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ABSTRACT
Indoor tracking data is being amassed due to the deployment
of indoor positioning technologies. Analysing such data dis-
closes useful insights that are otherwise hard to obtain. For
example, by studying tracking data from an airport, we can
identify the shops and restaurants that are most popular
among passengers. In this paper, we study two query types
for finding frequently visited Points of Interest (POIs) from
symbolic indoor tracking data. The snapshot query finds
those POIs that were most frequently visited at a given
time point, whereas the interval query finds such POIs for
a given time interval. A typical example of symbolic track-
ing is RFID-based tracking, where an object with an RFID
tag is detected by an RFID reader when the object is in the
reader’s detection range. A symbolic indoor tracking system
deploys a limited number of proximity detection devices, like
RFID readers, at preselected locations, covering only part of
the host indoor space. Consequently, symbolic tracking data
is inherently uncertain and only enables the discrete cap-
ture of the trajectories of indoor moving objects in terms of
coarse regions. We provide uncertainty analyses of the data
in relation to the two kinds of queries. The outcomes of the
analyses enable us to design processing algorithms for both
query types. An experimental evaluation with both real and
synthetic data suggests that the framework and algorithms
enable efficient and scalable query processing.

1. INTRODUCTION
Indoor spaces such as shopping malls, office buildings, li-

braries, metro stations, and airports serve as the settings of
significant parts of people’s daily lives. The indoor move-
ments of people are increasingly datafied due to advances
in indoor positioning [1]. As a result, a new type of data—
indoor tracking data—is being accumulated in a variety of
formats determined by the particular indoor positioning tech-
nologies used.

As in the case for outdoor tracking data [3], analyzing
indoor tracking data can reveal how different parts of an
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indoor space are used by its inhabitants, e.g., the number
of visits to a particular part of space over time can be de-
termined. The findings are potentially useful in practical
scenarios. For example, the lease prices of different shop
locations in a large shopping mall may be set according to
the numbers of people passing by the location. As another
example, information on the behavior of past visitors to a
museum with multiple exhibitions may be used for making
recommendations to new visitors and for planning. These
and other example scenarios may benefit from flow counting
using indoor tracking data.

Flow counting is non-trivial in indoor spaces, where new,
unique technical challenges exist that are different from those
in outdoor contexts. These in turn call for novel data man-
agement techniques.

First of all, indoor positioning systems differ fundamen-
tally from GPS that is prevalent outdoors but that generally
does not work indoors. Having to use wireless technologies
such as Wi-Fi, Bluetooth, and RFID that originally are de-
signed for data communication, indoor positioning systems
work according to different principles and offer positioning
accuracies that are below that of GPS. For example, in an
RFID based system, an object with an RFID tag is detected
by an RFID reader only when the object is in the reader’s
detection range. Due to their costs, a limited number of
readers are deployed, covering only part of the host indoor
space. Consequently, the tracking data is inherently uncer-
tain and only enables the discrete capture of the trajectories
of indoor moving objects in terms of coarse regions. Such
uncertainty renders flow counting techniques based on GPS
data unsuitable for indoor spaces.

Further, indoor spaces are characterized by entities like
doors, rooms, and hallways that enable and constrain the
movements of indoor objects. Compared to outdoor Eu-
clidean or spatial network space, indoor spaces have more
complex topologies. When counting flows in indoor spaces,
their complex topologies must be taken into account.

This paper considers flow counting based on symbolic in-
door tracking data where object locations are captured as
circular regions centered at pre-selected indoor locations.
Such circular regions correspond to the detection ranges of
proximity detection devices, e.g., RFID readers. We de-
fine appropriate ways of counting flows based on the uncer-
tain tracking data. Our definitions capture probabilistically
how frequently indoor POIs are visited by tracked visitors.
Based on the definitions of indoor flow counting, we define
two query types for finding indoor POIs that are visited fre-
quently at a given time point and during a given time range,
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respectively. We analyze carefully the data uncertainty with
respect to the query types, which enables us to design algo-
rithms for both query types. We use synthetic and real data
to evaluate the proposals experimentally. The experimental
results show that our proposals are efficient and scalable.

We make the following contributions in this paper.

• We define indoor flow counting methods on symbolic
indoor tracking data, and we formulate two types of
queries for finding frequently visited indoor POIs.

• We derive query related object uncertainty regions by
analysing the relationship between the queries and the
tracking data.

• We make use of the uncertainty analysis results to de-
sign algorithms for the two query types.

• We perform extensive experiments to evaluate the pro-
posed techniques.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the format of symbolic indoor tracking data
and formulates the research problems. Section 3 derives un-
certainty regions for objects. Section 4 details the query
processing algorithms. Section 5 reports on the experimen-
tal studies. Section 6 reviews the related work, and Section 7
concludes and discusses research directions.

2. PROBLEM FORMULATION
We formulate the research problems in this section. Sec-

tion 2.1 details the symbolic indoor tracking data, and Sec-
tion 2.2 gives the problem definitions. Table 1 lists notation
used throughout the paper.

Symbol Meaning

p An indoor POI
P A set of indoor POIs
o An indoor moving object
O A set of indoor moving objects
t A time point
rd An indoor tracking record
Φt(p) The flow of p at time t
Φts,te(p) The flow of p during interval [ts, te]
Vmax The maximum speed of indoor moving objects

Table 1: Notation

2.1 Symbolic Indoor Tracking Data
In symbolic indoor object tracking, raw position readings

are reported in the format 〈objectID , deviceID , t〉. Such a 3-
tuple means that the object identified by objectID is seen by
the device deviceID at time t. As the positioning works at a
configured sampling frequency, an object is typically seen in
multiple, consecutive raw readings by the same device. Such
consecutive raw readings are merged [10] to form a tracking
record of the form 〈ID , objectID , deviceID , ts, te〉. Such a
tracking record means that the object is continuously seen
by the device from time ts to time te, i.e., ts is the start
time for the continuous detection and te is the end time. An
object tracking table (OTT) is used to store such historical
tracking records, as exemplified in Table 2, where attribute
ID is a record identifier.

ID objectID deviceID ts te
rd1 o1 dev4 t1 t2
rd2 o2 dev4 t1 t2
rd3 o1 dev2 t5 t6
rd4 o2 dev1 t7 t8
rd5 o1 dev1 t9 t10
rd6 o1 dev12 t15 t16
rd7 o2 dev13 t20 t21
rd8 o1 dev13 t21 t22
rd9 o2 dev13 t29 t30
... ... ... ... ...

Table 2: Object Tracking Table (OTT)

2.2 Problem Definitions
We assume that each indoor POI p has some fixed ex-

tent modeled by a polygon, and for simplicity, we equate a
POI p with its polygon. As an entire indoor space is typ-
ically not fully covered by proximity detection devices like
RFID readers due to economic constraints, there are con-
siderable time intervals during which an object is not seen
at all. Consequently, flow counting is not straightforward
in the setting of uncertain indoor tracking data. Since ob-
ject locations are uncertain, exact counting of objects does
not make sense. Instead, we estimate how many objects
that appeared in an indoor POI’s range at a particular past
time point or during a past time range. For that purpose,
we need to determine an indoor moving object’s uncertainty
region that tells where the object can possibly be located.
We differentiate between snapshot and interval uncertainty
regions.

Given an object o, we use UR(o, t) to denote o’s snapshot
uncertainty region at time point t. In particular, UR(o, t)
captures an indoor region in which object o can possibly
be at time t. Next, we use UR(o, [ts , te ]) to denote o’s in-
terval uncertainty region during time interval [ts, te]. Here,
UR(o, [ts , te ]) captures the indoor region in which object o
can possibly be during time interval [ts, te]. We describe
how to derive these uncertainty regions in Section 3. Based
on the uncertainty regions, we define the following concepts
for flow counting.

First, we consider an object o’s presence in the range of
an indoor POI p. The presence stipulates how we “count”
objects for a POI p.

Definition 1 (Object Presence). During a given
time interval [ts, te], an object o’s interval presence in a POI
p is

φts,te,p(o) =
area(UR(o, [ts, te]) ∩ p)

area(p)
. (1)

Similarly, φt,p(o) is defined by replacing UR(o, [ts, te]) with
UR(o, t). The idea of object presence is to capture the in-
tersection between the object’s uncertainty region and the
POI’s range. Intuitively, the larger the intersection, the
more likely it is that the object was in the POI. For an
arbitrary object o and an arbitrary POI p, it is apparent
that 0 ≤ φt,p(o) ≤ 1 and 0 ≤ φts,te,p(o) ≤ 1. Therefore, o’s
object presence can be regarded as the probability that o is
in POI p at t or during [ts, te].

Next, we define the concept of flow for indoor POIs.
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Definition 2 (Flow). Suppose O is the set of all ob-
jects in an indoor space of interest. Given an indoor POI p
and a time interval [ts, te], p’s interval flow is defined as

Φts,te(p) =
∑
o∈O

φts,te,p(o). (2)

Similarly, Φt(p) is defined by replacing φts,te,p(o) with
φt,p(o). The flow definitions perform weighted counting of
objects that stay in POI p at time t or during time interval
[ts, te], and the weight assigned to each object is its object
presence.

With the above definitions, we formulate two types of
queries that return the top-k frequently visited indoor POIs.

Problem 1 (Snapshot Top-k Indoor POIs Query).
Given a set P of indoor POIs, a time point t, and an inte-
ger k (0 < k ≤ |P |), return a k-subset PT of P such that
∀p ∈ PT (∀p′ ∈ P \ PT (Φt(p) ≥ Φt(p

′))).

Problem 2 (Interval Top-k Indoor POIs Query).
Given a set P of indoor POIs, a time interval [ts, te], and
an integer k (0 < k ≤ |P |), return a k-subset PT of P such
that ∀p ∈ PT (∀p′ ∈ P \ PT (Φts,te(p) ≥ Φts,te(p′))).

These queries return the indoor POIs that are visited by
the largest number of visitors at a time point or during a
time interval. This functionality has many applications. For
example, it can be used to identify the most popular shops in
a shopping mall. Shop rental fees can take such information
into account. As another example, it can be used to identify
possible bottlenecks that slow down movement in an airport.

3. DERIVING UNCERTAINTY REGIONS
We elaborate on how to derive uncertainty regions for

an given object and specified time parameters. Section 3.1
presents the basic terminology, including uncertainty regions
for snapshot queries. Section 3.2 focuses on uncertainty re-
gions for interval queries. Section 3.3 addresses how to fi-
nalize the uncertainty regions in a given indoor space.

3.1 Basic Terminology
We first cover basic terminology adopted from previous

work [10,17, 25] that is necessary for understanding the pa-
per’s contributions.

3.1.1 Tracking States
Given a time point t, an object o may be in either an ac-

tive state or an inactive state [25]. Specifically, if there is
a tracking record rdcov for o in OTT (see Table 2 in Sec-
tion 2.1) covering time t, we say o is in an active state at
t. We use rdpre to refer to rdcov’s predecessor record in
OTT . If no tracking record for o exists in OTT covering
time t, object o is in an inactive state at t. In this case, we
identify two relevant tracking records. Record rdpre is the
tracking record for o immediately before o becomes inactive.
Record rdsuc is the tracking record for o immediately after
o leaves the inactive state, i.e., rdsuc is the first tracking
record when o becomes active again after time t. Note that
rdpre.te < t < rdsuc.ts if object o is inactive at time t.

Object o1’s tracking records in Table 2 are plotted along
the time axis in Figure 1 (originally from [17]). It is in an
active state at time t5, and it is in an inactive state at time
t19. Relevant particular tracking records are also marked in

rd8

t1 t9 t21 timet19t5

rdcovrdpre rdpre rdsuc

t15

t=t5, Active State t=t19, Inactive State

rd5 rd6rd3rd1

Figure 1: States in Symbolic Object Tracking

the figure. For simplicity, we use devpre (devcov or devsuc)
to refer to rdpre’s (rdcov’s or rdsuc’s) device.

An object is either in an active or an inactive state at
a time point t, whereas it may change state during a time
interval [ts, te]. In Figure 1, object o1 changes state five
times during [t5, t19].

3.1.2 Snapshot Uncertainty Regions
Two cases exist for the snapshot uncertainty region of an

object o at a time point t [17]. We suppose that Vmax is
the maximum speed that object o can move at in the given
indoor space.

Case 1: Object o is in an active state at t. In this case,
UR(o, t) = Ring(devpre, Vmax·(t−rdpre.te)) 1∩devcov.Range.
I.e., o’s uncertainty region is the intersection of devcov’s de-
tection range and the ring in which o can be after leaving
devpre’s detection range. Specifically, this ring is determined
by devpre’s range and the maximum distance o can move
from rdpre.te to t. This case is illustrated in Figure 2(a).

devpre

Vmax·(t-rdpre.te) 

devcov

(a) Active State

devpre

Vmax·(t-rdpre.te) 

devp

devsuc

Vmax·(rdsuc.ts-t) 

(b) Inactive State

Figure 2: Snapshot Uncertainty Regions

Case 2: Object o is in an inactive state at t. In this case,
UR(o, t) = Ring(devpre, Vmax ·(t−rdpre.te))∩Ring(devsuc,
Vmax · (rdsuc.ts − t)). Here, UR(o, t) is the intersection of
two rings: one involves rdpre and is the same as that in
Case 1; the other involves rdsuc and the maximum distance
o can move from t to rdsuc.ts. This case is illustrated in
Figure 2(b).

3.1.3 Uncertainty Region Involving Two Consecutive
Readings

Without loss of generality, let rdi and rdj be two con-
secutive tracking records for object o. Records rdi and rdj
involve devices devi and devj , respectively. For time inter-
vals [rdi.ts, rdi.te] and [rdj .ts, rdj .te], object o is in devi’s
and devj ’s detection range, respectively. For time interval
[rdi.te, rdj .ts], object o’s location can be constrained by an

1Ring(dev, ρ) denotes the ring whose inner circle is device
dev’s detection circle and whose outer circle extends the in-
ner circle’s radius by ρ.
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extended ellipse [10] whose two foci are two points on the
boundaries of the two detection ranges (see the two circular
regions in dark in Figure 3). Furthermore, the length of the
ellipse’s major axis is 2a = Vmax · (rdj .ts − rdi.te). Such
an extended ellipse is illustrated in Figure 3. Object o’s un-
certainty region for a time interval is represented by the ex-
tended ellipse excluding the two circular regions for the two
proximity detection devices. The details of deriving such
an extended ellipse can be found in the literature [10, 19].
We use Θ(devi, devj , rdi.te, rdj .ts) to refer to the complete
region covered by the ellipse, which will be used in our sub-
sequent discussions.

devi devj

Vmax·(t-rdpre.te) Vmax·(rdsuc.ts-t) 

Figure 3: Uncertainty Region Examples

3.2 Interval Uncertainty Regions
In order to derive the uncertainty region of object o in

a given time interval [ts, te], we need to find all its relevant
tracking records in OTT . Temporally, all those records form
a chain of detections of object o. In particular, we need to
find the start record, the end record, and all the records in-
between for object o. We use rds and rde to refer to the start
(first in the chain) and end (the last) records, respectively.
Although there may be multiple in-between records, we use
rdb to refer to a concrete record between rds and rde when
it is of particular interest in our discussion. Table 3 gives
the start and end records for all cases regarding object o’s
state at ts and te.

HH
HHHts

te Active Inactive

rds rde rds rde

Active rdcov(ts) rdcov(te) rdcov(ts) rdsuc(te)
Inactive rdpre(ts) rdcov(te) rdpre(ts) rdsuc(te)

Table 3: Start and End Records for [ts, te]

Next, we derive UR(o, [ts, te]), object o’s uncertainty re-
gion during [ts, te], for the four cases given in Table 3.

Case 1: Object o is active at both ts and te, i.e., rds =
rdcov(ts) and rde = rdcov(te). Without loss of generality,
we assume that there are two records in-between. An il-
lustration is shown in Figure 4, where devs is rds.deviceID
and deve is rde.deviceID . Object o’s uncertainty region is
then the union of the ellipse regions associated with the
consecutive tracking records from rds to rde. Formally,
UR(o, [ts, te]) =

⋃
i=1..|R|−1 Θ(devi, devi+1, rdi.te, rdi+1.ts),

where rdi is a tracking record from sequence R = 〈rdcov(ts),
rdb1, . . . , rdcov(te)〉 and devi = rdi.deviceID .

devb1 devb2

devs

deve

Figure 4: Interval Uncertainty Region for Case 1

Case 2: Object o is inactive at ts but active at te, i.e.,
rds = rdpre(ts) and rde = rdcov(te). As for Case 1, an
illustration is shown in Figure 5. Here, we need to pay
particular attention to the time interval [ts, rdb1.ts] before
object o becomes detected by device devb1. For this in-
terval, due to the maximum speed constraint, the object
can only be in the intersection of the ellipse region Θs =
Θ(devs, devb1, rds.te, rdb1.ts) and the ring captured as Rings
= Ring(devb1, Vmax · (rdb1.ts − ts)).

As a result, object o’s uncertainty region for the entire
interval [ts, te] is this intersection unioned with the union of
all other ellipse regions associated with all other consecutive
tracking records from rdb1 to rde = rdcov(te). Formally,
UR(o, [ts, te]) = (Θs ∩ Rings) ∪

⋃
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = 〈rdb1, . . . , rdcov(te)〉 and devi = rdi.deviceID .

devb1 devb2

devs

deveVmax·(rdb1.ts-ts) 

Figure 5: Interval Uncertainty Region for Case 2

Case 3: Object o is active at ts but inactive at te, i.e.,
rds = rdcov(ts) and rde = rdsuc(te). An illustration is
shown in Figure 6. In this case, we need to pay particu-
lar attention to the time interval [rdb2.te, te] after object o
is last seen by device rdb2.deviceID . For this interval, due
to the maximum speed constraint, the object can only be
in the intersection of the ellipse region Θe = Θ(devb2, deve,
rdb2.te, rde.ts) and the ring Ringe = Ring(devb2, Vmax ·(te−
rdb2.te)).

As a result, object o’s uncertainty region for the entire in-
terval [ts, te] is the above intersection unioned with the union
of all other ellipse regions associated with all other consecu-
tive tracking records from rds = rdcov(ts) to rdb2. Formally,
UR(o, [ts, te]) = (Θe ∩ Ringe) ∪

⋃
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = 〈rdcov(ts), rdb1, . . . , rdb2〉 and devi = rdi.deviceID .
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devb1

devs

devb2

deve

Vmax·(te-rdb2.ts) 

Figure 6: Interval Uncertainty Region for Case 3

Case 4: Object o is inactive at both ts and te, i.e., rds =
rdpre(ts) and rde = rdsuc(te). An illustration is shown in
Figure 7. This case combines the handling of the begin-
ning and end from Cases 2 and 3, respectively. Therefore,
object o’s uncertainty region in [ts, te] is UR(o, [ts, te]) =
(Θs ∩ Rings) ∪ (Θe ∩ Ringe) ∪

⋃
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = 〈rdb1, . . . , rdb2〉 and devi = rdi.deviceID .

devb1

devs

Vmax·(rdb1.ts-ts) 

devb2

deve

Vmax·(te-rdb2.ts) 

Figure 7: Interval Uncertainty Region for Case 4

3.3 Indoor Topology Check
Our coverage so far does not consider the topology of the

indoor space. Specifically, we need to check UR(o, t) against
the given indoor space and exclude all parts of the space
that are not accessible to object o at time t. Also, we need
to check UR(o, [ts, te]) against the given indoor space and
exclude all parts of the space that are not accessible to object
o from time ts and te without exiting UR(o, [ts, te]). For each
type of uncertainty region, the part that remains after the
indoor topology check is object o’s uncertainty region.

Examples are shown in Figure 8, where the shaded parts
must be excluded from the object’s uncertainty regions. In
Figure 8(a), an object o is inactive at time point t. Suppose
that it was detected by device 1 at time t1 < t and then
by device 3 after t. According to the discussion illustrated
in Figure 2(b), o’s snapshot uncertainty region UR(o, t) is
the intersection of the two large circular regions constrained
by the maximum speed Vmax. However, the shaded part
should be excluded as it is too far away for object o to be
able to reach it at time point t. After leaving device 1’s
detection range, object o must go through door 2 to enter the
shaded part, which would yield an indoor walking distance
that exceeds the maximum Euclidean distance o can move
from t1 to t, i.e., Vmax · (t− t1). Therefore, this part should
be excluded from UR(o, t). If the topology check is skipped
in this example, the object would be “counted” for room 2

whose flow in turn would be increased incorrectly. Such a
miscalculation can result in room 2 entering a top-k query
result as a false positive.

It is worth noting that if room 2 had had a door in the
region given by the intersection of the two large circular
regions (see Figure 8(a)), further checking would be needed
to exclude parts of space that are too far away for an object
in those parts to be able to move from one device to the
other via the door. Based on the maximum speed Vmax,
we can calculate the earliest time t2 (t1 < t2 < t) for an
object to reach the assumed door. Then, moving from the
door, the possible region for the object to reach before t
is constrained by the distance Vmax · (t − t2). Any part of
space beyond that distance from the assumed door should
be excluded from the object’s uncertainty region.

3

1

2

4
1

2

3

(a) Snapshot UR

5

3

1

2 4

1

2

4

3

(b) Interval UR

Figure 8: Indoor Topology Check

In Figure 8(b), an object o is detected by devices 1, 4, and
then 2. Due to the maximum speed constraint, the object
cannot have entered the shaded regions (in rooms 4 and 5).
Therefore, these regions should be excluded from object o’s
interval uncertainty region UR(o, [ts, te]). Otherwise, the
flows of rooms 4 and 5 would be incorrectly increased and
they may enter the top-k result as false positives.

In our framework, we do such indoor topology checks to
capture the uncertainty regions for indoor moving objects
better. Specifically, after an uncertainty region UR is ob-
tained, we divide it into several disconnected parts accord-
ing to the indoor topology. For each such part, we check
its indoor distance from the involved devices. If the indoor
distance exceeds the corresponding maximum Euclidean dis-
tance, the part is excluded. For simplicity, we use UR(o, t)
and UR(o, [ts, te]) to refer to the object’s uncertainty region
also after the topology check in the following.
Remark For the sake of conciseness in our presentation,
we implicitly assume that the detection ranges of proxim-
ity detection devices do not overlap. Overlapping detection
ranges can be accommodated by making only slight changes
in the corresponding low-level geometric computations; no
changes are needed to the overall process of deriving the
uncertainty regions for objects. Therefore, the uncertainty
analysis presented in this section and the algorithms to be
presented in the next section are able to accommodate over-
lapping detection ranges. We omit the low-level details here
in order to keep our discussion concentrated and concise.

4. TOP-K INDOOR POI ALGORITHMS
We proceed to design query processing algorithms by mak-

ing use of the uncertainty regions derived in Section 3. Sec-
tion 4.1 presents the indexes we use for query processing.
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Sections 4.2 and 4.3 detail the algorithms for snapshot and
interval queries, respectively.

4.1 Indexes
We use two R-tree [4] based indexes for the data to facil-

itate query processing—one for the tracking data and one
for the indoor POIs.

The object tracking table (OTT ) (refer to Table 2) is in-
dexed by an augmented 1D R-tree named A1R-tree [17] on
the temporal attributes as follows. Let rdc be a tracking
record for object o in OTT . Such a record rdc is indexed
by an A1R-tree leaf entry of the form (t`, ta,Ptrp ,Ptrc).
Specifically, Ptrc is a pointer to record rdc, and Ptrp points
to record rdp that is o’s previous record in OTT , i.e., rdp
is rdc’s predecessor for the same object. In addition, we
set t` = rdp.te and ta = rdc.te. We call (t`, ta] (i.e.,
(rdp.te, rdc.te]) an augmented tracking time interval. A non-
leaf entry in an A1R-tree is of the form (t`, ta, cp), where
cp is a pointer to a child node and [t`, ta] is the minimum
bounding interval that contains all time intervals in the child
node.

With an A1R-tree, we are able to efficiently obtain all
the tracking records relevant to the uncertainty region de-
termination described in Section 2. For a snapshot uncer-
tainty region at query time t, a point query with t as the
parameter via the A1R-tree will return a leaf entry le =
(t`, ta,Ptrp ,Ptrc) where (t`, ta] covers t. If le.P trp.te <
t < le.P trc.ts, the object is inactive at time t, and le.P trp
(le.P trc) points to rdpre (rdsuc) (see Figures 1 and 2(b)).
Otherwise, the object is active at time t (le.P trc.ts ≤ t ≤
le.P trc.te), and le.P trc points to the rdcov (see Figures 1
and 2(a)).

For the uncertainty region in a query time interval [ts, te],
a range query with [ts, te] as the parameter via the A1R-
tree returns a series of leaf entries such that the first leaf
entry’s augmented tracking time interval covers ts and that
of the last leaf entry covers te. Furthermore, the first (last)
leaf entry contains the pointer to the particular first (last)
tracking record needed for the four cases presented in Sec-
tion 3.2, depending on the case encountered. All in-between
tracking records, if any, are accordingly obtained through
those in-between leaf entries.

The set of indoor POIs is indexed by another R-tree, called
RP . For simplicity, we consider one floor and therefore use
a 2D R-tree to index all indoor POIs in our implementation.
Nevertheless, our analysis of uncertainty regions as well as
the query processing techniques can be extended to multi-
floor cases.

4.2 Snapshot Query Algorithms

4.2.1 Iterative Algorithm
A straightforward approach to compute the snapshot query

(Problem 1) is to compute the snapshot flow value for each
POI p in the query and then return the k POIs with the
highest flow values. This iterative algorithm is formalized
in Algorithm 1.

The iterative algorithm uses a hash table flows to keep
flow values for all POIs (lines 1–2). Using a point query on
the A1R-tree RO on the OTT (line 3), the algorithm ob-
tains all the relevant leaf entries whose augmented tracking
time interval contains the query time t, as described in Sec-
tion 4.1. For each object o thus obtained from the OTT

(lines 4–5), the algorithm derives the uncertainty region
UR(o, t) for either an inactive state (lines 6–9) or an active
state (line 11). Then all POIs that intersect UR(o, [ts, te])
are found (line 12). For each such POI p, its flow value is in-
creased by the current object o’s presence in p (lines 13–14).
Finally, the top-k POIs are returned (line 15).

Algorithm 1 iterativeSnapshot(R-tree RP for indoor
POIs, A1R-tree RO for OTT , time point t, integer k)

1: initialize a hash table flows : {POI} → [0,+∞]
2: for each POI p do flows[p]← 0

3: LeafEntrySet les← RO.PointQuery(t)
4: for each leaf entry le ∈ les do
5: o← le.P trc.objectID
6: ring1 ← Ring(le.P trp.deviceID , Vmax · (t− le.P trp.te))
7: if le.P trp.te < t < le.P trc.ts then . The object is in an

inactive state
8: ring2 ← Ring(le.P trc.deviceID , Vmax ·(le.P trc.ts−t))
9: UR(o, t)← ring1 ∩ ring2

10: else . The object is in an active state
11: UR(o, t)← ring1 ∩ le.P trc.deviceID .Range
12: ps← RP .IntersectionQuery(UR(o, t))
13: for each POI p ∈ ps do

14: flows[p]← flows[p] +
Area(UR(o,t)∩p)

Area(p)

15: return the top-k from flows.keys with the highest values

4.2.2 Join Algorithm
The iterative algorithm suffers from two limitations. It

iterates over all objects and relevant POIs, which may be
inefficient. Also, it needs to compute a considerable number
of uncertainty regions. This may not pay off, as some POIs
may finally get very low overall flow values while having in-
curred complex uncertainty region computations. Motivated
by these observations, we design a more efficient join based
method that is formalized in Algorithm 2.

The join algorithm consists of three phases. The first
(lines 1–11) builds an in-memory aggregate R-tree RI for all
objects whose augmented tracking interval covers query time
t. These objects are again obtained by a point query on the
A1R-tree (line 2). If an object o is inactive at t (line 5), we
obtain the minimum bounding rectangles (MBRs) of the two
(pre and suc) proximity detection devices’ detection ranges,
and extend each of them by the corresponding maximum
possible distance (lines 6–7). The two extended MBRs are
then merged to form the object’s MBR (line 8). Otherwise,
the MBR of device devcov’s range is used for the active state
(lines 10). After the MBR is determined, the object o is
inserted into tree RI , where each node entry is augmented
with a field count that is the number of all objects in the
corresponding sub-tree.

The second phase (lines 12–18) is the initialization for
joining the POI R-tree RP and the aggregate object R-tree
RI . Here, the algorithm initializes a priority queue Q that
gives higher priority to RP node entries (groups of POIs)
that potentially have higher flow values. In particular, each
RP entry eP is associated with a join list of RI entries whose
MBRs overlap eP ’s MBR. Note that for any POI p in eP ’s
sub-tree, those objects that can contribute to p’s flow value
can only come from such RI entries. When the two tree
roots are joined (line 13–18) initially, the count values in
the RI entries are used to upper bound the flow values as an
object’s presence in any POI never exceeds 1 (Definition 1).

The third phase carries out the join (lines 19–48). The
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Algorithm 2 joinSnapshot(R-tree RP for indoor POIs,
A1R-tree RO for OTT , time t, integer k)

1: initialize an in-memory aggregate R-tree RI

2: LeafEntrySet les← RO.PointQuery(t)
3: for each leaf entry le ∈ les do
4: o← le.P trc.objectID
5: if le.P trp.te < t < le.P trc.ts then . Inactive state
6: mbr1 ← extend MBR(le.P trp.deviceID .Range) by

Vmax · (t− le.P trp.te)
7: mbr2 ← extend MBR(le.P trc.deviceID .Range) by

Vmax · (le.P trc.ts − t)
8: mbr ← MBR(mbr1,mbr2)
9: else

10: mbr ← MBR(le.P trc.deviceID .Range)

11: insert (o,mbr) into RI

12: initialize a priority queue Q
13: for each entry eP in RP .root do
14: ubF low ← 0; list← ∅
15: for each entry eI in RI .root do
16: if eP .mbr intersects eI .mbr then
17: ubF low ← ubF low + eI .count; list← list ∪ {eI}
18: Q.enqueue(〈eP , list, ubF low〉)
19: result← ∅; initialize a hash table HU

20: while Q is not empty do
21: 〈eP , list〉 ← Q.dequeue()
22: if eP is a leaf entry then
23: if list is null then
24: add POI eP .object to result
25: if result = k then return result
26: else
27: if list contain leaf entries then
28: flow ← 0
29: for each entry eI ∈ list do
30: if HU [eI .object] = ∅ then
31: HU [eI .object]← UR(eI .object, t)

32: flow ← flow + φt,eP .object(eI .object)

33: if flow 6= 0 then Q.enqueue(〈eP , null, flow〉)
34: else
35: expandList(eP , list)

36: else
37: if list contain leaf entries then
38: for each sub-entry e′P in eP .node do
39: ubF low ← 0; list2← ∅
40: for each entry e′I ∈ list do
41: if e′P .mbr intersects e′I .mbr then
42: ubF low ← ubF low + 1
43: list2← list2 ∪ {e′I}
44: if list2 6= ∅ then
45: Q.enqueue(〈e′P , list2, ubF low〉)
46: else
47: for each sub-entry e′P in eP .node do
48: expandList(e′P , list)

join order is controlled by priority queue Q (lines 20–21). If
the current RP entry eP is a leaf entry, it is processed as
follows. If eP ’s join list is empty, which means its concrete
flow value has been calculated and the value is higher than
those yet to be calculated, it is added to the result (line 24),
and if the result contains k POIs, the algorithm terminates
(line 25). Otherwise, the join list may contain leaf entries or
non-leaf entries from RI . In the former case (line 27), the
flow value of eP is calculated by deriving the uncertainty
region and presence for each object in the join list (lines 28–
32). If the flow value is non-zero, the POI in eP is pushed
back to Q with an empty join list (line 33). To avoid deriv-
ing uncertainty regions repeatedly for objects that appear

in multiple join lists, we use a hash table HU (lines 19 and
30–31) to store the uncertainty regions for objects. If eP ’s
join list contains non-leaf entries, procedure expandList (Al-
gorithm 3) is called to join eP with sub-entries from the join
list. The procedure ensures that eP is only associated with
those RI entries whose MBRs intersect eP ’s (line 4), and it
uses the count values in the RI entries to estimate the upper
bound of eP ’s flow value (line 5).

Algorithm 3 expandList(Entry eP in R-tree RP for in-
door POIs, List list of entries in R-tree RI)

1: ubF low ← 0; list2← ∅
2: for each entry eI ∈ list do
3: for each sub-entry e′I in eI .node do
4: if eP .mbr intersects e′I .mbr then
5: ubF low ← ubF low + e′I .count
6: list2← list2 ∪ {e′I}
7: if list2 6= ∅ then
8: Q.enqueue(〈eP , list2, ubF low〉)

If the current RP entry eP is a non-leaf entry, it is pro-
cessed as follows. If the join list contains leaf entries (line 37),
the join algorithm overestimates the flow value for each of
eP ’s sub-entries when joining them with the relevant en-
tries in the join list (lines 38–43). Only sub-entries with a
non-empty join list are pushed back into the priority queue
(lines 44–45). Otherwise, procedure expandList is called for
each of eP ’s sub-entries (lines 47–48).

4.3 Interval Query Algorithms

4.3.1 Iterative Algorithm
Algorithm 4 offers a straightforward way of computing the

interval query (Problem 2). Overall, it follows the same iter-

Algorithm 4 iterativeInterval(R-tree RP for indoor
POIs, A1R-tree RO for OTT , time interval [ts, te], integer
k)

1: initialize a hash table flows : {POI} → [0,+∞]
2: for each POI p do flows[p]← 0

3: LeafEntrySet les← RO.RangeQuery([ts, te])
4: initialize a hash table H
5: for each leaf entry le ∈ les do
6: append le.S to H[le.objectID ]

7: for each key objectID ∈ H.keys do
8: get (rds, . . . , rde) from H[objectID ]
9: calculate UR(objectID , [ts, te]) from (rds, . . . , rde)

10: ps← RP .IntersectionQuery(UR(objectID , [ts, te]))
11: for each POI p ∈ ps do

12: flows[p]← flows[p] +
Area(UR(o,[ts,te])∩p)

Area(p)

13: return the top-k from flows.keys with the highest values

ative paradigm as does Algorithm 1 for the snapshot query.
It uses a range query on the A1R-tree to obtain the rele-
vant leaf entries and objects whose augmented tracking time
interval overlap the query time interval [ts, te] (line 3), as
described in Section 4.1. An interval query may involve a
sequence of tracking records of an object, and therefore the
algorithm uses a hash table to form the sequences for all
objects obtained (lines 4–6). The uncertainty region of each
object is calculated (lines 8–9) according to the discussion
in Section 3.2.
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4.3.2 Join Based Algorithm
Basic framework. Like for snapshot query processing,

we have a join based algorithm for interval query processing.
As formalized in Algorithm 5, it also contains three phases:
aggregate object R-tree RI construction (lines 1–9), join ini-
tialization (lines 10–16), and join processing (lines 17–46).
The differences here lie mainly in the first phase and in the
details of deriving the uncertainty regions for objects in a
join list in the third phase.

Algorithm 5 joinInterval(R-tree RP for indoor POIs,
A1R-tree RO for OTT , time interval [ts, te], integer k)

1: initialize a hash table H
2: LeafEntrySet les← RO.RangeQuery([ts, te])
3: for each leaf entry le ∈ les do
4: append le.S to H[le.objectID ]

5: initialize an in-memory aggregate R-tree RI

6: for each key objectID ∈ H.keys do
7: get (rds, . . . , rde) from H[objectID ]
8: mbr ← MBR(objectID , [ts, te])
9: insert (objectID ,mbr) into RI

10: initialize a priority queue Q
11: for each entry eP in RP .root do
12: ubF low ← 0; list← ∅
13: for each entry eI in RI .root do
14: if eP .mbr intersects eI .mbr then
15: ubF low ← ubF low + eI .count; list← list ∪ {eI}
16: Q.enqueue(〈eP , list, ubF low〉)
17: result← ∅; initialize a hash table HU

18: while Q is not empty do
19: 〈eP , list〉 ← Q.dequeue()
20: if eP is a leaf entry then
21: if list is null then
22: add POI eP .object to result
23: if result = k then return result
24: else
25: if list contain leaf entries then
26: flow ← 0
27: for each entry eI ∈ list do
28: if HU [eI .object] = ∅ then
29: HU [eI .object]← UR(eI .object, [ts, te])

30: flow ← flow + φts,te,eP .object(eI .object)

31: if flow 6= 0 then Q.enqueue(〈eP , null, flow〉)
32: else
33: expandList(eP , list)

34: else
35: if list contain leaf entries then
36: for each sub-entry e′P in eP .node do
37: ubF low ← 0; list2← ∅
38: for each entry e′I ∈ list do
39: if e′P .mbr intersects e′I .mbr then
40: ubF low ← ubF low + 1
41: list2← list2 ∪ {e′I}
42: if list2 6= ∅ then
43: Q.enqueue(〈e′P , list2, ubF low〉)
44: else
45: for each sub-entry e′P in eP .node do
46: expandList(e′P , list)

Although this basic framework still works for interval query
processing, preliminary experimentation suggests that it can
be improved significantly. In the following, we identify the
performance bottleneck and present improvements to the
design of the join based algorithm.

Improvements. The uncertainty regions for an interval
query are much larger than those for a snapshot query. If
a single MBR is used for an interval uncertainty region, the

MBR can cover considerable dead space. This is the case in
Algorithm 5 that uses a coarse MBR estimation, especially
when an overall MBR is created for all tracking records of
an object during the query interval (line 8). To alleviate this
problem, we introduce several improvements.

Instead of using a single, large MBR to represent an ob-
ject’s trajectory during [ts, te], we use a series of much tighter
MBRs, each of which is created based on a pair of consec-
utive tracking records. Suppose that an object o’s relevant
tracking records during [ts, te] are 〈rd1, . . . , rdm〉. For each
pair (rdi, rdi+1), we create a small MBR mbri for the ex-
tended ellipse (Section 3.1.3) defined by the two tracking
records.

After we create all such m − 1 smaller MBR mbris, we
create the overall MBR mbr for all of them. When we in-
sert mbr into the aggregate R-tree RI , we create additional
information at the leaf node level for all such smaller mbris
for mbr. In particular, we insert a pointer from the entry
for mbr to the list of mbris, such that we can easily access
these when we visit mbr’s node.

Next, we modify the procedure that expands the join
list (Algorithm 3). Instead of simply checking whether two
MBRs intersect, we do additional checks when a leaf node
entry e′I is taken from R-tree RI (line 3 in Algorithm 3). In
particular, if e′I is a leaf node entry and its MBR intersects
eP ’s (line 4), we continue to check eP ’s MBR against the
smaller MBRs covered by e′I as described above. We include
e′I into the join list only if at least one such smaller MBR in-
tersects eP ’s MBR. These finer-grained checks are expected
to eliminate many false positives in the join list that would
otherwise result from the large, dead space-dominant MBR
of e′I . This arrangement reduces the join list size for eP and
reduces also the subsequent join cost.

In similar fashion, we apply the additional MBR intersec-
tion checks to Algorithm 5 when it process leaf entries from
RI (line 39). This is also expected to reduce the join list
and the join cost.

An example of the improvements is shown in Figure 9.
Object o’s overall MBR, whose dead space is indicated by

dev2 dev3

dev1

dev4

mbr1
mbr2

mbr3

p

Figure 9: Less Coarse MBR Checks

the shaded parts, overlaps a POI p, and therefore o is in-
cluded in p’s join list initially. Later, o’s complex uncer-
tainty region UR(o) is derived to calculate its presence in
p. It turns out that the complex calculation does not con-
tribute to the query result because UR(o) does not intersect
with p. Specifically, object o’s single, large MBR can be re-
placed by three smaller MBRs. As shown in the figure, each
of the three smaller MBRs bounds the ellipse corresponding
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to a pair of consecutive tracking records. Using the smaller
MBRs, object o will be excluded from p’s join list, and the
calculation of UR(o) will be skipped since none of the three
smaller MBRs intersects with p. We only implement the
improved framework in the experimental comparisons.

5. EXPERIMENTAL STUDIES
This section reports on the experimental studies of our re-

search. Section 5.1 presents the experimental settings. Sec-
tions 5.2 and 5.3 cover the experiments on synthetic and real
data, respectively.

5.1 Experimental Settings
All algorithms are implemented in Java and run on a com-

puter with Windows 7 Enterprise edition, an Intel Core i7-
2620M 2.70GHz CPU, and 8.0GB main memory.

Synthetic data set: We use a floor plan with about 100
rooms that are all connected by doors to a hallway. We
place a total of 143 RFID readers by doors and along the
hallways. We generate object movements using the random
waypoint model [11]. All objects move with a fixed speed of
1.1 m/s, which is also used as the maximum speed Vmax.

We vary multiple parameters when generating the data,
as shown in Table 4 where default values are in bold. We
vary |O|, i.e., the number of objects in the OTT from 10 K
to 50 K. We vary the RFID detection range, the radius of
the circular region covered by an RFID reader, from 1m to
2.5m. For the complete synthetic data set, the number of
the OTT tracking records falls in the range from 140 K to
2,000 K.

Parameters Settings

|O| 10K, 20K, ..., 50K
Detection Range (meter) 1, 1.5, 2, 2.5
|P | (% of all indoor POIs) 2%, 4%, 6%, 8%, 10%

k 1, 2, 3, 4, 5, ..., 10, ... 15
te − ts (minutes) 10, 20, 30, ..., 60

Table 4: Parameter Settings in Experiments

Real-world data set: We use a real data set collected
from Copenhagen International Airport (CPH) where pas-
sengers with Bluetooth-enabled mobile phones are tracked
by deployed Bluetooth radios. We extract the data for a pe-
riod of 7 months with the most tracking records. Our OTT
contains approximately 600K records for about 10K passen-
gers. We do not vary the detection range in the experiments
on the real data set because we have no access to change
the configurations in the real deployment. We use the same
Vmax as in the synthetic data.

Query parameters: We also vary query parameters ac-
cording to Table 4. Specifically, k (the number of top ranked
indoor POIs to be returned) is varied from 1 to 15. The
query POI set is determined as follows. For both synthetic
and real data, 375 POIs are determined in the indoor space
at distinctive locations and with different areas. Multiple
POIs may come from the same large room that is divided
into multiple uses. We control the number of query POIs
(|P |) as a percentage (2% to 10%) of the total number of
indoor POIs. Given a percent, the query POI set is deter-
mined as a random subset of the total 375 POIs. We start
from 2% to make sure there are sufficient query POIs for

returning the top-k results. On the other hand, we do not
include more than 10% of all POIs in a query because, in-
tuitively, not all indoor POIs are interesting and frequently
visited, so query issuers like building officers may query a
subset of all indoor POIs. Furthermore, te − ts is the query
time interval used in the interval top-k indoor POI query.
We vary it from 10 to 60 minutes.

5.2 Experiments on Synthetic Data

5.2.1 Results for Snapshot Queries
We first evaluate the performance of the snapshot query

by varying parameters k, |P |, and the detection range. We
do not change parameter |O| for the snapshot query because
the number of moving objects retrieved at a given time point
is fairly random, and is smaller than and independent of |O|.

The results of varying k, |P |, and the detection range are
presented in Figures 10 and 11(a). As a general observation,
the join algorithm outperforms the iterative algorithm. This
is because the former is able to prune more objects when
their uncertainty regions do not overlap with the regions of
POIs.

The effect of varying k is shown in Figure 10(a). As can
be observed, varying k has only little influence on both algo-
rithms. This indicates that both algorithms are stable with
respect to query parameter k. The relatively high cost for
both algorithms at k = 1 is due to the intensive initial com-
putation of the uncertainty regions for many objects, which,
however, does not pay off for a simple top-1 query.

The effect of varying |P | is shown in Figure 10(b). As the
number of query POIs increases, the running time increases
slightly. This is because more query POIs occupy larger
areas, and thus more moving objects are present in POIs.
Thus, more object uncertainty regions intersect POIs, which
yields longer processing times.
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Figure 10: Snapshot Query on Synthetic Data Set

Figure 11(a) presents the effect of varying the detection
range of RFID readers. When the detection range increases,
the uncertainty region increases as well. Therefore, more
computation time is needed to estimate the areas of uncer-
tainty regions. Hence, the running time is the largest when
the detection range is set to 2.5m. The slight decrease at 2
meters is attributed to the fluctuation of the OTT size.

5.2.2 Results for Interval Queries
The performance of the interval query algorithms is re-

ported in Figures 11(b) and 12. In this experiment, we vary
all five parameters listed in Table 4. Similar to the exper-
iments for snapshot queries, the join algorithm runs faster
than the iterative algorithm in almost all settings, which we
attribute to its effective pruning strategy.
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Figure 11: Effect of Detection Range

As shown in Figure 12(a), varying k does not significantly
impact the performance of the algorithms except for k = 1.
Overall, both algorithms are stable with respect to query
result size except when k = 1. The longer running time for
k = 1 occurs because the considerable computations on the
uncertainty regions do not pay off for the very small top-1
query results. The performance improves when k increases
because neither algorithm works in an incremental manner
with respect to k. The relatively high cost at k = 1 is not
observed in the counterpart experiments on the real data set
(see Figure 14(a)), which is attributed to the considerably
smaller size of the real data.

The effect of varying |P | is presented in Figure 12(b).
When increasing |P |, the running time of the iterative algo-
rithm increases, while the join algorithm stays stable. Both
algorithms have longer running times when compared to
their snapshot query counterparts. This is understandable,
as uncertainty regions in the snapshot setting are much smaller
than those in the interval setting.
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Figure 12: Interval Query on Synthetic Data Set

Figure 12(c) shows that the running time of both algo-
rithms increases as |O| increases. Nevertheless, the join al-
gorithm remains more efficient. This indicates that the join
algorithm is most scalable.

As the query time interval te − ts increases, the running
time of the two algorithms increases accordingly, as pre-
sented in Figure 12(d). Longer query intervals tend to yield
larger and more complex uncertainty regions that require
more time to process.

As presented in Figure 11(b), when the detection range
increases, the running time of both algorithms tends to de-
crease. This trend is opposite to the observation in the ex-
periment for snapshot queries where the detection range is
changed. In the interval setting, the algorithms compute on
moving objects trajectories in a given time interval and thus
involve a series of tracking records and devices. When the
detection ranges of the devices increase, an object’s uncer-
tainty regions between pairs of consecutive devices shrink.
As a result, objects’ overall uncertainty regions tend to be
smaller and thus take less time to process. At the outlier of
2 meters, the OTT is small, and the tracking data is sparse,
which offsets the benefit of a larger detection range.

5.3 Experiments on Real Data
Results for snapshot queries are reported in Figure 13.

Clearly the join algorithm outperforms the iterative algo-
rithm. Both algorithms are fairly stable with respect to
varying k, as shown in Figure 13(a). When the number
of query POIs is increased, both algorithms’ running times
increase moderately and almost linearly, as shown in Fig-
ure 13(b). These results indicate that our designs are stable
and scalable for snapshot queries in real indoor settings.
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Figure 13: Snapshot Query on CPH Data Set

Interval query performance results are reported in Fig-
ure 14. It is clear that the join algorithm outperforms the
iterative algorithm for all settings in these experiments.

The effect of varying k is shown in Figure 14(a). The join
algorithm is more efficient and slightly more stable when
varying k. This indicates that our strategy of finer MBRs
for interval uncertainty regions pays off.

The effect of varying the number of query POIs is shown
in Figure 14(b). The more stable performance of the join
algorithm is again attributed to the use of finer MBRs for
interval uncertainty regions. Smaller MBRs can help prune
objects (and their uncertainty regions) more effectively even
when there are more POIs and those POIs collectively oc-
cupy larger areas.

The effect of varying the query interval length is shown
in Figure 14(c). Longer intervals yield longer object tra-
jectories and larger uncertainty regions. This explains the
increase in the running times of both algorithms. Neverthe-
less, the join algorithm is still more efficient thanks to the
use of finer MBRs.

6. RELATED WORK
We briefly review related work in this section. Section 6.1

covers the research on indoor-space moving objects, and Sec-
tion 6.2 covers the density queries in outdoor spaces.

6.1 Indoor-Space Moving Objects
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Figure 14: Interval Query on CPH Data Set

Due in part to their different topology, indoor spaces are
modeled [10, 13, 16, 21, 22] differently than outdoor spaces.
Moreover, indoor moving objects are tracked by means dif-
ferent than outdoor GPS and thus generate different track-
ing data.

Assuming a generic setting of symbolic indoor tracking,
Yang et al. study continuous range monitoring queries [25]
and probabilistic k nearest neighbor queries [26] on indoor
moving objects. Uncertain query results are returned as
objects’ locations are unknown when they are outside any
detection range. Yu et al. [28] propose a particle filter based
method to infer undetected locations under RFID tracking,
which thus improves query result quality. Unlike these works
that concern the current locations of indoor moving objects,
this paper works on historical indoor tracking data.

Lu et al. [17] define spatio-temporal joins over indoor mov-
ing objects whose historical locations are captured in the
same format as the symbolic tracking data assumed in this
paper. However, while we compute flows for static indoor
POIs according to historical tracking data, Lu et al. com-
pute pairs of indoor moving objects that were in the same
location according to historical data.

Xie et al. [23,24] study indoor distance-aware spatial queries
over online indoor moving objects whose positions are re-
ported as probabilistic samples rather than using RFID de-
tection ranges. Therefore, the proposed techniques are un-
suitable for the problems we consider in this paper.

Recently, Ahmed et al. [2] define indoor density queries
based on historical RFID indoor tracking data. Their den-
sity definition differs from our definition of flow. Moreover,
we analyze the inherent uncertainties in the data and design
uncertainty-aware solutions, whereas Ahmed et al. do not
consider uncertainty.

6.2 Density Queries in Outdoor Spaces
Most existing research works on the querying of object

flow and density are for outdoor Euclidean spaces or spatial
road networks.

Tao et al. [20] use an aggregate RB-tree (aRB-tree) for
indexing spatio-temporal objects in a Euclidean space and
propose algorithms to count objects in a given spatial win-
dow during a given time interval. The proposed solution
considers no location uncertainty and the aRB-tree cannot
handle the complex indoor topology. Therefore, that solu-
tion cannot be used for the problems addressed in this paper.

Employing micro-clustering [29], Li et al. [15] propose
techniques that cluster moving objects and dynamically up-

date the clusters as the objects move linearly. The proposed
techniques do not apply in our setting, where indoor ob-
ject movements can not be captured by linear models but
are reported based on discrete detection ranges. Yiu and
Mamoulis [27] propose density based and hierarchical meth-
ods to partition and cluster static objects on a spatial net-
work. Their proposal uses network distances between static
positions and therefore does not solve our problems on in-
door moving objects.

Hadjieleftheriou et al. [5] study threshold density region
queries that find outdoor regions with more objects than
a given threshold. Their solution assumes that the objects
move according to known linear functions and are indexed
by uniform space-time grids. Jensen et al. [9] study snapshot
dense region queries in a Euclidean plane where objects move
linearly and are indexed by a Bx-tree [8]. With the same
linear motion assumption, Hao et al. [6] study continuous
density queries by using a quad-tree to index moving objects.
To improve density query results, Ni and Ravishankar [18]
redefine the density and use small square neighborhoods to
approximate arbitrary outdoor regions. These proposals [5,
6, 9, 18] are unsuitable for our problems, a key reason being
that objects in indoor spaces cannot be modeled well by
linear functions.

Huang and Lu [7] define online density region queries on
moving objects that are observed by sensors at fixed posi-
tions in a geographical area. The proposed solution assumes
that object locations are captured as certain points in a 2D
Euclidean space. This assumption renders the solution un-
suitable for our problems where indoor moving object loca-
tions are captured as uncertainty regions.

Li et al. [14] devise techniques to return traffic density-
based hot routes from historical trajectories in a road net-
work. Cai et al. [12] design a clustering based technique
for continuously monitoring dense road segments. Different
from these works, we target indoor spaces where objects’
historical movements are captured as detection ranges asso-
ciated with time intervals.

7. CONCLUSION AND FUTURE WORK
In this paper, we study how to find the top-k frequently

visited indoor Points of Interest (POIs) using symbolic in-
door tracking data that captures object movements indoors.
We define two types of queries in this regard. A snapshot
query finds those indoor POIs that were visited by the most
tracked objects (e.g., people) at a given time point, whereas
an interval query finds such POIs for a given time interval.
As symbolic indoor tracking data can only capture trajec-
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tories with a considerable degree of uncertainty, we define
appropriate ways to quantify how frequently an indoor POI
is visited by probabilistically counting objects’ presences in
the POI. Subsequently, we conduct a detailed analysis on the
uncertainty regions of objects in the settings of the two types
of queries. Based on the uncertainty analysis, we design al-
gorithms for both query types. We use both synthetic and
real data sets to evaluate the query processing algorithms,
and the performance results show that our proposed join-
based algorithms are capable of significantly outperform-
ing straightforward baselines and are much more scalable
in terms of data set size and query interval length.

Several directions exist for future research. First, it is rel-
evant to consider an object’s dwell time when calculating its
interval presence in a POI. The interval-related definitions
in the paper can be extended for that purpose. In particu-
lar, an object’s interval uncertainty region can be extended
to also reflect the temporal aspect in addition to the spatial
aspect. Second, it is of interest to extend the uncertainty
analysis to support multiple floors. The new challenge is to
track object movement between floors appropriately and to
derive the uncertainty regions accordingly. Third, it is of in-
terest to investigate how to solve the problems addressed in
the paper using other types of indoor tracking data. To this
end, it can be considered whether the proposed techniques
can be applied to, or adapted for, other data types. Fourth,
it is relevant to develop techniques for finding the currently
crowded indoor POIs by using tracking data. Fifth, it is
of interest to evaluate the query results against real indoor
POIs in order to see how effective the proposed query types
are at finding frequently visited indoor POIs. For that pur-
pose, ground truth data on popular indoor POIs is needed.
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