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ABSTRACT
Indoor tracking data is being amassed due to the deployment
of indoor positioning technologies. Analysing such data dis-
closes useful insights that are otherwise hard to obtain. For
example, by studying tracking data from an airport, we can
identify the shops and restaurants that are most popular
among passengers. In this paper, we study two query types
for �nding frequently visited Points of Interest (POIs) from
symbolic indoor tracking data. The snapshot query �nds
those POIs that were most frequently visited at a given
time point, whereas the interval query �nds such POIs for
a given time interval. A typical example of symbolic track-
ing is RFID-based tracking, where an object with an RFID
tag is detected by an RFID reader when the object is in the
reader’s detection range. A symbolic indoor tracking system
deploys a limited number of proximity detection devices, like
RFID readers, at preselected locations, covering only part of
the host indoor space. Consequently, symbolic tracking data
is inherently uncertain and only enables the discrete cap-
ture of the trajectories of indoor moving objects in terms of
coarse regions. We provide uncertainty analyses of the data
in relation to the two kinds of queries. The outcomes of the
analyses enable us to design processing algorithms for both
query types. An experimental evaluation with both real and
synthetic data suggests that the framework and algorithms
enable e�cient and scalable query processing.

1. INTRODUCTION
Indoor spaces such as shopping malls, o�ce buildings, li-

braries, metro stations, and airports serve as the settings of
signi�cant parts of people’s daily lives. The indoor move-
ments of people are increasingly data�ed due to advances
in indoor positioning [1]. As a result, a new type of data|
indoor tracking data|is being accumulated in a variety of
formats determined by the particular indoor positioning tech-
nologies used.

As in the case for outdoor tracking data [3], analyzing
indoor tracking data can reveal how di�erent parts of an
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indoor space are used by its inhabitants, e.g., the number
of visits to a particular part of space over time can be de-
termined. The �ndings are potentially useful in practical
scenarios. For example, the lease prices of di�erent shop
locations in a large shopping mall may be set according to
the numbers of people passing by the location. As another
example, information on the behavior of past visitors to a
museum with multiple exhibitions may be used for making
recommendations to new visitors and for planning. These
and other example scenarios may bene�t from 
ow counting
using indoor tracking data.

Flow counting is non-trivial in indoor spaces, where new,
unique technical challenges exist that are di�erent from those
in outdoor contexts. These in turn call for novel data man-
agement techniques.

First of all, indoor positioning systems di�er fundamen-
tally from GPS that is prevalent outdoors but that generally
does not work indoors. Having to use wireless technologies
such as Wi-Fi, Bluetooth, and RFID that originally are de-
signed for data communication, indoor positioning systems
work according to di�erent principles and o�er positioning
accuracies that are below that of GPS. For example, in an
RFID based system, an object with an RFID tag is detected
by an RFID reader only when the object is in the reader’s
detection range. Due to their costs, a limited number of
readers are deployed, covering only part of the host indoor
space. Consequently, the tracking data is inherently uncer-
tain and only enables the discrete capture of the trajectories
of indoor moving objects in terms of coarse regions. Such
uncertainty renders 
ow counting techniques based on GPS
data unsuitable for indoor spaces.

Further, indoor spaces are characterized by entities like
doors, rooms, and hallways that enable and constrain the
movements of indoor objects. Compared to outdoor Eu-
clidean or spatial network space, indoor spaces have more
complex topologies. When counting 
ows in indoor spaces,
their complex topologies must be taken into account.

This paper considers 
ow counting based on symbolic in-
door tracking data where object locations are captured as
circular regions centered at pre-selected indoor locations.
Such circular regions correspond to the detection ranges of
proximity detection devices, e.g., RFID readers. We de-
�ne appropriate ways of counting 
ows based on the uncer-
tain tracking data. Our de�nitions capture probabilistically
how frequently indoor POIs are visited by tracked visitors.
Based on the de�nitions of indoor 
ow counting, we de�ne
two query types for �nding indoor POIs that are visited fre-
quently at a given time point and during a given time range,
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extended ellipse [10] whose two foci are two points on the
boundaries of the two detection ranges (see the two circular
regions in dark in Figure 3). Furthermore, the length of the
ellipse’s major axis is 2a = Vmax � (rdj .ts � rdi.te). Such
an extended ellipse is illustrated in Figure 3. Object o’s un-
certainty region for a time interval is represented by the ex-
tended ellipse excluding the two circular regions for the two
proximity detection devices. The details of deriving such
an extended ellipse can be found in the literature [10, 19].
We use Θ(devi, devj , rdi.te, rdj .ts) to refer to the complete
region covered by the ellipse, which will be used in our sub-
sequent discussions.

devi devj

Vmax·(t-rdpre.te) Vmax·(rdsuc.ts-t) 

Figure 3: Uncertainty Region Examples

3.2 Interval Uncertainty Regions
In order to derive the uncertainty region of object o in

a given time interval [ts, te], we need to find all its relevant
tracking records in OTT . Temporally, all those records form
a chain of detections of object o. In particular, we need to
find the start record, the end record, and all the records in-
between for object o. We use rds and rde to refer to the start
(first in the chain) and end (the last) records, respectively.
Although there may be multiple in-between records, we use
rdb to refer to a concrete record between rds and rde when
it is of particular interest in our discussion. Table 3 gives
the start and end records for all cases regarding object o’s
state at ts and te.

HH
HHHts

te Active Inactive

rds rde rds rde

Active rdcov(ts) rdcov(te) rdcov(ts) rdsuc(te)
Inactive rdpre(ts) rdcov(te) rdpre(ts) rdsuc(te)

Table 3: Start and End Records for [ts, te]

Next, we derive UR(o, [ts, te]), object o’s uncertainty re-
gion during [ts, te], for the four cases given in Table 3.

Case 1: Object o is active at both ts and te, i.e., rds =
rdcov(ts) and rde = rdcov(te). Without loss of generality,
we assume that there are two records in-between. An il-
lustration is shown in Figure 4, where devs is rds.deviceID
and deve is rde.deviceID . Object o’s uncertainty region is
then the union of the ellipse regions associated with the
consecutive tracking records from rds to rde. Formally,
UR(o, [ts, te]) =

S
i=1..|R|−1 Θ(devi, devi+1, rdi.te, rdi+1.ts),

where rdi is a tracking record from sequence R = hrdcov(ts),
rdb1, . . . , rdcov(te)i and devi = rdi.deviceID .

devb1 devb2

devs

deve

Figure 4: Interval Uncertainty Region for Case 1

Case 2: Object o is inactive at ts but active at te, i.e.,
rds = rdpre(ts) and rde = rdcov(te). As for Case 1, an
illustration is shown in Figure 5. Here, we need to pay
particular attention to the time interval [ts, rdb1.ts] before
object o becomes detected by device devb1. For this in-
terval, due to the maximum speed constraint, the object
can only be in the intersection of the ellipse region Θs =
Θ(devs, devb1, rds.te, rdb1.ts) and the ring captured as Rings
= Ring(devb1, Vmax � (rdb1.ts � ts)).

As a result, object o’s uncertainty region for the entire
interval [ts, te] is this intersection unioned with the union of
all other ellipse regions associated with all other consecutive
tracking records from rdb1 to rde = rdcov(te). Formally,
UR(o, [ts, te]) = (Θs \ Rings) [

S
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = hrdb1, . . . , rdcov(te)i and devi = rdi.deviceID .

devb1 devb2

devs

deveVmax·(rdb1.ts-ts) 

Figure 5: Interval Uncertainty Region for Case 2

Case 3: Object o is active at ts but inactive at te, i.e.,
rds = rdcov(ts) and rde = rdsuc(te). An illustration is
shown in Figure 6. In this case, we need to pay particu-
lar attention to the time interval [rdb2.te, te] after object o
is last seen by device rdb2.deviceID . For this interval, due
to the maximum speed constraint, the object can only be
in the intersection of the ellipse region Θe = Θ(devb2, deve,
rdb2.te, rde.ts) and the ring Ringe = Ring(devb2, Vmax �(te�
rdb2.te)).

As a result, object o’s uncertainty region for the entire in-
terval [ts, te] is the above intersection unioned with the union
of all other ellipse regions associated with all other consecu-
tive tracking records from rds = rdcov(ts) to rdb2. Formally,
UR(o, [ts, te]) = (Θe \ Ringe) [

S
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = hrdcov(ts), rdb1, . . . , rdb2i and devi = rdi.deviceID .
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