{lastStep(S.dewey)}

34 removeLastDeweyStep(S.dewey)

141

P C

PC

M D

MD

XKS PC MD

XKSPC MD XKSMD PC XKS PCMD

XKSPCMD

X K S

XK S X KS XS K

XKS

(a) Component lattices for terms: (i)(XML Keyword Search), (ii)(Paul Cooper), (iii)(Mary Davis) and
(iv)((XML Keyword Search)(Paul Cooper)(Mary Davis))

XKS PC MD

XKSPC MD XKSMD PC XKS PCMD

XKSPCMD

XK S X KS XS K

M DP CX K S

(b) Final lattice

Figure 3: Component and final lattices for the query ((XML Keyword Search) (Paul Cooper) (Mary Davis)))

((XML Keyword Search) (Paul Cooper) (Mary Davis)))

issued on this data tree. If each term is treated as a unit,
a lattice of the partitions of three items is needed for the
evaluation of the query. This is lattice (iv) of Figure 3a.
Howerver, the input of this lattice consists of combinations
of keywords and not of single keywords. These three com-
binations of keywords each defines its own lattice shown in
the left side of Figure 3a (lattices (i), (ii) and (iii)). The
lattice to be finally used by the algorithm CohesiveLCA is
produced by composing lattices (i), (ii) and (iii) with lattice
(iv) and is shown in Figure 3b. This is a lattice of only 9
nodes, whereas the full lattice for 7 keywords has 877 nodes.

Function buildLattice() constructs the lattice for evaluat-
ing a cohesive keyword query. This function calls another
function buildComponentLattice() (line 8). Function build-
ComponentLattice() (lines 18-21) is a recursive and builds
all lattices for all terms which may be arbitrarily nested.
The whole process is controlled by the controlSets variable
which stores the keyword subsets admissible by the input
cohesiveness relationships. This variable is constructed by
the procedure constructControlSet() (lines 9-17).

3.1 Algorithm analysis
Algorithm CohesiveLCA processes the inverted lists of the

keywords of a query exploiting the cohesiveness relationships
to limit the size of the lattice of stacks used. The size of a
lattice of a set of keywords with k keywords is given by
the Bell number of k, Bk, which is defined by the recursive
formula:

Bn+1 =

n∑
i=0

(
n

i

)
Bi, B0 = B1 = 1

In a cohesive query containing t terms the number of sublat-
tices is t+ 1 counting also the sublattice of the query (outer
term). The size of the sublattice of a term with cardinality
ci is Bci . A keyword instance will trigger in the worst case
an update to all the stacks of all the sublattices of the terms
in which the keyword participates. If the maximum nesting
depth of terms in the query is n and the maximum cardinal-
ity of a term or of the query itself is c, then an instance will
trigger O(nBc) stack updates. For a data tree with depth d,
every processing of a partial LCA by a stack entails in the
worst case d pops and d pushes, i.e., O(d). Every pop from
a stack with c columns implies in the worst case c(c− 1)/2

Function buildLattice
1 buildLattice(Q: query)
2 singletonTerms ← {keywords(Q)}
3 stacks.add(createSourceStack(singletonTerms))

constructControlSet(Q) for every control set cset in
controlSets with not only singleton keywords do

4 stacks.add(createSourceStack(cset))

5 for every s in stacks do
6 buildComponentLattice(s)

7 constructControlSet(qp: query subpattern)
8 c ← new Set()
9 for every singleton keyword k in s do

10 c.add(k)

11 for every subpattern sqp in s do
12 subpatternTerm ← constructControlSet(sqp)
13 c.add(subpatternTerm)

14 controlSets.add(c)
15 return newTerm(c)

16 buildComponentLattice(s: stack)
17 for every pair t1, t2 of terms in s do
18 newS ← newStack(s, t1, t2)

buildComponentLattice(newS)

combinations to produce partial LCAs and c size updates to
the parent node, i.e., O(c2). Thus, the time complexity of
CohesiveLCA is given by the formula:

O(dnc2Bc

c∑
i=1

|Si|)

where Si is the inverted list of the keyword i. The maximum
term cardinality for a query with a given number of keywords
depends on the number of query terms. It is achieved by
the query when all the terms contain one keyword and one
term with the exception of the innermost nested term which
contains two keywords. Therefore, the maximum term car-
dinality is k − t − 1 and the maximum nesting depth is t.
Thus, the complexity of CohesiveLCA is:

O(dt(k − t− 1)2Bk−t−1

k∑
i=1

|Si|)

This is a paremeterized complexity which is linear to the size
of the input (i.e.,

∑
|Si|) for a constant number of keywords

and terms.

142

DBLP XMark NASA PSD Baseball

size 1.15 GB 116.5 MB 25.1 MB 683 MB 1.1 MB
maximum depth 5 11 7 6 5
nodes 34,141,216 2,048,193 530,528 22,596,465 26,432
keywords 3,403,570 140,425 69,481 2,886,921 1984
distinct labels 44 77 68 70 46
dist. label paths 196 548 110 97 46

Table 1: DBLP, XMark, NASA, PSD and Baseball dataset statistics

4. EXPERIMENTAL EVALUATION
We implemented our algorithm and we experimentally

studied: (a) the effectiveness of the CohesiveLCA seman-
tics and (b) the efficiency of the CohesiveLCA algorithm.

The experiments were conducted on a computer with a
1.6GHz dual core Intel Core i5 processor running Mac OS
10.8. The code was implemented in Java.

4.1 Datasets and queries
We used four real datasets: the bibliographic dataset

DBLP1, the astronomical dataset NASA2, the Protein Se-
quence Database (PSD) 3 and the sports statistics dataset
Baseball 4. We also used a synthetic dataset, the benchmark
auction dataset XMark5. These datasets cover different ap-
plication areas and display various characteristics. Table 1
shows their statistics.

The DBLP is the largest and XMark the deepest dataset.
For the effectiveness experiments, we used the real datasets
DBLP, PSD, NASA and Baseball. For the efficiency eval-
uation, we used the DBLP, XMark and NASA datasets in
order to test our algorithm on data with different structural
and size characteristics. The keyword inverted lists of the
parsed datasets were stored in a MySQL database.

We selected five cohesive keyword queries for each one
of the four real datasets with an intuitive meaning. The
queries display various cohesiveness patterns and involve
3-6 keywords. They are listed in Table 2. The binary rele-
vance (correctness) and graded relevance assessments of all
the LCAs were provided by five expert users. For the graded
relevance, a 4-value scale was used with 0 denoting irrele-
vance. In order to avoid the manual assessment of each LCA
in the XML tree, which is unfeasible because the LCAs are
usually numerous, we used the tree patterns that the query
instances of these LCAs define in the XML tree. These pat-
terns show how the query keyword instances are combined
under an LCA to form an MCT, and how the LCA is con-
nected to the root of the data tree. Since they are bound
by the schema of a data set they are in practice much less
numerous than the LCAs. The relevance of an LCA is the
maximum relevance of the patterns with which the query
instances of the LCA comply.

4.2 Effectiveness of cohesive semantics
In this section we evaluate the effectiveness of cohesive

semantics both as a filtering and as a ranking mechanism.

Filtering cohesive semantics. We compared the Cohe-
siveLCA semantics with the smallest LCA (SLCA) [18, 40,

1
http://www.informatik.uni-trier.de/ ley/db/

2
http://www.cs.washington.edu/research/xmldatasets/www/

repository.html
3
http://pir.georgetown.edu/

4
http://ibiblio.org/xml/books/biblegold/examples/baseball/

5
http://www.xml-benchmark.org

DBLP

QD
1 (proof (Scott theorem))

QD
2 ((IEEE transactions communications) (wireless networks))

QD
3 ((Lei Chen) (Yi Guo))

QD
4 ((Wei Wang) (Yi Chen))

QD
5 ((VLDB journal) (spatial databases))

PSD

QP
1 ((african snail) mRNA)

QP
2 ((alpha 1) (isoform 3))

QP
3 ((penton protein) (human adenovirus 5))

QP
4 (((B cell) stimulating factor) (house mouse))

QP
5 ((spectrin gene) (alpha 1))

NASA

QN
1 ((ccd photometric system) magnitudes)

QN
2 ((stars types) (spectral classification))

QN
3 ((Astronomical (Data Center)) (Wilson luminosity codes))

QN
4 ((year 1968) (Zwicky Abell clusters))

QN
5 ((title Orion Nebula) (author Parenago))

Baseball

QB
1 (Matt Williams (third base))

QB
2 (team (Johnson (first base)) (Wilson pitcher))

QB
3 (player surname (0 errors))

QB
4 (player (relief pitcher) (0 losses))

QB
5 (player (0 errors) (7 games))

Table 2: Queries for the effectiveness experiments on various
datasets

37, 10], exclusive LCA (ELCA) [16, 41, 42], valuable LCA
(VLCA) [11, 20] and meaningful LCA [24] (MLCAs) filter-
ing semantics. These are the best known filtering semantics
discussed in the literature. An LCA is an SLCA if it is not
an ancestor of another LCA in the data tree. An ELCA is
an LCA of a set of keyword instances which are not in the
subtree of any descendant LCA. An LCA is a VLCA if it is
the root of an MCT which does not contain any label twice
except when it is the label of two leaf nodes of the MCT.
The MLCA semantics requires that for any two nodes na

and nb labeled by a and b, respectively, in an MCT, no node
n′b labeled by b exists which is more closely related to na

(i.e., lca(na, n
′
b) is descendant of lca(na, nb)). SLCA and

ELCA semantics are based purely on structural character-
istics, while VLCA and MLCA take also into account the
labels of the nodes in the data tree.

Table 3 displays the number of results for each query and
approach on the DBLP, PSD, NASA and Baseball datasets.
Notice that, with the exception of SLCA and ELCA which
satisfy a containment relationship (SLCA⊆ ELCA), all other
approaches are pairwise incomparable. That is, one might
return results that the other excludes and vice versa. The
CohesiveLCA approach returns all the results that satisfy
the cohesiveness relationships in the query. Since these re-
lationships are imposed by the user, any additional result
returned by another approach is irrelevant. For instance,
for query QP

5 , only 3 results satisfy the cohesiveness rela-
tionships of the user, and therefore, SLCA, VLCA, MLCA
return at least 37 and ELCA at least 40 irrelevant results.

The CohesiveLCA semantics is a ranking semantics and
ranks the results in layers based on their size. In order to

143

QD
1 QD

2 QD
3 QD

4 QD
5 QP

1 QP
2 QP

3 QP
4 QP

5 QN
1 QN

2 QN
3 QN

4 QN
5 QB

1 QB
2 QB

3 QB
4 QB

5

0

50

100

top size cohesive SLCA ELCA VLCA MLCA

(a) Precision %

QD
1 QD

2 QD
3 QD

4 QD
5 QP

1 QP
2 QP

3 QP
4 QP

5 QN
1 QN

2 QN
3 QN

4 QN
5 QB

1 QB
2 QB

3 QB
4 QB

5

0

50

100

(b) F -measure %

Figure 4: Precision and F-measure of top size Cohesive LCA, SLCA and ELCA filtering semantics

compare its effectiveness with filtering semantics we restrict
the results to the top layer (top-1-size results). Recall that
these are the results with the minimum LCA size. The com-
parison is based on the widely used precision (P), recall (R)
and F-measure= 2P×R

P+R
metrics [4]. Figure 4 depicts the

results for the five semantics on the four datasets. Since
all approaches demonstrate high recall, we only show the
precision and F-measure results in the interest of space.

The diagram of Figure 4a shows that CohesiveLCA largely

dataset query # of results

CohesiveLCA SLCA ELCA VLCA MLCA

DBLP QD
1 2 3 4 3 3

QD
2 527 981 982 981 981

QD
3 2 3 4 3 3

QD
4 11 60 61 60 60

QD
5 5 8 9 8 8

PSD QP
1 3 2 3 3 3

QP
2 14 78 79 88 85

QP
3 2 4 4 3 3

QP
4 4 7 8 6 6

QP
5 3 40 43 40 40

NASA QN
1 17 22 24 25 20

QN
2 85 90 90 118 106

QN
3 1 3 4 2 1

QN
4 6 7 8 12 12

QN
5 9 10 11 18 15

Baseball QB
1 10 5 6 1 1

QB
2 7 4 5 0 0

QB
3 216 516 522 516 516

QB
4 145 335 335 335 335

QB
5 49 177 196 177 177

Table 3: Number of results of queries on various datasets

outperforms the other approaches in all cases. Top-1-size
CohesiveLCA shows perfect precision for all queries on all
datasets. This is not surprising since, CohesiveLCA can
benefit from cohesiveness relationships specified by the user
to exclude irrelevant results. CohesiveLCA also shows per-
fect F-measure on the DBLP and Baseball datasets. Its
F-measure on the PSD and NASA datasets is lower. This is
due to the following reason: contrary to the shallow DBLP
and Baseball datasets, the PSD and NASA datasets are deep
and complex with a large amount of text in their nodes. This
complexity leads to results of various sizes for most of the
queries. Some of the relevant results are not of minimum size
and they are missed by top-1-size CohesiveLCA. Neverthe-
less, any relevant result missed by top-1-size CohesiveLCA is
retrieved by CohesiveLCA which returns all relevant results,
as one can see in Table 4.

Table 4 summarizes the precision, recall and F-measure
values of the queries on all four datasets. The table dis-
plays values for the five filtering semantics but also for the
CohesiveLCA semantics (without restricting the size of the
results). Both CohesiveLCA and top-1-size CohesiveLCA
outperform the other approaches in all three metrics. Top-1-
size CohesiveLCA demonstrates perfect precision while Co-
hesiveLCA with a slightly lower precision guarantees perfect
recall. These remarkable results on the effectiveness of our
approach are obtained thanks to the cohesiveness relation-

CohesiveLCA top-1-size SLCA ELCA VLCA MLCA

CohesiveLCA

Precision % 67.4 100 25.1 27.6 32.6 35.7

Recall % 100 96.9 88.0 93.0 95.0 95.0

F-measure % 76.8 92.8 39.8 36.8 44.4 46.8

Table 4: Average precision, recall and F-measure values over all
queries and datasets for all semantics

144

0 2,000 4,000 6,000 8,000 10,000
0

500

1,000

1,500

total number of keyword instances

ti
m
e
(m

se
c)

DBLP

XMark

Nasa

(a) 10 keywords queries

0 2,000 4,000 6,000 8,000 10,00012,00014,00016,000
0

2,000

4,000

6,000

8,000

total number of keyword instances

ti
m
e
(m

se
c)

DBLP

XMark

Nasa

(b) 15 keywords queries

0 0.5 1 1.5 2

·104

0

5,000

10,000

15,000

20,000

total number of keyword instances

ti
m
e
(m

se
c)

DBLP

XMark

Nasa

(c) 20 keywords queries

Figure 5: Performance of CohesiveLCA for queries with 10, 15 and 20 keywords varying the number of instances

ships which are provided effortlessly by the user.

Ranking cohesive semantics We evaluated our result
ranking scheme by computing the Mean Average Precision
(MAP) [4] and the Normalized Discounted Cumulative Gain
(NDCG) [4] on the queries of Table 2. MAP is the average of
the individual precision values that are obtained every time
a correct result is observed in the ranking of the query. If
a correct result is never retrieved, its contributing precision
value is 0. MAP penalizes an algorithm when correct re-
sults are missed or incorrect ones are ranked highly. Given
a specific position in the ranking of a query result set, the
Discounted Cumulative Gain (DCG) is defined as the sum
of the grades of the query results until this ranking position,
divided (discounted) by the logarithm of that position. The
DCG vector of a query is the vector of the DCG values at the
different ranking positions of the query result set. Then, the
NDCG vector is the result of normalizing this vector with
the vector of the perfect ranking (i.e., the one obtained by
the grading of the result set by the experts). NDCG pe-
nalizes an algorithm when the latter favors poorly graded
results over good ones in the ranking.

MAP (%)

DBLP PSD NASA Baseball

94 99 94 97

NDCG (%)

DBLP PSD NASA Baseball

100 99 98 100

Table 5: MAP and NDCG measurements on the four datasets
for the queries of Table 2

Table 5 shows the MAP and NDCG values of the cohe-
sive ranking on the queries of Table 2. The excellent values
of NDCG show that the ranking in ascending order of the
scores of the result LCAs (which take into account the par-
tial LCA sizes and the cohesive term weights) is very close
to the correct ranking of the results provided by the expert
users. Most MAP values are slightly inferior to 100. This
means that a small number of non-relevant LCAs are ranked
higher than some relevant. However, the high NDCG val-
ues, guarantee that these LCAs are not highly located in the
total rank.

4.3 Efficiency of the CohesiveLCA algorithm
In order to study the efficiency of our algorithm we run

experiments to measure: (a) its performance scalability on
the dataset size, (b) its performance scalability on the query
maximum term cardinality and (c) the improvement in ef-
ficiency over previous approaches. We used collections of
queries with 10, 15 and 20 keywords issued against the DBLP,
XMark and NASA datasets. For each query size, we formed
10 cohesive query patterns. Each pattern involves a different
number of terms of different cardinalities nested in various
depths. For instance, a query pattern for a 10-keyword query
is (xx((xxxx)(xxxx))). We used these patterns to generate
keyword queries on the three datasets. The keywords were
chosen randomly. In order to stress our algorithm, they
were selected among the most frequent ones. In particular,
for each pattern, we generated 10 different keyword queries
and we calculated their average evaluation time. We gener-
ated, in total, 100 queries for each dataset. For each query,
we run experiments scaling the size of each keyword inverted
list from 100 to 1000 instances with a step of 100 instances.

Performance scalability on dataset size. Figure 5 shows
how the computation time of CohesiveLCA scales when the
total size of the query keyword inverted lists grows. Each
plot corresponds to a different query size (10, 15 or 20 key-
words) and displays the performance of CohesiveLCA on the
three datasets. Each curve corresponds to a different dataset
and each point in a curve represents the average computa-
tion time of the 100 queries that conform to the 10 different
patterns of the corresponding query size. Since the keywords
are randomly selected among the most frequent ones this fig-
ure reflects the performance scalability with respect to the
dataset size.

All plots clearly show that the computation time of Co-
hesiveLCA is linear on the dataset size. This pattern is fol-
lowed, in fact, by each one of the 100 contributing queries. In
all cases, the evaluation times on the different datasets con-
firm the dependence of the algorithm’s complexity on the
maximum depth of the dataset: the evaluation on DBLP
(max depth 5) is always faster than on NASA (max depth
7) which in turn is faster than on XMark (max depth 11).

It is interesting to note that our algorithm achieves inter-
active computation times even with multiple keyword queries
and on large and complex datasets. For instance, a query
with 20 keywords and 20,000 instances needs only 20 sec
to be computed on the XMark dataset. These results are
achieved on a prototype without the optimizations of a com-
mercial keyword search system. To the best of our knowl-
edge, there is no other experimental study in the relevant
literature that considers queries of such sizes.

145

Performance scalability on max term cardinality. As
we showed in the analysis of algorithm CohesiveLCA (Sec-
tion 3.1), the key factor which determines the algorithm’s
performance is the maximum term cardinality in the input
query. The maximum term cardinality determines the size of
the largest sublattice used for the construction of the lattice
ultimately used by the algorithm (see Figure 3). This de-
pendency is confirmed in the diagram of Figure 6. We used
queries of 10, 15 and 20 keywords with a total number of
6000 instances each on the DBLP dataset. The x axis shows
the maximum term cardinality of the queries. The compu-
tation time shown by the bars (left y axis) is averaged over
all the queries of a query size with the corresponding max-
imum cardinality. The curve displays the evolution of the
size of the largest sublattice as the maximum term cardinal-
ity increases. The size of the sublattice is measured by the
number of the stacks it contains (right y axis).

It is interesting to observe that the computation time de-
pends primarily on the maximum term cardinality and to
a much lesser extent on the total number of keywords. For
instance, a query of 20 keywords with maximum term car-
dinality 6 is computed much faster than a query of 10 key-
words with maximum term cardinality 7. This observation
shows that as long as the terms involved are not huge, Co-
hesiveLCA is able to efficiently compute queries with a very
large number of keywords.

Performance improvement with cohesive relation-
ships. In order to study the improvement in execution time
brought by the cohesiveness relationships to previous algo-
rithms, we compare CohesiveLCA with algorithms which
compute a superset of LCAs and rank them with respect to
their size. In these cases, since taking into account cohesive-
ness relationships filters out irrelevant results, the quality
of the answer is improved. It is not meaningful to compare
with other algorithms since their result sets are incompara-
ble to that of CohesiveLCA (no result set is inclusive of the
other) and they do not rank their results on their size. For
the experiments we used the DBLP dataset—the results on
the other datasets are similar.

There are two previous algorithms that can compute the
full set of LCAs with their sizes: algorithm LCAsz [13, 14]
and algorithm SA [17]. LCAsz is an algorithm that com-
putes all the LCAs with their sizes which, similarly to Cohe-
siveLCA, exploits a lattice of stacks. The SA algorithm [17]

3 4 5 6 7
0

1,000

2,000

3,000

maximum term cardinality

ti
m

e
(m

se
c)

10 keywords 15 keywords 20 keywords

0

200

400

600

800

la
rg

es
t

su
b
la

tt
ic

e
si

ze
(#

st
a
ck

s)

max sublattice size

Figure 6: Performance of CohesiveLCA on queries with 6000
keyword instances for different maximum term cardinalities
on the DBLP dataset

2 3 4 5 6 7

102

103

104

number of keywords

ti
m

e
(m

se
c)

CohesiveLCA LCAsz

Figure 7: Improvement of CohesiveLCA over LCAsz varying
the number of query keywords

computes all LCAs together with a compact form of their
matching MCTs, called GDMCTs, which allows determin-
ing the size of an LCA. We implemented algorithm SAOne
[17] which is a more efficient version of SA since it computes
LCAs without explicitly enumerating all the GDMCTs.

Figure 7 compares the execution time of LCAsz and Cohe-
siveLCA in answering keyword queries on the DBLP dataset
varying the number of keywords. The execution time of
LCAsz is averaged over 10 random queries with frequent
keywords. Various cohesiveness relationships patterns were
defined for CohesiveLCA (their number depends on the total
number of keywords), and for each one of them 10 random
queries of frequent keywords were generated. The execution
time for CohesiveLCA is averaged over all the queries gen-
erated with the same number of keywords. In all cases, each
keyword inverted list was restricted to 1000 instances.

As we can see in Figure 7, CohesiveLCA outperforms
LCAsz. The improvement in performance reaches an order
of magnitude for 6 keywords and increases for 7 keywords or
more. Further, CohesiveLCA scales smoothly compared to
LCAsz since, as explained above, its performance is depen-
dent on the maximum term cardinality, as opposed to the
total number of keywords that determines the performance
of LCAsz.

Figure 8 compares the execution times of CohesiveLCA,
LCAsz and SAOne for queries of 6 keywords varying the
total number of keyword instances. The measurements are
average execution times over multiple random queries and
cohesiveness relationships patterns (for CohesiveLCA) as in
the previous experiment. As one can see, CohesiveLCA
clearly outperforms all previous approaches. LCAsz, in turn,
largely outperforms SAOne which also scales worse than the
other two

5. RELATED WORK
Keyword queries facilitate the user with the ease of freely

forming queries by using only keywords. Approaches that
evaluate keyword queries are currently very popular espe-
cially in the web where numerous sources contribute data
often with unknown structure and where end users with no
specialized skills need to find useful information. However,
the imprecision of keyword queries results often in low pre-
cision and/or recall of the search systems. Some approaches
combine structural constraints with keyword search [11].
Other approaches try to infer useful structural information
implied by keyword queries by exploiting statistical informa-
tion of the query keywords on the underlying datasets [5, 22,
38, 25, 7]. These approaches require a minimum knowledge

146

1,000 2,000 3,000 4,000 5,000 6,000

102

103

104

total number of keyword instances

ti
m

e
(m

se
c)

CohesiveLCA LCAsz SAOne

Figure 8: CohesiveLCA scaling comparison with other ap-
proaches for queries of 6 keywords

of the dataset or a heavy dataset preprocessing in order to be
able to accurately assess candidate keyword query results. A
great amount of previous work elaborates on keyword query
evaluation on graph data (e.g., RDF databases or graphs ex-
tracted from Relational databases) [18, 12, 30, 7]. However,
the focus of this work is on tree data.

The task of locating the nodes in a data tree which most
likely match a keyword query has been extensively studied
in [11, 18, 17, 20, 27, 41, 19, 22, 10, 13, 6, 23, 26, 38,
32, 2, 14, 1]. All these approaches use LCAs of keyword
instances as a means to define query answers. The smallest
LCA (SLCA) semantics [40, 28] validates LCAs that do not
contain other descendant LCAs of the same keyword set. A
relaxation of this restriction is introduced by exclusive LCA
(ELCA) semantics [16, 41], which accepts also LCAs that
are ancestors of other LCAs, provided that they refer to a
different set of keyword instances.

In a slightly different direction, semantic approaches ac-
count also for node labels and node correlations in the data
tree. Valuable LCAs (VLCAs) [11, 20] and meaningful LCAs
[24] (MLCAs) aim at“guessing”the user intent by exploiting
the labels that appear in the paths of the subtree rooted at
an LCA. All these semantics are restrictive and depending
on the case, they may demonstrate low recall rates as shown
in [38].

The efficiency of algorithms that compute LCAs as an-
swers to keyword queries depend on the query semantics
adopted. By design they exploit the adopted filtering seman-
tics to prune irrelevant LCAs early on in the computation.
Stack based algorithms are naturally offered to process tree
data. In [16] a stack-based algorithm that processes inverted
lists of query keywords and returns ranked ELCAs was pre-
sented. This approach ranks also the query results based on
precomputed tree node scores inspired by PageRank [8] and
IR style keyword proximity in the subtrees of the ranked
ELCAs. An algorithm that computes all the LCAs ranked
on LCA size is presented in [13, 14]. In [40], two efficient
algorithms for computing SLCAs are introduced, exploiting
special structural properties of SLCAs. This approach also
introduces an extension of the basic algorithm, so that it re-
turns all LCAs by augmenting the set of already computed
SLCAs. Another algorithm for efficiently computing SLCAs
for both AND and OR keyword query semantics is devel-
oped in [37]. The Indexed Stack [41] and the Hash Count
[42] algorithms improve the efficiency of [16] in computing
ELCAs. Finally, [5, 6] elaborate on sophisticated ranking
of candidate LCAs aiming primarily on effective keyword

query answering.
Filtering semantics are often combined with (i) structural

and semantic correlations [16, 21, 10, 38, 11, 2], (ii) statis-
tical measures [16, 11, 21, 10, 22, 38] and (iii) probabilistic
models [38, 32, 23] to perform a ranking to the results set.
Nevertheless, such approaches require expensive preprocess-
ing of the dataset which makes them impractical in the cases
of fast evolving data and streaming applications.

The most well known ranking models in the literature of
IR assume term independency [4]. Extensions of the basic
ranking models such as the generalized vector model [39] and
the set based vector model [34] represent queries and doc-
uments using sets of terms. However, the ranking scheme
in these models requires preprocessing of the data collec-
tion to compute tf ∗ idf style metrics for a representative
subset of the term vocabulary. The work in [35] enhances
keyword queries with structure to extract information from
knowledge bases. However, their approach targets graph
databases with semantic information and their queries are
schema dependent. In contrast, our cohesive queries only
contain groupings of the keywords expressing cohesiveness
relationships which are not related to any schema construct.
As such, the same cohesive query can be issued against any
type of dataset (flat text documents, trees, graphs, etc.).

6. CONCLUSION
Current approaches for assigning semantics to keyword

queries on tree data cannot cope efficiently or effectively with
the large number of candidate results and produce answers
of low quality. The convenience and simplicity offered to the
user by the keyword queries cannot offset this weakness. In
this paper, we claim that the search systems cannot guess
the user intent from the query and the characteristics of the
data to produce high quality answers on any type of dataset
and we introduce a cohesive keyword query language which
allows the users to naturally and effortlessly express cohe-
siveness relationships on the query keywords. We design an
algorithm which builds a lattice of stacks to efficiently com-
pute cohesive keyword queries and rank the results lever-
aging cohesiveness relationships to reduce the lattice dimen-
sionality. A theoretical analysis and experimental evaluation
show that our approach outperforms previous approaches
in producing answers of high quality and scales smoothly
succeeding to evaluate efficiently queries with a very large
number of frequent keywords on large and complex datasets
where previous algorithms for flat keyword queries fail.

We are currently working on alternative ways for defining
semantics for cohesive keyword queries on tree data and in
particular in defining skyline semantics which considers all
the cohesive terms of a query in order to rank the query
results.

7. REFERENCES
[1] C. Aksoy, A. Dimitriou, and D. Theodoratos.

Reasoning with Patterns to Effectively Answer XML
Keyword Queries. VLDB Journal, Vol. 24, Issue 3,
Springer, pages 441–465, 2015.

[2] C. Aksoy, A. Dimitriou, D. Theodoratos, and X. Wu.
XReason: A Semantic Approach that Reasons with
Patterns to Answer XML Keyword Queries. In
DASFAA, pages 299–314, 2013.

147

[3] S. Amer-Yahia and M. Lalmas. XML Search:
Languages, INEX and Scoring. SIGMOD Record,
35(4):16–23, 2006.

[4] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern
Information Retrieval - the concepts and technology
behind search. Pearson Education Ltd., England, 2011.

[5] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective
XML Keyword Search with Relevance Oriented
Ranking. In ICDE, pages 517–528, 2009.

[6] Z. Bao, J. Lu, T. W. Ling, and B. Chen. Towards an
Effective XML Keyword Search. IEEE Trans. Knowl.
Data Eng., 22(8):1077–1092, 2010.

[7] S. Bergamaschi, F. Guerra, M. Interlandi, R. T. Lado,
and Y. Velegrakis. Combining user and database
perspective for solving keyword queries over relational
databases. Inf. Syst., 55:1–19, 2016.

[8] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer
Networks, 30(1-7):107–117, 1998.

[9] O. C. L. Center. Dewey Decimal Classification, 2006.

[10] L. J. Chen and Y. Papakonstantinou. Supporting
top-K Keyword Search in XML Databases. In ICDE,
pages 689–700, 2010.

[11] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A Semantic Search Engine for XML. In
VLDB, pages 45–56, 2003.

[12] A. Dass, C. Aksoy, A. Dimitriou, and D. Theodoratos.
Keyword pattern graph relaxation for selective result
space expansion on linked data. In ICWE, pages
287–306, 2015.

[13] A. Dimitriou and D. Theodoratos. Efficient keyword
search on large tree structured datasets. In ACM
KEYS, pages 63–74, 2012.

[14] A. Dimitriou, D. Theodoratos, and T. Sellis.
Top-k-size keyword search on tree structured data.
Inf. Syst., 47:178–193, 2015.

[15] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. In VLDB, pages 436–445,
1997.

[16] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: Ranked Keyword
Search over XML Documents. In SIGMOD
Conference, pages 16–27, 2003.

[17] V. Hristidis, N. Koudas, Y. Papakonstantinou, and
D. Srivastava. Keyword Proximity Search in XML
Trees. IEEE TKDE, 18(4):525–539, 2006.

[18] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on xml graphs. In ICDE,
pages 367–378, 2003.

[19] L. Kong, R. Gilleron, and A. Lemay. Retrieving
meaningful relaxed tightest fragments for XML
keyword search. In EDBT, pages 815–826, 2009.

[20] G. Li, J. Feng, J. Wang, and L. Zhou. Effective
Keyword Search for Valuable LCAs over XML
documents. In CIKM, pages 31–40, 2007.

[21] G. Li, C. Li, J. Feng, and L. Zhou. SAIL:
Structure-aware Indexing for Effective and Progressive
top-k Keyword Search over XML Documents. Inf.
Sci., 179(21):3745–3762, 2009.

[22] J. Li, C. Liu, R. Zhou, and W. Wang. Suggestion of
Promising Result Types for XML Keyword Search. In

EDBT, pages 561–572, 2010.

[23] J. Li, C. Liu, R. Zhou, and W. Wang. Top-k Keyword
Search over Probabilistic XML Data. In ICDE, pages
673–684, 2011.

[24] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free
XQuery. In VLDB, pages 72–83, 2004.

[25] X. Liu, L. Chen, C. Wan, D. Liu, and N. Xiong.
Exploiting structures in keyword queries for effective
XML search. Inf. Sci., 240:56–71, 2013.

[26] X. Liu, C. Wan, and L. Chen. Returning Clustered
Results for Keyword Search on XML Documents.
IEEE TKDE, 23(12):1811–1825, 2011.

[27] Z. Liu and Y. Chen. Identifying meaningful return
information for XML keyword search. In SIGMOD
Conference, pages 329–340, 2007.

[28] Z. Liu and Y. Chen. Reasoning and Identifying
Relevant Matches for XML Keyword Search. PVLDB,
1(1):921–932, 2008.

[29] Z. Liu and Y. Chen. Processing Keyword Search on
XML: a Survey. WWW, 14(5-6):671–707, 2011.

[30] D. Mottin, M. Lissandrini, Y. Velegrakis, and
T. Palpanas. Exemplar queries: Give me an example
of what you need. PVLDB, 7(5):365–376, 2014.

[31] B. Mozafari, K. Zeng, L. D’Antoni, and C. Zaniolo.
High-performance complex event processing over
hierarchical data. ACM TDS, 38(4):21, 2013.

[32] K. Nguyen and J. Cao. Top-k Answers for XML
Keyword Queries. WWW, 15(5-6):485–515, 2012.

[33] P. Ogden, D. B. Thomas, and P. Pietzuch. Scalable
XML query processing using parallel pushdown
transducers. PVLDB, 6(14):1738–1749, 2013.

[34] B. Pôssas, N. Ziviani, W. M. Jr., and B. A.
Ribeiro-Neto. Set-based vector model: An efficient
approach for correlation-based ranking. ACM Trans.
Inf. Syst., 23(4):397–429, 2005.

[35] J. Pound, I. F. Ilyas, and G. E. Weddell. Expressive
and flexible access to web-extracted data: a
keyword-based structured query language. In ACM
SIGMOD Conference, pages 423–434, 2010.

[36] A. Schmidt, M. L. Kersten, and M. Windhouwer.
Querying XML Documents Made Easy: Nearest
Concept Queries. In ICDE, pages 321–329, 2001.

[37] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway
SLCA-based Keyword Search in XML Data. In
WWW, pages 1043–1052, 2007.

[38] A. Termehchy and M. Winslett. Using Structural
Information in XML Keyword Search Effectively.
ACM Trans. Database Syst., 36(1):4, 2011.

[39] S. K. M. Wong, W. Ziarko, and P. C. N. Wong.
Generalized vector space model in information
retrieval. In Proceedings of the 8th annual
international ACM SIGIR 1985, pages 18–25, 1985.

[40] Y. Xu and Y. Papakonstantinou. Efficient Keyword
Search for Smallest LCAs in XML Databases. In
SIGMOD Conference, pages 527–538, 2005.

[41] Y. Xu and Y. Papakonstantinou. Efficient LCA based
keyword search in XML data. In EDBT, pages
535–546, 2008.

[42] R. Zhou, C. Liu, and J. Li. Fast ELCA Computation
for Keyword Queries on XML Data. In EDBT, pages
549–560, 2010.

148

	Cohesive Keyword Search on Tree DataAggeliki Dimitriou, Ananya Dass, Dimitri Theodoratos, Yannis Vassiliou

