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ABSTRACT
Multidimensional data are published in the web of data un-
der common directives, such as the Resource Description
Framework (RDF). The increasing volume and diversity of
these data pose the challenge of finding relations between
them in a most efficient and accurate way, by taking into ad-
vantage their overlapping schemes. In this paper we define
two types of relationships between multidimensional RDF
data, and we propose algorithms for efficient and scalable
computation of these relationships. Specifically, we define
the notions of containment and complementarity between
points in multidimensional dataspaces, as different aspects
of relatedness, and we propose a baseline method for com-
puting them, as well as two alternative methods that target
speed and scalability. We provide an experimental evalua-
tion over real-world and synthetic datasets and we compare
our approach to a SPARQL-based and a rule-based alterna-
tive, which prove to be inefficient for increasing input sizes.

Categories and Subject Descriptors
H.2.8 [Information Systems Applications]: Database
Management—Database Applications

Keywords
RDF, Multidimensional Data,OLAP, Information Extrac-
tion, Algorithms, Performance

1. INTRODUCTION
Over the past few years, a wide range of public and private

bodies such as statistical authorities, academic institutions,
financial organizations and pharmaceutical companies adopt
RDF and the Linked Data (LD) paradigm [9, 31] to enable
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public access to multidimensional data in a variety of do-
mains, including socio-economics, demographics, enterprise
OLAP, clinical trials and health data. The published data
enables third parties to combine information, perform ana-
lytics over different datasets and gain insights to assist data
journalism, industry data management, and evidence-based
policy making [25, 4, 27].

Multidimensional data are usually treated under the OLAP
prism, where they are represented as observations that are
instantiated over pre-defined dimensions and measures [7].
The dimensions provide context to the measures and are
structured in hierarchies of different granularity levels. For
example, a dataset that measures population broken down
by locations and time periods, will consist of two dimensions,
namely location and time-period, pertaining to granularity
levels, such as countries, regions, and cities, or decades, years
and quarters, respectively. A combination of fixed dimension
levels is referred to as a cube; it contains the set of observa-
tions that instantiate these levels, such as the populations of
EU countries in the last decade, or the unemployment of EU
cities in 2014. All different combinations of dimension lev-
els form a hierarchical cube lattice, where cubes are related
with ancestry links.

In the context of Linked Data, the modelling recommen-
dation is the Data Cube Vocabulary (QB) [9]. This provides
a common meta-schema for mapping multidimensional data
to RDF, enabling the representation of datasets, dataset
schemas, dimensions, dimension hierarchies (e.g. codelists),
measures, observations and slices (parts of datasets). An ex-
ample observation can be seen in Listing 1, in which observa-
tion obs1 measures the population of Germany in 2001. The
values for 2001 (ex:Y2001) and Germany (ex:DE) are URIs
from an example code list. The reuse of common URIs for
handling multidimensional elements across different sources
enables sharing of terms and the use of SPARQL for feder-
ating queries over remote datasets, laying the basis for the
application of OLAP analytics at web scale.

Currently, there are few works on definitions and tech-
niques for the discovery and classification of relationships
between multidimensional observations in RDF settings [18,
32]. Such relationships can provide useful information to the
analyst, such as whether an observation contains aggregated
data with respect to other observations, and when two ob-
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servations measuring different phenomena are complemen-
tary and can be combined. Assume that a data journalist
is working on the issue of unemployment in different parts
of the world and wants to explore whether unemployment
rates relate to the population of a city or a country. As-
sume now that our journalist obtains dozens of datasets on
the topic from various sources and wants to see whether and
how they can be combined to facilitate his task. Although
the journalist has defined his own reference dimension hier-
archies1 as shown in Figure 1, and converted the incoming
data values to them via a simple script, it is still unclear to
him that among the dozens of datasets he has collected (D1,
D2 and D3 of Figure 2), coming from different RDF sources,
can be combined to support his task.

In our example, observation o11 shares the same dimension
values with o31, but they measure two different facts, which
can be complemented. Furthermore, observations o21, o22
that measure unemployment for 2011 in Greece and Italy,
respectively, contain observations o32, o33 that measure un-
employment in Athens and Rome for a sub-period of the
same year, although o21, o22 measure poverty as well. The
resulting table can be seen in Figure 3. This knowledge gives
insights on how observations are related across datasets,
how OLAP operations (roll-ups, drill-downs) can be ap-
plied in order to navigate and explore remote cubes, make
observations comparable, provide recommendations for on-
line browsing and quantify the degree of relatedness between
data sources. Furthermore, materialization of these relation-
ships helps speed up online exploration, and computation of
k-dominance as defined in [6], and skylines or k-dominant
skylines. Especially in the case of skylines, computation
of containment between observations provides a means to
directly access skyline, or k-dominant skyline points in col-
lections of large web data.

However, placing different data into the same context and
finding hidden knowledge is difficult and computationally
challenging [4]. The detection of pair-wise relationships be-
tween observations is inherently a quadratic task; typically
every observation from one dataset must be compared to all
others within the same or from different datasets. The use of
traditional ways such as SPARQL- or rule-based techniques
becomes inefficient as the number of observations and the
number of cubes increases. Our preliminary experiments
employing recursive SPARQL queries with property paths
and negation, indicate that even for 20k observations from 7
datasets it can take more than one hour to complete in com-
modity hardware, while the same tasks time-out for larger
numbers of instances. The same holds when inference-based
techniques are used: OWL-based reasoning lacks the expres-
sivity for complex property-based inference, while rule-based
reasoning such as SWRL [15] and Jena Rules [5] does not
scale adequately due to the transitive nature of the rela-
tionships and the universal quantification needed to encode
the conditions; the search space expands exponentially [12].
From the above, there is a clear need for establishing new
efficient methods for computing pair-wise relationships be-

1In realistic settings, schema alignment is often necessary.
Two prominent cases where it is used in practice include:
(a) traditional BI environments, where all dimensions pro-
vide a reconciled dimension bus, and (b) user-initiated data
collections from the web. In both cases, incoming data have
to be translated to a reference vocabulary, before being used
for further analysis.

ex:obs1 a qb:Observation ;
qb:dataSet ex:dataset ;
ex:time ex:Y2001 ;
sdmx -attr:unitMeasure ex:unit ;
ex:geo ex:DE ;
ex:population "82 ,350 ,000"^^ xmls:integer .

Listing 1: Example RDF Data Cube observation

Figure 1: Hierarchical code list for the dimensions in Figure
2.

tween RDF observations that can scale up to the numbers
and variety of datasets currently published on the web of
data.

Approach Overview. In this paper, we address the
problem of efficiently computing containment and comple-
mentarity between RDF observations, extending the prelim-
inary work presented in [22]. Specifically, given an observa-
tion og, and a set of observations O from different sources, we
define two relationships, namely containment and comple-
mentarity. A containment relationship captures whether an
observation contains aggregated information with respect to
other observations. It determines if values from the dimen-
sions of og contain fully or partially values of the dimensions
of another observation, thus enabling rollup and drilldown
operations, directly or indirectly, as well as assigning them a
hierarchy-based similarity metric. A complementarity rela-
tionship captures whether the measures of two observations
can be combined together, providing comparable data for
the same points in the multidimensional space. More specif-
ically, we extend the notion of schema complement, defined
in [10] and apply it at the instance level to discover comple-
mentary observations.

We first present a O(n2) baseline technique to calculate
these properties. Then, we introduce two alternatives that
prove to be more efficient and scalable in terms of compu-
tation time. The first performs observation clustering and
limits comparisons between observations in the same clus-
ters. The second uses a multidimensional lattice to assign
observations to specific permutations of dimensions and lev-
els, and prune the search space by checking for restrictions at
the schema-level. We experimentally evaluate these 3 tech-
niques over a set of 7 real-world multidimensional datasets
and compare them in terms of efficiency with traditional
techniques, namely with a SPARQL-based and a rule-based
approach. Finally, we evaluate the scalability of our ap-
proach in an artificially generated dataset.

Contributions. The contributions of this paper can be
summarized as follows:

• we extend the notions of full and partial containment
between two observations defined in [22] as deriva-
tives of the hierarchical relationships between their di-
mension values, and observation complementarity as a
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Figure 2: Candidate relationships between observations.

Figure 3: Derived containment and complementarity relationships from datasets D1, D2 and D3 of Figure 2.

means of correlation between data points,

• we present a baseline, data-driven technique for com-
puting these properties in memory,

• we introduce two alternative techniques that target ef-
ficiency,

• we evaluate our techniques in terms of efficiency and
scalability over real-world and synthetic datasets, and
we perform comparisons between them, as well as with
a SPARQL-based and a rule-based approach.

The remainder of this paper is organized as follows. Sec-
tion 2 presents preliminaries and formulates the problem
of containment and complementarity computation between
RDF cubes. Section 3 presents the baseline algorithm and
two proposed improvements for computing the defined re-
lationships. Section 4 describes the performed experiments
and evaluation. Finally, section 5 discusses related work and
section 6 concludes this paper.

2. PRELIMINARIES
The problem space is composed of n datasets, each of

which contains a number of observations, structured in one
or more cubes. A single dataset is composed of the schema
part (i.e. dimensions, measures and attributes), and the
data part (i.e. observations or facts). Dimension values are
provided by code lists with hierarchical structure, whereas
flat code lists pertain to dimensions with exactly one level.

Definition 1 (Dataset Structure): Let D = {D1, . . . , Dn}
be the set of all input datasets. A dataset Di ∈ D is com-
posed by the set of observations, Oi, and the set of schema
definitions, Si, and O ={O1, . . . , On} and S ={S1, . . . , Sn}
are the sets of all observations and schema definitions in D.
Furthermore, a schema Si consists of the sets of dimensions
Pi and measures Mi defined in Di, i.e., Si = {Pi,Mi}. Let
P =

⋃n
i=1 Pi =p1,p2,. . . ,pk and M =

⋃n
i=1 Mi =m1,m2,. . . ,ml

be the set of all k distinct dimensions and l measure proper-
ties in D. Any pj ∈ P,mj ∈M can belong to more than one

Si, as dimension and measure properties are reused among
sources. In our example, S1, S2 and S3 are the schemata
of datasets D1, D2 and D3, and dimensions refArea and
refPeriod belong to all three schemata. Similarly, measure
ex:unemployment belongs to both M2 and M3. An observa-
tion o ∈ Oi is an entity that instantiates all dimension and
measure properties defined in Si. The value that observa-
tion oi has for dimension pj is hj

i . In the example, the values
in the white cells represent dimension values (e.g. ”Athens”
is a value for dimension refArea), while grey cells represent
measured values (e.g. 10% unemployment).

Definition 2 (Hierarchies): Each dimension pj ∈ P takes
values from a code list, i.e. a set of fixed values coded by
URIs, C(pj) = {c(pj)1, . . . c(pj)m}, j = 1 . . . k, (for simplic-
ity we write cji instead of c(pj)i). Each code list defines a
hierarchy such that when cji � cjm, then cji is an ancestor
of cjm. Furthermore, we define cjroot as the top concept in
the code list of pj , i.e., an ancestor of all other terms in the
coded list, such that ∀cji : cjroot � cji. This kind of ances-
try is reflexive, i.e. ∀cji : cji � cji. In Figure 2, sample code
lists are depicted for the three dimensions shown in Figure
1. In our example, Greece � Athens, Ioannina and Italy �
Rome.

A complementarity relationship captures whether two ob-
servations measure different facts about the same set of di-
mension instances. In the motivating example of Figure 1,
o11 and o31 are complementary because they measure differ-
ent facts (population and unemployment respectively) about
the city of Athens in 2001. The fact that o11 refers to all
values from the sex dimension does not provide any further
specialization and is inherently found in o31 as well. This is
captured in the following definition.

Definition 3 (Observation Complement): Given two ob-
servations oa and ob and their dimensions Pa and Pb, oa
complements ob when the following conditions hold:

∀pi ∈ Pa ∩ Pb : hi
a = hi

b (1)

∀pj ∈ Pb \ Pa : hj
b = cjroot (2)
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Therefore, (1) ∧ (2) ⇒ Compl(oa, ob). We denote this with
Compl(oa, ob). Definition 1 states that the shared dimen-
sions must have the same values as stated in (1), and all
other dimension values of ob must be equal to the root of
the dimension hierarchy, providing no further specialization,
as stated in (2). For example, an observation measuring
poverty in Greece is observation complement with an ob-
servation measuring the population in Greece for all human
genders. In our example, observations o11 and o31 are com-
plementary, in that they measure different things for Athens
in 2001. Condition (2) holds for o31 in the sex dimension,
where absence of the dimension implies existence of the root
value cjroot (i.e. no specialization).

A containment relationship captures whether an observa-
tion aggregates the measures of the contained observations.
For example, measuring the population of Greece implic-
itly contains all the populations of Greece’s sub-regions. We
distinguish between full and partial containment. The for-
mer denotes that all contained observations must be aggre-
gated (e.g., a roll-up operation) for being observation com-
plement with the containing one, while the latter denotes
that both contained and containing observation must be
rolled-up on their disjoint dimensions for becoming comple-
mentary. These two concepts are defined as follows.

Definition 4 (Partial and full containment): Given two
observations oa and ob, their dimensions Pa and Pb and their
measures Ma and Mb, partial containment between oa and
ob exists when the following conditions hold:

Ma ∩Mb 6= ∅ (3)

∃pi ∈ Pa ∩ Pb : hi
a � hi

b (4)

Therefore, (3) ∧ (4) ⇒ Contpartial(oa, ob). An observation
oa partly contains ob when there is at least one Mi shared
between oa and ob as stated in (3), and there exists at least
one dimension whose value for oa is a hierarchical ancestor
of the value of the same dimension in ob, as stated in (4).
We denote this as Contpartial(oa, ob). In the example, ob-
servation o21 partially contains o31, because Greece contains
Athens but 2001 does not contain 2011. By rolling up on
the refPeriod dimension, the two observations become com-
plementary.

Similarly, full containment between oa and ob exists when
the same preconditions (3)-(4) hold along with a universal
restriction on (4) for all dimension values, i.e:

∀pi ∈ Pa ∩ Pb : hi
a � hi

b (5)

Therefore, (3) ∧ (4) ∧ (5) ⇒ Contfull(oa, ob). An observa-
tion oa fully contains ob when there is one Mi shared between
oa and ob as stated in (3), and values of all dimensions for
oa are hierarchical ancestors of the values for the same di-
mensions in ob as stated existentially in (4) and universally
in (5). We denote this with Contfull(oa, ob). Observe that
the containment property is not symmetric and that given
Contfull(oa, ob), then Contfull(ob, oa) is not implied. In the
example, o21 fully contains o32 and o34. The notation is
summarized in Table 1. Based on the above, our problem is
formulated as follows.

Problem: Given a set D of source dataset, and a set O
of observations in D, for each pair of observations oi, oj ∈
O, i 6= j, assess whether a) Contfull(oi, oj) , b) Contpartial(oi, oj)
and c) Compl(oi, oj). In the following section, we provide
our techniques for computing these properties.

Table 1: Notation
Notation Description

oi The i-th observation in a set O
Pi The set of dimensions for observation oi
pi The i-th dimension in a set Pk

Mi The set of measures for observation oi
hi
a Value of dimension pi for observation oa

hi
a � hi

b hi
a is a parent of hi

b
cjroot The root value (ALL) for dimension pj

Compl(oa, ob) Observation oa complements ob
Contfull(oa, ob) Observation oa fully contains ob

Contpartial(oa, ob) Observation oa partially contains ob

3. ALGORITHMS
In this section, we present three approaches for computing

containment and complementarity relationships. We first
present a baseline method of O(n2) complexity and then we
propose two alternatives in order to achieve scalable and fast
solutions.

3.1 Baseline
Our baseline algorithm performs pair-wise computations

between all pairs of observations in a given data space. To
achieve this, we model observations as bit vectors in a mul-
tidimensional data space represented by an occurrence ma-
trix OM, where rows represent observations and columns
are values in their dimensions as well as ancestor values in
their dimension hierarchies. OM encodes the occurrence of
a dimension value in an observation as well as the hierarchy
in which this value belongs to, by setting the value of 1 to
all columns that are ancestors of this value.

Dimension alignment is often required to take place before
this step, in order to have a reconciled dimension bus in the
feature space. As discussed later on in the experiments sec-
tion, we employ a state-of-the-art tool for performing the in-
terlinking of dimension values across different datasets. Note
that this procedure is orthogonal to the work presented in
this paper. The problem of dimension alignment, and record
linkage in general, is a separate research problem and is not
underestimated; however, (a) data conversion is feasible and
amortized over time (esp., if data collection from ”favorite”
sources is recurring), and (b) the focus of this paper is on
analytics and not data integration.

Constructing the Occurrence Matrix. Each obser-
vation oi defines a bit vector oi and all oi ∈ O comprise the
occurrence matrix OM of |O| × |C| dimensions, defined by
the occurrences of code list values in the respective dimen-
sions. Each value cji ∈ Cj corresponding to dimension pj is
a feature, i.e., a column in OM. Hierarchical containment
is encoded into OM using a bottom-up algorithm that as-
signs a value of 1 in column cji and all of its parents, if the
value hj

a of the dimension pj of oa is equal to the feature cji.
Finally, we set the cjroot columns of all observations that do
not contain pj in their schema. This means that dimensions
not appearing in a schema are mapped to the top concept
(i.e. root term), including all possible values.

Matrix OM can be further broken down in separate sub-
matrices for each code list, i.e., OM = [OM1, . . . ,OM|C|]
for all dimensions, where OMi is a sub-matrix that repre-
sents occurrences for all values of dimension pi. Matrix OM
for the example of Figure 2, given the hierarchies shown in
Figure 1, is shown in Table 2. OM is used as an input for our
algorithm that computes a containment matrix. The latter
is used for assessing both complementarity and containment
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properties.
Computation of containment. A containment matrix

CMi captures pair-wise containment between observations,
for dimension pi. If a cell CMi[a, b] > 0, then oa and ob
are related via containment for pi. To compute CMi, we
apply a conditional function between pairs of rows, as bit
vectors. Containment exists if the logical AND operation
between the bit vectors of the rows returns one of the two
bit vectors. We define this check as the following conditional
function applied on oa and ob:

sf(oa, ob) |(pi)=

{
1, if a ∧ b = b

0, otherwise

Notice that we apply sf for oa and ob for dimension pi in
OMi. Application of this function for each dimension re-
turns a set of |P | containment matrices, CM1, . . . ,CMk.
By adding these we get the Overall Containment Matrix
OCM:

OCM =

∑k
i=1 uiCMi∑k

i=1 ui

OCM values are normalized; we derive full containment
when a cell has a value of 1, and partial containment when
a cell has a value between 0 and 1 (non-inclusive) To assert
which particular dimensions exhibit containment in a partial
relationship, we examine the cells in CMi being equal to 1.
The occurrence of a 0 value indicates that full containment
and complementarity can not hold. Note also that measure
overlaps can be easily detected with a simple lookup. The
construction of the OCM matrix is explained in Algorithm
1 computeOCM. We then calculate containment and com-
plementarity using the OCM-based Algorithm 2 baseline.

Computation of complementarity. Following the def-
inition of observation complementarity, and given that the
non-appearing values are set to cjroot, we use OCM to as-
sess whether a pair of observations exhibits full containment
in both directions, i.e. Contfull(oa, ob) and at the same time
Contfull(ob, oa).

Analysis. The baseline algorithm has Θ(n2) time com-
plexity for n observations, because it visits each pair of ob-
servations exactly once, if all three types of relationships
are to be retrieved. The occurrence matrix OM requires
Θ(nk) space for n observations and k features, given a sim-
ple array implementation. However, for large k the matrix
tends to become sparse, therefore a sparse matrix imple-
mentation would yield a significant decrease in the required
space. In practice, if at least one 0 is found in the CM ma-
trices, the pair under comparison is no longer candidate for
either full containment or complementarity. We keep this
in an index table to avoid meaningless comparisons in the
next step, if only full containment or complementarity is to
be computed. Finally, if we are not interested in identifying
the particular dimensions that exhibit containment in a par-
tial containment relationship, we skip iterating through the
CMi matrices and identifying the zero values, and just keep
the value as a metric of the degree of partial containment
that the pair exhibits.

3.2 Computation with Clustering
The baseline algorithm becomes inefficient for large datasets

and does not scale due to its quadratic complexity. For
this reason, we improve its performance by applying a pre-
processing step that prunes the search space by limiting

Algorithm 1 computeOCM

Input: An occurrence matrix OM with N rows and |C|
columns, a set P of dimensions and their start indices in
OM
Output: A NxN overall containment matrix OCM

1: initialize OCM[][]
2: for each pi ∈ P do
3: initialize CMpi[][] . one containment matrix per

dimension
4: for each oj ∈ OMpi do . pi defines a start index
5: for each ok ∈ OMpi do
6: if oj AND ok == oj then
7: CMpi[j][k]← 1
8: else
9: CMpi[j][k]← 0

10: OCM[j][k]← OCM[j][k] + (CM(pi)/ |P |) .
normalize for # of dimensions
return OCM

Algorithm 2 baseline

Input: A NxN overall containment matrix OCM.
Output: SF , Sp, Sc sets of fully, partial containment and
complementarity relationships, and optionally a map of par-
tial containment relationships mapP with the dimensions
they exhibit containment in.

1: initialize SF , Sp, Sc

2: for each oi ∈ OCM do
3: for each oj ∈ OCM && oj 6= oi do
4: if OCM[i][j] == 1 then
5: SF = SF ∪ (oi, oj)
6: if OCM[j][i] == 1 then
7: SC = SC ∪ (oi, oj)

8: else if OCM[i][j] > 0 then
9: SP = SP ∪ (oi, oj)

10: for each pi ∈ P do
11: if CMpi[i][j] == 1 then
12: mapP (oi, oj , pi) = true
13: else continue

return SF , SP , SC ,mapP

comparisons. Algorithm 3 presents our approach. It takes
as input the occurrence matrix containing the bit vectors
for the observations and applies a clustering algorithm that
splits the matrix into smaller occurrence matrices. It then
applies the computeOCM and baseline algorithms to each
separate cluster. This way comparisons between pairs of
observations are limited within each cluster. This is shown
in Algorithm 3.

Clustering configuration. In order to compute clus-
ters, state-of-the-art clustering algorithms can be employed.
We have experimented with k/x-means [26], bottom-up hi-
erarchical clustering and fast canopy clustering [21] for the
purposes of evaluating our algorithms. To avoid introducing
extra time overhead in the containment and complemen-
tarity computation stage, we approximate the algorithm by
clustering a sample of the data and assigning the remaining
points to the identified clusters.

Analysis. Time and space complexity of the clustering
step depends on the complexity of the chosen clustering al-
gorithm, the number of clusters and the distribution of ob-
servations in the clusters. The baseline algorithm will run
times equal to the number k of clusters. However, the dis-
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Table 2: Matrix OM for the example of Figure 2
refArea refPeriod sex

WLD EUR AM GR IT Ath Rom US TX Aus ALL 2001 2011 Jan11 Feb11 T F M
obs11 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs12 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1
obs21 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
obs22 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0
obs31 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs32 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0
obs33 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0

Table 3: (a) Matrix CM1 for dimension refArea of the example of Figure 1, (b) Matrix OCM for the example of Figure 1
(a)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0 0 1 1 0
obs12 0 1 0 0 0 0 0
obs21 1 0 1 0 1 1 0
obs22 0 0 0 1 0 0 1
obs31 1 0 0 0 1 1 0
obs32 1 0 0 0 1 1 0
obs33 0 0 0 0 0 0 1

(b)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0.33 0.33 1 0.66 0.33
obs12 0.33 1 0.66 0.66 0.33 0.66 0.66
obs21 0.66 0.33 1 0.66 0.66 1 0.66
obs22 0.33 0 0.33 1 0.33 0.66 0.66
obs31 1 0 0.33 0.33 1 0.66 0.33
obs32 0.66 0 0.33 0.66 0.66 1 0.33
obs33 0.33 0.33 0.66 0.33 0.33 0.33 1

Algorithm 3 clustering

Input: An occurrence matrix OM with N rows and |C|
columns.
Output: SF , Sp, Sc sets for fully, partial containment and
complementarity relationships.

1: clusters[]← cluster(OM, . . . ) . e.g. k-means
2: initialize OCM← 0
3: for i = 1 to clusters.size do
4: OCMi ← computeOCM(clusters[i], P )
5: SFi, SPi, SCi ← baseline(OCMi)
6: SF , SP , SC ← (SF , SPSC) ∪ (SFi, SPi, SCi)

return SF , SP , SC

tribution of observations in clusters is not known for a given
collection of datasets. In the centroid-based case (canopy,
k/x-means), assuming an equal distribution of n

k
observa-

tions per cluster, then the time complexity for each cluster

is Θ(n
k

)2 thus making the total time complexity Θ(n2

k
) .

Following a rule of thumb where k =
√

n
2

, this becomes

Θ(n1.5), at the cost of information loss, as will be shown in
the experiments.

3.3 Computation with Cube Masking
The efficiency achieved by the clustering approach can re-

sult in lower recall levels as observations that are likely to
be related might end up in different clusters. In this section,
we propose a scalable algorithm that greatly increases speed
and at the same time maintains 100% recall. The approach
is based on the hierarchical characteristics of the dimension
values. We first construct a lattice of all possible level com-
binations for all the dimension values that appear at least
once in the input. Then, we map all observations to their
respective lattice nodes (i.e. cubes) and check if the lattice
nodes, rather than the observations, meet the containment
and complementarity criteria. If so, comparisons need only
be performed between observations belonging to these lat-
tice nodes. To demonstrate this further, consider the lattice
shown in Figure 3 that corresponds to the dimension hierar-
chies of Figure 2. Each node corresponds to a combination
of the levels of all dimensions. Therefore, node ”210” repre-

sents the cube of all observations that pertain to values at
level 2 for refArea, level 1 for refPeriod and level 0 for sex.
In the cases of full containment and complementarity, we
do not need to compare observations that belong to lattice
nodes that are not hierarchically related, such as node ”121”
with node ”311”. In the case of partial containment we look
for at least one dimension inclusion (i.e. path) in the lattice
before comparing the contents.

Based on these observations, we propose the cubeMasking
algorithm (Algorithm 4) that works in the following steps:
i) It first identifies cubes in the input datasets and populate
the lattice; ii) it maps observations to cubes; iii) it iterates
through cubes and does a pair-wise check for the contain-
ment criterion and finally iv) it compares observations be-
tween pairs of cubes that fulfils this criterion. In order to
perform these steps, we use a hash table to ensure that a
value’s level can be checked in constant time. We then go
on to identify the cubes and build the lattice by iterating
through all observations and extracting their unique combi-
nations of dimensions and levels. To do so, we apply a hash
function on each observation that both identifies and popu-
lates its cube at the same step. Finally, we iterate through
the identified cubes and by doing a pair-wise check for the
containment and complementarity criteria, all meaningful
observation comparisons are identified. This can be seen in
Algorithm 4.

Analysis. Instance-level comparisons are limited between
pairs of comparable cubes that are identified by the algo-
rithm. At worst, the maximum number of cubes for a set of
input datasets is the number of permutations of dimensions
and levels, i.e. k(|P |), where k is the maximum level of all
hierarchies and |P | is the number of dimensions. Checking

for potentially comparable pairs of cubes costs O(k(2|P |)) in

the worst case, but for an average of bk(|P |) present cubes in
the input, and abk(|P |) number of comparable cubes, where
a and b are constants between 0 and 1, the algorithm will
require ab2n2 comparisons instead of n2.

4. PERFORMANCE EVALUATION
Datasets. We have experimented with seven real-world

datasets taken from the statistics domain. Eurostat Linked
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Example Observations:
[Rome, Jan2011, Female]
[Athens, Jan2011, Male]
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010 001 100

000

o12 o32,o33

o11, o31

o21,o22

Example Observation:
[World, All, Total]

Figure 4: The lattice for the three hierarchies of Figure 2.
Observations in Figure 1 are mapped to the appropriate
node. The number in each node corresponds to the level
of each dimension.

Data Wrapper, the Eurostat database, linked-statistics.gr
and World Bank2 were used as the dataset sources. The
datasets were either in RDF form, or converted to RDF. In
the case of datasets in CSV format, we follow the approach
of [28] for producing RDF QB datasets, although many other
popular tools can be used, such as CSV2RDF3, OpenCube4

and Open Refine5. We converted CSV column headers to
dimension URIs, and rows to observations, by automatically
matching cell values to existing code list terms based on
their IDs. The datasets contain information of European
authorities on unemployment, resident population, number
of households, births, deaths and gross domestic product
(GDP) on a multitude of dimensions that include locations,
dates, citizenship, sex, household size, education level and
economic activity. In total, the datasets amount to 250k
observations and 2.6k distinct hierarchical values. These
exhibit an overlap of 11 dimensions pertaining to common
coded lists, and 6 measures.

In our experiments, we consider a separate preprocess-
ing step for the alignment of the schemas and the mapping
of the dimension values across the input datasets. In this
work we have used LIMES [24], a state-of-the-art link dis-
covery framework commonly used for entity matching tasks
in the Web of Data. LIMES is configurable to use SPARQL
query restrictions on input data (e.g. only match nodes of
type skos:Concept), and has a rule language that enables

2http://estatwrap.ontologycentral.com/ , http:
//data.worldbank.org/ , http://linked-statistics.gr/
, http://epp.eurostat.ec.europa.eu/portal/page/
portal/statistics/search_database
3http://www.w3.org/TR/csv2rdf/
4http://opencube-toolkit.eu/
5http://refine.deri.ie/

Algorithm 4 cubeMasking

Input: A list C with all code list terms as they appear in the
datasets, a hash table levels with a mapping of hierarchical
values to their levels, and a list O of N observations with
their descriptions.
Output: SF , Sp, Sc sets for full, partial containment and
complementarity relationships.

1: hierarchy ← createHierarchyTree(C) .
iterate through observations once to identify cubes and
map observations to cubes

2: initialize cubeLevels, observationsInCubes
3: for each oi ∈ O do
4: initialize cube
5: for each pj ∈ P do
6: cube.pj ← levels(oi, pj)

7: cubeLevels.add(cube) . hashing ensures no
duplicates

8: observationsInCubes(oi)← cube

9: for each cubej , cubek ∈ cubeLevels do
10: for each pi ∈ P do
11: if not(cubej .pi ≺ cubek.pi) then break

12: for each oi ∈ cubej do
13: for each oj ∈ cubek do
14: SF[oi, oj ]← checkFullCont(oi, oj)
15: SP[oi, oj ]← checkPartialCont(oi, oj)
16: SC[oi, oj ]← checkCompl(oi, oj)

return SF , SP , SC

17: procedure createHierarchyTree(C)
18: initialize hierarchyTree
19: for each ci ∈ C do
20: hierarchyTree.add(ci)
21: for each ci.parent do
22: hierarchyTree.addParent(ci, ci.parent)

return hierarchyTree

23: procedure checkFullCont(oi, oj)
24: for each pi ∈ P do
25: if not hierarchy.isParent(oi.pi, oj .pi) then re-

turn false
return true

26: procedure checkPartialCont(oi, oj)
27: for each pi ∈ P do
28: if hierarchy.isParent(oi.pi, oj .pi) then return

true
return false

29: procedure checkCompl(oi, oj)
30: if checkFullCont(oi.pi, oj .pi) &&

checkFullCont(oj .pi, oi.pi) then return true
return false

the user to select combinations of distance functions (e.g.
the maximum of the cosine and levenshtein distances). We
configured LIMES to match hierarchy nodes by adding their
URIs as literal values, and used their cosine distance in order
to find close matches based on the identifiers usually found
in the suffix part of a URI. The details for each dataset are
summarized in Table 4.

Metrics. The goal of the experiments was to assess and
compare the performance of the proposed algorithms with
respect to execution time and recall of computed relation-
ships. Execution time is measured as the time needed for
data pre-processing and for computing complementarity and
containment properties. Recall is calculated as the ratio of
computed relationships to actual relationships. However,
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Table 4: Dataset dimensions, amount of observations and respective measures
Dataset
(# of obs)

refArea refPeriod sex unit age economic
activi-
ties

citizenship education household
size

measure

D1 (58k) Y Y Y Y Y N Y N N Population
D2 (4.2k) Y Y N Y N N N N Y Members
D3 (6.7k) Y Y Y Y Y N N Y N Population
D4 (15k) Y Y N Y N N N N N Births
D5 (68k) Y Y Y Y Y N Y N N Deaths
D6 (73k) Y Y N Y N N N N N GDP
D7 (21.6k) Y Y N N N Y N N N Compensation

it is relevant only to the clustering algorithm, as the base-
line and the cubeMasking algorithms achieve 100% recall.
Note, also, that the precision is 100% for all algorithms as a
derivative of the determinism in the relationship definitions.
In order to derive recall, we have compared the output of
the clustering method with the ground truth taken from the
baseline output. Note that we do not consider any decrease
in recall induced by the tool used in the dimension alignment
step. Since the recall of our approach is not dependent to the
result of the alignment process, we assume that the output
of the linking tool (in our case LIMES) achieves 100% recall
correctly matching schema elements and dimension values
across all datasets.

Experimental Setting. Our approach was implemented
in Java 1.7, and all experiments were performed on a server
with Intel i7 3820 3.6GHz, running Debian with kernel ver-
sion 3.2.0 and allocated memory of 16GB. We implemented
the approaches and performed a series of comparisons be-
tween them, starting from an input size of 2k observations,
over the original fixed size of dimensions. We continued the
experiment with an input size of 20k and then we further
increased it with a 20k step. For the clustering method, we
have experimented with canopy clustering, hierarchical clus-
tering and x-means, all applied on a 10% random sample of
the original datasets and empirical studies showed that x-
means outperformed the other two methods greatly in terms
of recall achieved in comparable time frames. Based on the
bit-vector approach, we used the Jaccard coefficient as a sim-
ilarity metric for our binary feature space. The cubeMasking
algorithm has been further optimized to limit the number
of cube comparisons by storing for each cube, the full set of
its children in memory.

SPARQL-based. We have experimented with SPARQL
queries over a Virtuoso 7.1 instance for computing the re-
lationships. Note that universal quantification as well as
recursive querying (i.e. property paths) are necessary to
compute full containment and complementarity. Property
paths are directly supported by SPARQL 1.1, however, uni-
versal quantification must be mimicked by using a negation
construct that includes a nested recursion, which makes the
queries costly. Furthermore, occurrence of partial contain-
ment can be detected by SPARQL queries easily, but it is
complicated and costly to quantify it. The SPARQL ap-
proach is composed of three SPARQL queries; for simplicity,
we are only interested in detecting the underlying existence
of the containment and complementarity relationships, and
we do not quantify it like in the computation of the OCM
matrix. In the case of partial containment, the query for
detecting pairs of observations is as follows:

SELECT DISTINCT ?o1, ?o2

WHERE {
?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos:broaderTransitive/skos:

broaderTransitive* ?v2
FILTER (?o1 != ?o2)

}

The above query will select pairs of ?o1 and ?o2 that have
at least one dimension with ancestral values; ?v1 must be a
parent of ?v2. The above query does not privie the number
of dimensions that participate in the partial containment ;
this would make the query more complicated. In the case
of complementarity, we tested the data against the following
SPARQL query:

SELECT ?o1, ?o2
WHERE {

?o1 a qb:Observation .
?o2 a qb:Observation .
FILTER NOT EXISTS {

?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
FILTER (?v1!=?v2)

}
FILTER (?o1 != ?o2)

}

The query will be matched against pairs of observations
whose shared dimensions do not have different values. In
both queries, we have relaxed the conditions presented in
section 2 regarding the observations’ schema.

Rule-based. The rule-based approach consists of three
forward-chaining rules implemented in Jena, as the Jena
generic rule reasoner is simple to use and offers the required
expressivity. The rule for computing full containment is as
follows:

observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value(o1,p,v1)

∧ has_dimension_value(o2,p,v2)
∧ is_ancestor(v1,v2))

∧ ∀p.( has_dimension_value(o1,p,v1)
∧ has_dimension_value(o2,p,v2)
∧ is_ancestor(v1,v2))

⇒ full_containment(o1,o2)

In essence, we are checking for pairs of different observations
that exhibit both existential and universal quantification in
having dimension values subsume each other. The existen-
tial quantification is needed to ensure that there exists at
least one such relationship, while the universal is needed to
ensure that all relationships hold true. Similarly, the rule for
partial containment checks the existential restriction; that
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is, we need at least one pair of dimension values to exhibit a
containment relationship between o1 and o2. Therefore, the
rule is as follows:

observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
⇒ partial_containment(o1,o2)

The rule for complementarity is activated when two differ-
ent observations have the same values for all of their shared
dimensions and is summarized in the following:

observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
∧ ∀p.( has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
⇒ complement(o1,o2)

All datasets along with the experiment code are available
online at http://github.com/mmeimaris .

4.1 Experimental Results
Our experiments indicate that the quadratic baseline al-

gorithm is improved substantially by our two proposed al-
ternative methods, i.e. clustering and cubeMasking. Specif-
ically, we have achieved improvement by roughly one order
of magnitude for the computation of full containment and
complementarity by using the cubeMasking algorithm, while
we find that the clustering algorithm exhibits a trade-off be-
tween execution time and relationship recall. The results can
be seen in Figure 5.

Baseline. The baseline behaves as expected, performing
n2 comparisons for n observations. The partial containment
relationships are quantified with a value between 0 and 1,
non-inclusive, which increases monotonically in proportion
with the number of dimensions that a pair of observations
exhibits containment in. The results for computing the re-
lationships can be seen in Figure 5(a-c). However, as can be
seen in the Figure, it is cheaper to compute only full contain-
ment and complementarity because the cases where these do
not apply can quickly be ruled out in the computeOCM step.
This approach does not scale with respect to input size, as
all pairs of rows in the OCM matrix, representing obser-
vations, have to be visited in order to detect and quantify
containment and complementarity. It should be noted that,
when having computed full containment, complementarity
can be detected a posteriori by iterating through the fully
contained pairs and checking for mutual (i.e. bi-directional)
full containment.

Clustering. In the case of clustering, we have experi-
mented with three different clustering algorithms, one ag-
glomerative and two centroid-based, namely hierarchical,
canopy and x-means respectively. Figure 5(d) shows the
recall levels of the three algorithms. We have found that
x-means, even when applied to a random 10% sample of
the data, outperforms the other two in the resulting recall.
Overall, the clustering method shows promising results and
leaves room for improvement as far as the clustering step is
concerned. Note that by definition, the baseline algorithm
is equivalent to clustering with exactly one cluster. A large
number of clusters k will limit the total number of compar-
isons, and consequently make the computations faster, but

the process will be lossy, ultimately achieving lower recall
levels.

Cube Masking. The cubeMasking algorithm is the fastest
of all the approaches we experimented with, mainly because
of the linear cost of identifying and assigning observations to
cubes, and the reduced number of performed comparisons.
This is a consequence of the fact that it takes advantage of
the distributions of dimension levels and values, and reduces
the needed comparisons to a minimum with respect to the
baseline and clustering algorithms, while maintaining full
recall. Furthermore, the experiments on synthetic data, as
well as the observation that the ratio of cubes per input size
tends to decrease as input size increases as depicted in Fig-
ure 5(f), show that it is scalable for big datasets. In essence,
Figure 5(f) shows that the number of cubes in a collection
of datasets will increase in a lower rate than the number of
input observations. This implies that as the input size in-
creases, the cubeMasking algorithm will usually not result
in intractable pair-wise comparisons.

With cubeMasking, we need to check for parent-child re-
lationships between cubes. The brute-force way to achieve
this is to iterate through all pairs of cubes and check for
pair-wise ancestry. This ancestry exists when all dimension
levels of the first cube are equal or less than their respec-
tive dimension levels of the second cube. By pre-fetching
and storing all children of each cube in memory, we intro-
duce a conditional optimization that yields roughly 15-20%
faster execution time for any input size as can be seen in
Figure 5(g). However, creating this mapping implies either
an explicit iteration of all cubes, which is costly, or an un-
avoidable iteration for one of the relationship types, which
can be taken advantage of for the other two. Furthermore,
keeping a list with the children of any given cube node adds
an extra memory overhead, however in this work we are not
interested in the memory footprint of each method.

SPARQL and Rule-based. These approaches perform
adequately for small inputs, as shown in Figure 5(a), (b) and
(c), but either hit the time-out limits or consume all mem-
ory resources quickly, which renders them unusable for the
computations of such relationships over real world datasets.
This is mainly due to the fact that the multi-transitive na-
ture of the containment relationships creates an intractable
search space, which is compensated by the dedicated speci-
ficities of our approach. From a reasoning-based perspective,
it has been argued in the literature that dedicated reasoners
tend to out-perform general purpose ones [8]; a fact that is
supported by our experiments.

4.2 Scalability
In order to test scalability of our methods, we have cre-

ated a synthetic dataset of 2.5M observations, following a
similar approach as in [11]; the creation of synthetic data
was based on fixing the number of dimensions and creating
observations that follow a projected distribution of the data
w.r.t to the real-world datasets. More specifically, we calcu-
lated the projected number of lattice nodes to reflect Figure
4(f), where the change in active lattice nodes is shown as the
input size increases. Then, we populated the lattice nodes
evenly.

Experiments in the datasets show that the approaches uti-
lizing SPARQL querying and rule inferencing do not scale
adequately, even for small input sizes. Figure 5(e) shows
how the three proposed methods scale in respect to the in-
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(a) Execution time (hours) for complementarity (b) Execution time (hours) for full containment

(c) Execution time (hours) for partial containment (d) Recall for three clustering algorithms w.r.t. input size

(e) log-log time and input size (f) ratio of discovered cubes per observation count

(g) Rate of execution time with children pre-fetching vs
normal for full containment

Figure 5: (a) Execution time (hours) for complementarity, (b) full containment, (c) partial containment (note that in the
SPARQL based approach, partial containment is only detected and not quantified), (d) recall for three clustering algorithms
w.r.t. input size, (e) log-log time and input size, (f) ratio of discovered cubes per observation count. o/m=out of memory, (g)
rate of execution time with children pre-fetching vs normal for full containment.
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put size. While the values for clustering and cubeMasking
are based on measured values on the synthetic data, the
value for the baseline method for 2.5m records is a projec-
tion of the quadratic analysis; it took more than 7 days to
complete.

The results indicate that both clustering and cubeMasking
scale better than the baseline, with the latter having a more
clear advantage because of the reduced number of needed
comparisons in conjunction with the fact that it is lossless.
However, in extreme cases where the number of cubes is
large and the distribution of observations in these cubes is
sparse, the cubeMasking method will resemble the baseline.
In these cases, the clustering method yields a more realistic
advantage, especially when efficiency is more important than
recall.

5. RELATED WORK
In this paper, we extend the work presented in [22], where

we introduce preliminary notions of containment and com-
plementarity, we outline a method of computing these no-
tions, and define an RDF vocabulary as an extension of RDF
QB for containment and complementarity between multidi-
mensional observations across sources.

The problem of finding related observations in multidi-
mensional spaces has been addressed within several contexts.
Online Analytical Mining (OLAM) refers to the application
of data mining in OLAP, and addresses OLAP classification
[20], outlier detection[1], intelligent querying [28] and recom-
mendation for OLAP exploration, which is based on either
query formulation or instance similarity [2, 3]. These ap-
proaches enable discovery of latent information, exploratory
analysis [13] and efficient querying [20].

In [14] the authors discuss how queries containing group-
ing and aggregation, which in our case is similar to observa-
tion containment, can be facilitated by materialized views.
Partial containment is referred to as k-dominance in [6],
where it is used to define partial skylines in multidimen-
sional datasets.

Skyline computation in multidimensional datasets uses
the notion of dominance, or observation containment, in or-
der to assert whether a point is part of a dataset’s skyline
[33, 30, 19]. Skyline points are essentially top-level observa-
tions, i.e. observations that are not contained by other ob-
servations. However, these approaches are concerned with
only skyline data points, rather than computation of all con-
tainment relationships. Skyline computation is, however, a
direct derivative of containment computation.

Aligon et al.[2] address similarities between OLAP ses-
sions by defining distance functions over query features. They
experiment with Levenshtein, Dice’s coefficient, tf-idf and
Smith-Waterman, with the latter being the best for their
purposes, whereas in our approach the Jaccard Coefficient
addresses the binary nature of our feature space directly.
Baikousi et al.[3] define distance functions for dimension hi-
erarchies. However, they address observation similarity in
general, rather than computing strict relationships as in our
case. Hsu et al. [16] apply multidimensional scaling meth-
ods and hierarchical clustering in a hybrid approach in order
to measure similarity between reports in the same cubes.

Business model ontologies have been deployed in the con-
text of OLAP cubes in [29], where the authors define notions
such as merge and abstraction of cubes. The abstraction no-
tion is of particular interest to our work, as it resembles the

containment relationship, however the setting and motiva-
tion behind this work is representational rather than com-
putational.

In the context of RDF, finding related cubes in multi-
dimensional contexts is addressed in [18], where the work
is focused in extending the Drill-Across operator to address
different sources. The authors define conversion and merging
correspondences between remote cubes in order to quantify
the degree of their overlap and enable meaningful combina-
tions of datasets. However, they do not address specific re-
lationships at the instance level. The need for RDF-specific
workflows is addressed in [17], where the authors argue that
analytical processing of RDF cubes requires more than the
capabilities offered by SPARQL engines for querying, explo-
ration and analysis, and are best complemented with OLAP-
to-SPARQL engines that use RDF aggregate views and par-
tial materialization. This is in favour of our approach that
tackles efficient materialization of batch relationships.

The more general problem of finding similarity between re-
sources is a main component in entity resolution, record link-
age and interlinking [23, 24, 32]. These approaches deal with
discovering links between nodes from different datasets by
using distance-based techniques. To the best of our knowl-
edge, this is the first work that addresses the definition, rep-
resentation and computation of relationships between indi-
vidual multidimensional observations.

6. CONCLUSIONS AND FUTURE STEPS
In this paper, we have presented and compared three novel

approaches for discovering relationships between observa-
tions of multidimensional RDF data. We have defined new
relationships, namely full and partial containment, and com-
plementarity between observations as derivatives of the hi-
erarchical relationships between their dimension values, and
as a means of comparison and correlation of their measures.
We performed an experimental evaluation and comparison
between them and with a SPARQL-based and a rule-based
technique and we show that our methods outperform the
traditional approaches in both execution time and scalabil-
ity. As this work is based on batch analysis, in the future we
plan to study and define efficient incremental techniques, as
well as hybrid probabilistic methods that take into advan-
tage the positive points of the clustering and cubeMasking
algorithms. We will also address space efficiency and exam-
ine the behaviour of our approaches on settings with memory
restrictions. Finally, we intend to examine the performance
of our algorithms in distributed and parallel contexts.
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