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ABSTRACT
Time series classification is an important problem that has
received a great amount of attention by researchers and prac-
titioners in the past two decades. In this work, we propose
a novel algorithm for time series classification based on the
discovery of class-specific representative patterns. We define
representative patterns of a class as a set of subsequences
that has the greatest discriminative power to distinguish
one class of time series from another. Our approach rests
upon two techniques with linear complexity: symbolic dis-
cretization of time series, which generalizes the structural
patterns, and grammatical inference, which automatically
finds recurrent correlated patterns of variable length, pro-
ducing an initial pool of common patterns shared by many
instances in a class. From this pool of candidate patterns,
our algorithm selects the most representative patterns that
capture the class specificities, and that can be used to effec-
tively discriminate between time series classes. Through an
exhaustive experimental evaluation we show that our algo-
rithm is competitive in accuracy and speed with the state-
of-the-art classification techniques on the UCR time series
repository, robust on shifted data, and demonstrates excel-
lent performance on real-world noisy medical time series.

1. INTRODUCTION
Massive amount of time series data are generated daily in

areas as diverse as medicine, astronomy, industry, sciences,
and finance, to name just a few. Even with the explosion
of interest in time series data mining during the past two
decades, and increasing popularity of new emerging topics
such as motif discovery, classification of time series still re-
mains one of the most important problems with many real-
world applications in diverse disciplines.
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While many classification algorithms have been proposed
for time series, it has been shown that the nearest neigh-
bor classifier, albeit simple in design, is competitive with
the more sophisticated algorithms like SVM [32]. As a re-
sult, many existing techniques on time series classification
focus on improving the similarity measure, an essential part
of the nearest neighbor classifier [4]. Recently, the notion
of time series shapelets—time series subsequences that are
“maximally representative” of a class—has been proposed.
Shapelets generalize the lazy nearest neighbor classifier to
an eager, decision-tree-like classifier [36][10], which typically
improves the classification speed and interpretability of the
results.

In this work, we focus on a similar problem of finding the
most representative patterns for the classification task. We
call our algorithm RPM (Representative Pattern Mining).
The key motivation is that the identification of a small set of
distinctive and interpretable patterns of each class allows us
to exploit their key characteristics for discriminating against
other classes. In addition, we hypothesize that the classifi-
cation procedure based on a set of highly class-characteristic
short patterns will provide high generalization performance
under noise and/or translation/rotation, i.e. it shall be ro-
bust and shift/rotation invariant.

Figure 1: An illustration of the best patterns discovered
by rival subsequence-based techniques on Cricket data [20].

Our work is significantly different from existing subse-
quence-based techniques such as K-shapelet discovery and
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classification algorithms. Specifically, one major difference
lies in our definition of representative patterns. We define
representative patterns to be class-specific prototypes, i.e.
each class has its own set of representative patterns, whereas
in shapelets some classes may share a shapelet. Figure 1
shows the patterns/shapelets identified by different algo-
rithms on the Cricket dataset [20]. Note that SAX-VSM [31]
captures visually similar short patterns of the same length in
both classes. Fast Shapelets [27] selects a single subsequence
to build a classifier. Our algorithm, RPM, selects different
patterns that capture the data specificity (characteristic left
and right hand movements) for each class.

The methodology employed by our approach is also very
different from existing shapelet-based techniques. Contrast-
ing with a decision-tree-based shapelet classification which
finds the best splitting shapelet(s) via the exhaustive candi-
date elimination and explicit distance computation, we rely
on the grammar induction (GI) procedure that automatically
(i.e. by the algorithm’s design) and without computing any
distance explicitly [17][30] discovers frequent subsequences
(motifs) of variable length, which we consider as represen-
tative pattern candidates. The number of candidates for
the exhaustive shapelet search approach is O(nm2) (n is the
number of time series, m is their length) [27], since the algo-
rithm examines all possible subsequences. For our method,
the number of candidates considered is much smaller: O(K),
where K is the number of motifs since only patterns that
frequently occur in a class can be representative.

In addition to speeding up the algorithm, grammar in-
duction, by design, grows the lengths of the initial patterns
when constructing grammar rules, thus eliminating the need
for searching an optimal pattern length exhaustively – a
procedure that is common to most of sliding window-based
shapelet techniques [36][10][27].

Since GI requires discrete input, our algorithm transforms
real-valued time series into discrete values using Symbolic
Aggregate approXimation (SAX) [18]. The algorithm op-
erates in the approximate symbolic space inferring a gram-
mar and generating a set of candidate patterns through the
analysis of the grammar hierarchy in linear time. Next, the
algorithm maps the discovered patterns back into real val-
ues and continues with pattern refinement using clustering.
The cluster centroids (or medoids) are then reported as the
best class-specific motifs, among which we select the most
representative ones by verifying their classification power at
the final step.

Figures 2 and 3 show examples of representative patterns
discovered by our technique in two datasets: CBF, a syn-
thetic dataset [22], and Coffee, a real dataset [2]. Represen-
tative patterns discovered in CBF highlight the most distinc-
tive features in each of the three classes: a plateau followed
by the sudden rise then followed by a plateau in Cylinder,
the increasing ramp followed by a sudden drop in Bell, and a
sudden rise by a decreasing ramp in Funnel. Representative
patterns discovered in the Coffee dataset also correspond to
the most distinctive natural features which not only include
the discriminative caffeine and chlorogenic acid bands, but
the spectra corresponding to other constituents such as car-
bohydrates, lipids, etc. [2].

Since we use a different selection criterion, the representa-
tive patterns discovered by our technique are different from
the shapelets or patterns found by other subsequence-based
techniques, thus providing a complementary functionality

that can be used for exploratory studies. For example,
the representative patterns discovered in CBF and Coffee
datasets by our approach are different from the shapelets
discovered by Fast Shapelets [27], a well-known shapelet dis-
covery algorithm which we use for experimental comparison.
For the CBF dataset, Fast Shapelets reports two branching
shapelets that correspond to sudden rises in Cylinder and
Funnel classes. For the Coffee dataset, Fast Shapelets re-
ports a single branching shapelet corresponding to the caf-
feine spectra band (Arabica).

Note that the discovery of class-specific motifs, which is an
integral part of our algorithm, also offers a unique advantage
that extends beyond the classification task. Differing from
the traditional notion of time series motifs [17][3], which can
either be repeated subsequences of a fixed length within a
long time series, or repeated time series instances within a
group of data (e.g. shape motifs [16]), our class-specific mo-
tifs are variable-length sub-patterns that occur frequently
in many time series of a data group. They are, in a sense,
related to time series subspace clusters [15]. Therefore, our
approach provides an efficient mechanism to discover these
subspace patterns without exhaustively searching through
all subsequences. Throughout the paper, we will use the
terms ”class-specific subspace motifs” and ”class-specific mo-
tifs” interchangeably.
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Figure 2: The Cylinder-Bell-Funnel (CBF) dataset and the
best representative patterns for its classes discovered with
the proposed technique.
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Figure 3: Two classes from the Coffee dataset and the best
representative patterns.

As we shall demonstrate, in addition to the excellent ex-
ploratory characteristics, our approach achieves competi-
tive classification accuracy compared to the state-of-the-
art techniques: nearest neighbor classifiers, characteristic
subsequence-based classifier (SAX-VSM), and shapelet-based
classifiers, while maintaining great efficiency.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work and background materials. We describe
our approach for finding representative patterns in Section
3, and discuss parameter optimization in Section 4. Section
5 presents experimental results. We demonstrate the utili-
ties of our approach with two case studies in Section 6, and
conclude in Section 7.

2. RELATED WORK AND BACKGROUND
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2.1 Notation and definition
To precisely state the problem at hand, and to relate our

work to previous research, we will define the key terms used
throughout this paper. We begin by defining our data type,
time series:

Time series T = t1, . . . , tm is a set of scalar observations
ordered by time.

Since we focus on finding local patterns that are represen-
tative of a class, we consider time series subsequences:

Subsequence S of time series T is a contiguous sampling
tp, . . . , tp+n−1 of points of length n << m where p is an
arbitrary position, such that 1 ≤ p ≤ m− n+ 1.

Typically subsequences are extracted from a time series
with the use of a sliding window:

Sliding window subsequence extraction: for a time se-
ries T of length m, and a user-defined subsequence length
n, all possible subsequences of T can be found by sliding a
window of size n across T .

Given two time series subsequences S1 and S2, both of
length n, the distance between them is a real number that
accounts for how much these subsequences are different,
and the function which outputs this number when given
S1 and S2 is called the distance function and denoted
Dist(S1, S2). One of the most commonly used distance func-
tions is the Euclidean distance, which is the square root
of the sum of the squared differences between each pair of
the corresponding data points in S1 and S2.

Closest (i.e. best) match: Given a subsequence S and
a time series T , the time series subsequence Tp of length |S|
starting at position p : 0 < p < |T |−|S| is the closest match
of S if Dist(S, Tp) ≤ Dist(S, Tk), where Tk is a subsequence
of T starting at any position k : 0 ≤ k < |T | − |S|, and
k 6= p. The Dist(S, Tp) is the closest match distance.

Time series pattern is a subsequence that possesses
certain interesting characteristics. For example it can be a
subsequence that occurs frequently, i.e. whose observance
frequency is above some arbitrary threshold t. A frequently
occurring subsequence is also called time series motif.

Class-specific motif : Given a class C and a set of train-
ing instances XC , a class-specific motif M for C is a subse-
quence pattern S in C consisting of a set of similar subse-
quences from different training instances such that count(S) ≥
(γ · |XC |), where 0 < γ ≤ 1. This states that a pattern is
considered frequent if it appears in at least γ of the training
instances in the class. We will describe what we mean by
“similar” in a later section.

Representative patterns: The most discriminative sub-
sequences among the class motifs for class C are selected as
the representative patterns for the class. The number of the
representative patterns for each class is dynamically deter-
mined by the algorithm.

We will describe how to measure the “representativeness”
and discriminative power of the candidate patterns in a later
section.

Time Series Transformation: The set of the closest
match distances between a time series T and the (candidate)
representative patterns can be viewed as a transformation
of T ∈ Rn·m into T ′ ∈ Rn·K , where K is the total number
of the representative patterns from all classes.

2.2 Related work
Classification of time series has attracted much interest

from the data mining community in the past two decades

[4][36][5][13][21][28][25][33][20][35][34]. Nevertheless, to date,
the simple nearest neighbor classification is the most popu-
lar choice due to its simplicity and effectiveness [32]. There-
fore, a large body of work on time series classification has
focused on the nearest neighbor classification improvement
by developing new data representations or distance measures
[32]. To date, a nearest neighbor classification with an effec-
tive distance measure like Dynamic Time Warping (DTW)
outperforms many existing techniques [32].

Among the proposed alternatives, many methods focus on
finding local patterns in time series as predictive features of
the class [5]. Recently, Ye and Keogh introduced a novel
concept called time series “shapelet”. A shapelet is an exact
time series subsequence that is “maximally representative”
of a class [36]. Once found, a shapelet-based technique clas-
sifies an unlabeled time series by computing its similarity to
the shapelet. The original shapelet technique proposed by
the authors constructs a decision tree-based classifier which
uses the shapelet similarity as the splitting criterion. While
effective and interpretable, the original shapelet discovery
technique is computationally intensive.

Numerous improvements were proposed. The Logical Shape-
lets [20] extends the original work by improving the efficiency
and introducing an augmented, more expressive shapelet
representation based on conjunctions or disjunctions of shape-
lets. Fast Shapelets [27] improves the efficiency of the origi-
nal shapelets algorithm by exploiting the projections into a
symbolic representation. Learning Shapelets [7] proposes a
new mathematical formalization that iteratively reduces the
shapelet search space by computing a classification precision-
based objective function.

The “Shapelet Transform” [10] technique finds the best
K-shapelets and transforms the original time series into a
vector of K features, each of which represents the distance
between a time series and a shapelet. This technique can
thus be used with virtually any classification algorithm.

SAX-VSM [31] is another approximate algorithm that en-
ables the discovery of local class-characteristic (representa-
tive) patterns based on the similar pattern-discrimination
principle via tf∗idf -based patterns ranking [29]. While sim-
ilar to our notion of representative patterns, the length of
SAX-VSM-generated patterns equals to the sliding window
length. In addition, the algorithm makes no additional ef-
fort to prune the discovered patterns, yielding a large sparse
matrix of pattern weights.

Our algorithm can be related to the concept of mining in-
teresting frequent patterns reviewed in [9], as it is essentially
the selection of “interesting” pattern subset from a frequent
pattern set. In our case, we regard the representative power
of a pattern as its interestingness measure.

3. RPM: REPRESENTATIVE PATTERN
MINING FOR CLASSIFICATION

The classification algorithm we propose consists of two
stages: (a) Learning the representative patterns. (b) Clas-
sification using the representative patterns.

In the training stage, the algorithm identifies the most
representative patterns for each class from the training data
by 3 steps: (i) pre-processing training data; (ii) generating
representative pattern candidates from processed data; (iii)
selecting the most representative patterns from candidates.

Once the representative patterns are learned, we trans-
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form the training data into a new feature space, where each
representative pattern is a feature and each training time se-
ries is represented as a vector of distances to these patterns.
We can then build a classifier from the transformed training
data.

We will describe the algorithm in detail below, starting
with the classification stage.

3.1 Time series classification using represen-
tative patterns

To classify a time series using the representative patterns
learned from the training stage, the first step is to transform
the test data T ∈ Rn·m into a feature space representation
T ′ ∈ Rn·K by computing distances from T to each of the
K representative patterns from all classes. The transformed
time series is thus represented as a fixed-length vector – a
universal data type which can be used with many of the
traditional classification techniques. In this paper, we use
SVM [24] for its popularity, but note that our algorithm can
work with any classifier.

3.2 Training stage: Finding representative
patterns

As mentioned previously, our goal is to find the most rep-
resentative and distinctive patterns for each of the time se-
ries classes. These class-specific patterns should satisfy two
requirements: (i) they should be class-specific motifs, i.e.
shared by at least γ (a fraction) of the time series in the
class; and (ii) they should enable the discrimination between
the current and other classes – the capacity measured with
a scoring function discussed below.

At the high level, the algorithm can be viewed as a suc-
cession of three steps. First, the algorithm performs data
pre-processing for each class in the training data, by con-
catenating all instances from the same class into a long time
series, and discretizing the concatenated time series. Sec-
ond, the algorithm finds frequent patterns via grammar in-
ference and forms the candidate pool for each class. Third,
it refines the candidates pool by eliminating redundant and
non-discriminating patterns, and outputs patterns that rep-
resent the class the best, i.e., the representative patterns.

In our previous work, we proposed GrammarViz (v2.0),
which uses time series discretization and grammar inference
for time series motif discovery and exploration [17][30]. We
observe that the same approach can be leveraged to find
class-specific subspace motifs, thus enabling the classifica-
tion as well.

3.2.1 Step 1: Pre-processing
We prepare the training data for subspace pattern discov-

ery by concatenating all training time series from the same
class into a single long time series. We note that the con-
catenation step is not required for our learning algorithm
and can in fact be skipped. The reason for concatenating
the training instances is for visualization purpose only, as
will be shown in Figure 4.

Next, we discretize the concatenated time series into a
sequence of tokens for grammar induction using Symbolic
Aggregate approXimation (SAX) [18]. More specifically, we
apply SAX to subsequences extracted from the concatenated
time series of a training class via a sliding window. SAX
performs subsequence discretization by first reducing the di-
mensionality of the subsequence with Piecewise Aggregate

Approximation (PAA) [12]. Towards that end, it divides
z -normalized subsequence into w equal-sized segments and
computes a mean value for each segment. It then maps these
values to symbols according to a pre-defined set of break-
points dividing the distribution space into α equiprobable
regions, where α is the alphabet size specified by the user.
This subsequence discretization process outputs an ordered
list of SAX words, where each word corresponds to the left-
most point of the sliding window. Two parameters affect the
SAX transform granularity – the number of PAA segments
(PAA size) and the SAX alphabet size.

Since neighboring subsequences extracted via a sliding
window share all points except one, they are similar to each
other and often have identical SAX representations. To pre-
vent over-counting a pattern, we apply numerosity reduction
[17]: if in the course of discretization, the same SAX word
occurs more than once consecutively, instead of placing ev-
ery instance into the resulting string, we record only its first
occurrence.

As an example, consider the sequence S0 where each word
(e.g. aba) represents a subsequence extracted from the con-
catenated time series via a sliding window and then dis-
cretized with SAX. The subscript following each word de-
notes the starting position of the corresponding subsequence
in the time series.
S0 = aba1 bac2 bac3 bac4 cab5 acc6 bac7 bac8 cab9 . . .
With numerosity reduction, S0 becomes:
S1 = aba1 bac2 cab5 acc6 bac7 cab9 . . .
Numerosity reduction not only reduces the length of the

input for the next step of the algorithm (hence making it
more efficient and reducing its space requirements) and sim-
plifies the identification of non-overlapping time series motifs
by removing “noise” from overlapping subsequences. Most
importantly, numerosity reduction enables the discovery of
representative patterns of varying lengths as we show next.

3.2.2 Step 2: Generating representative pattern can-
didates

In this step, we use grammar induction to identify re-
peated patterns in the concatenated time series, and gen-
erate a representative pattern candidates pool from these
patterns. The algorithm is outlined in Algorithm 1. The
sequence of SAX words obtained from the pre-processing
step is fed into a context-free grammar induction algorithm
(Algorithm 1, Line 7). We use Sequitur, a string compres-
sion algorithm that infers a context-free grammar in linear
time and space [23]. We choose Sequitur due to its efficiency
and reasonably good compression capability, but note that
our technique also works with other (context-free) GI algo-
rithms. When applied to a sequence of SAX words, Sequitur
treats each word as a token and recursively reduces all di-
grams, i.e. consecutive pairs of tokens (terminals or non-
terminals), occurring more than once in the input string to
a single new non-terminal symbol representing a grammar
rule.

Consider the grammar induced by Sequitur from the input
string S1 :

Grammar Rule Expanded Grammar Rule
R0 → aba R1 acc R1 aba1 bac2 cab5 acc6 bac7 cab9
R1 → bac cab bac cab

In this grammar, R1 describes a simplified version of the
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Figure 4: RPM pre-processing visualization with GrammarViz 2.0 [30]. The time series from Class 4 of SwedishLeaf dataset
were concatenated, discretized, Sequitur grammar was inferred, and one of the frequent motifs selected. Note that the grammar
rule-corresponding subsequences vary in length from 72 to 80. The length of the original time series before concatenation is
128 as indicated by dotted lines. Note that one of time series does not contain the pattern and another contains it twice.

repeated pattern [bac cab], which concurrently maps to two
substrings of different lengths from S0: [bac2 bac3 bac4 cab5]
(length of 4) and [bac7 bac8 cab9] (length of 3), respectively.

By keeping SAX words’ offsets throughout the procedures
of discretization and grammar induction, we are able to map
rules and SAX words back to their original time series subse-
quences. Since each SAX word corresponds to a single point
of the input time series (a subsequence starting point), R1
maps to subsequences of variable lengths ([2-5] and [7-9]).
Figure 4 shows an example of the recurrent subsequences
found in the concatenated time series from Class 4 of the
Swedish Leaf dataset. Note, that when processing a con-
catenated time series, the algorithm does not consider the
subsequences that span time series junction points in order
to avoid concatenation process artifacts.

Algorithm 1 Finding repeated patterns

1: function FindCandidates(Train, SAXParams, γ)
2: candidates← ∅
3: allCandidates← ∅
4: for each TrainClassI in Train do
5: cTS ← ConcatenateTS(TrainClassI)
6: // {build grammar avoiding junctions (see Fig. 4)}
7: allRepeats← modifiedGI(cTS, SAXParams)
8: refinedRepeats← ∅
9: // {r is repeated subsequences from a row in Fig. 4}

10: for each r in allRepeats do
11: clusters← Clustering(r)
12: refinedRepeats.addAll(clusters)

13: for each cluster in refinedRepeats do
14: if cluster.size > γ · |I| then
15: centroid← GetCentroid(cluster)
16: // {candidates for class I}
17: candidates.add(centroid)

18: // {candidates for all classes}
19: allCandidates.add(candidates)

20: return (allCandidates)

Refining repeated subsequences: Every grammar rule
induced from Sequitur describes an approximate repeated
pattern (our candidate motif) observed in time series; how-
ever, corresponding exact subsequences may differ signifi-
cantly depending on the SAX granularity. To select the most
representative of the frequent symbolic patterns (and essen-

tially of the training class), we use hierarchical clustering al-
gorithm (complete-linkage) to cluster all rule-corresponding
subsequences based on their similarity (Algorithm 1, Line
11). Note that the purpose of applying clustering here is to
handle the situation where a candidate motif found by gram-
mar induction algorithm may contain more than one group
of similar subsequences. In this case, we should partition the
subsequences into sets of clusters, each of which corresponds
to one motif. To determine the appropriate number of clus-
ters, we first set the number of clusters as two. If the cluster
sizes are drastically different, e.g. one of the clusters con-
tains less than 30% of subsequences from the original group,
we do not split the original group. If both clusters contain
sufficient numbers of subsequences, we will continue to split
them into smaller groups. The partitioning stops when no
group can be further split (Algorithm 1, Line 12).

Consistent with Section 3.2 requirement (i), if the size of a
cluster is smaller than the specified threshold γ, the cluster
is discarded. If a cluster satisfies the minimum size require-
ment, its centroid is added to the representative patterns
candidates pool for a class (Algorithm 1, Line 14-15). Note
an alternative is to use the medoid instead of centroid. As
outlined in Algorithm 1, this refinement procedure outputs
a list of representative pattern candidates for all classes.

3.2.3 Step 3: Selecting the most representative pat-
terns

The candidate patterns obtained so far are the frequent
patterns that occur in a class. However, some of them may
not be class-discriminative if they also occur in other classes.
Addressing this issue, we prune the candidate patterns pool
with Algorithm 2 whose input is the pool of candidate pat-
terns identified from the previous step, and the entire train-
ing dataset. The algorithm outputs the set of class-specific
patterns.

Remove Similar Patterns: The representative pattern
candidates are repeated patterns found by the grammar in-
duction algorithm applied to the discretized time series. Due
to the aggregation, some structurally similar subsequences
may be mapped to slightly different SAX strings, e.g. differ
by one letter. Feeding such patterns to the subsequent step
(selecting representative patterns) will slow down the search
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Algorithm 2 Find distinctive patterns

1: function FindDistinct(Train, allCandidates)
2: candidates← ∅
3: τ ← ComputeThreshold
4: // {Remove similarities in allCandidates}
5: for each c in allCandidates do
6: isNonSimilar ← true
7: for each cns in candidates do
8: // {c and cns may have different length}
9: dist← ComputeClosestMatchDist(c, cns)

10: if dist < τ then
11: if cns.frequent < c.frequent then
12: // {The frequency in concatenated TS}
13: candidates.remove(cns)
14: candidates.add(c)
15: isNonSimilar ← false
16: break();

17: if isNonSimilar then
18: candidates.add(c)

19: // {Transform TS into new feature space where each fea-
ture is the distance between time series and a candidate}

20: TransformedTrain← Transform(Train, candidates)
21: // {Perform feature selection algorithm on new data}
22: selectedIndices← FSalg(TransformedTrain)
23: // {Select patterns according to indices }
24: patterns← Select(candidates, selectedIndices)
25: return (patterns)

when removing correlated patterns in feature selection step.
In order to resolve this issue, our algorithm removes simi-

lar candidates from the candidate set, as shown in Algorithm
2, Lines 5 – 18. Before the removal, it computes a threshold
used to determine if two patterns are similar. The threshold
(Alg. 2, Line 3) is determined as follows: (i) Compute pair-
wise distances of subsequences within each refined grammar
rule (i.e. the final clusters from Algorithm 1). (ii) Sort the
distances in ascending order. (iii) Take the distance at the
30-th percentile as the threshold τ for similarity. We will
show the effect on accuracy and running time with different
values of τ in the experimental section.

Select Representative Patterns: After refining the
representative pattern candidates pool from the previous
steps, we transform the original time series into a distance
feature vector by computing the closest match distance be-
tween each time series and all the candidate patterns. As an
example, two patterns in dataset ECGFiveDays are shown
in Figure 5, and the transformed training data is shown in
Figure 6. The original time series from the two classes look
visually similar. However, once we transform the raw time
series into the two-dimensional feature vector (one feature
from each class in this case), it is easy to separate the two
classes. As can be seen in Figure 6, the transformed data is
linearly separable.

Since the transformation uses all the candidates as new
features, a feature selection step is needed to select the most
distinctive features. Each feature represents the distance
from the original time series to one of the candidate pat-
terns. Thus, the features selected represent the most rep-
resentative patterns. Any feature selection algorithms can
be applied here. In this work, we use the correlation-based
feature selection from [8], since it is capable of identifying
features that are highly correlated with the class. After fea-
ture selection, the selected patterns will be used to classify
future time series. Note that the number of selected patterns
for each class is dynamically determined by the feature se-
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lection algorithm.

4. PARAMETER SELECTION AND CLAS-
SIFICATION WITH DIFFERENT SAX PA-
RAMETERS

As shown in Algorithm 1, there is a parameter vector
SAXParams in the input. The vector consists of three SAX
discretization parameters, namely the sliding window size,
PAA size, and the SAX alphabet size. In this section, we
shall describe our algorithm for the optimal SAX parame-
ters selection. Since time series data in different classes may
have varying characteristics, a parameter set that is optimal
for one class may not be optimal for another. Therefore, the
parameter optimization is performed for each class.

4.1 Search for the best SAX parameters ex-
haustively

One way to find the optimal parameter set is by brute
force grid search – as shown in Algorithm 3. The algo-
rithm tests all parameter combinations within a specified
range and selects the optimal set (the one that results in
the best F1 measure score from five-fold cross validation on
the validation data set). For each parameter combination
candidate, the grid search algorithm first divides the origi-
nal training data into training and validation data 5 times
for 5 different splits. For each split, the algorithm invokes
Algorithms 1 and 2 to obtain the representative patterns
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(Lines 8-9). The validation is performed on the validation
data set (Line 12) with a five-fold cross validation. The F1
measure is computed using the classification result for each
class. The parameter combination with the best F1 measure
for each class is selected as the optimal parameters for the
class.

Algorithm 3 SAX Parameter selection (Brute-Force)

1: function ParamsSelect(ParamsRange,OriginalTrain)
2: for each Class I do
3: bestSoFarForI ← 0
4: for each SAXPs in ParamsRange do
5: // {Repeat 5 times for different splits}
6: while iteration < 5 do
7: {train, validate} ← Split(OriginalTrain)
8: candidates← FindCandidates(train, SAXPs, γ)
9: patterns← FindDistinct(train, candidates)

10: validatet ← Transform(validate, patterns)
11: // {fMeasure is the f1 measure of each class}
12: fMeasure← 5foldsCV(validatet)
13: for each Class I do
14: if fMeasure.i > bestSoFarForI then
15: bestParamForClassI ← SAXPs
16: bestSoFarForI ← fMeasure.i

17: iteration++
18: for each Class I do
19: bestParams.add(bestParamForClassI)

20: return (bestParams)

Instead of running Algorithm 3 completely to find the best
parameter set, pruning can be performed by the observed
number of repeated patterns. In Line 8 of Algorithm 3,
if no candidate for a class is returned because all repeated
patterns for that class have frequency below the specified
threshold (γ), the algorithm abandons the current iteration
and proceeds with the next parameter combination. The
intuition rests upon the fact that given the number of time
series in the training data, we can estimate the required
minimal frequency for the repeated patterns.

4.2 Searching for the best SAX parameters us-
ing DIRECT

We optimize the search for the best discretization param-
eters set by using the DIviding RECTangles (DIRECT) al-
gorithm [11] which is a derivative-free optimization scheme
that possesses local and global optimization properties, con-
verges quickly, and yields a deterministic optimal solution.
DIRECT is designed to deal with optimization problems of
the form:

min
x

f(x), f ∈ R, x,XL, XU ∈ R, whereXL ≤ x ≤ XU

where f(x) is the objective (error) function, and x is a pa-
rameters vector. The algorithm begins by scaling the search
domain to a unit hypercube. Next, it iteratively performs a
sampling procedure consisting of two steps: (i) partitioning
the hypercube into smaller hyper-rectangles and (ii) identi-
fying a set of potentially-optimal hyper-rectangles by sam-
pling their centers. Iterations continue until the error func-
tion converges. DIRECT is guaranteed to converge to the
global optimal function value as the number of iterations
approaches infinity and the function is continuous in the
neighborhood of a global optimum [11]. If interrupted at
any iteration, for example after exhausting a time limit, the
algorithm reports the best-so-far parameters set.

Since SAX parameters are integer values, we round the
values reported by DIRECT to the closest integers when op-
timizing their selection for our cross validation-based error
function (one minus fMeasure, as described in Section 4.1).
While rounding affects the DIRECT convergence speed, this
approach is not only much more efficient than the exhaus-
tive search, but is also able to perform a time-constrained
parameter optimization by limiting the number of iterations.

4.3 Classification with class-specific trained pa-
rameters

With the best SAX parameters learned from Section 4.2,
the representative patterns can be obtained by calling Algo-
rithms 1 and 2. To classify future instances, we follow the
classification procedure described in Section 3.1. However,
with the class-specific parameter optimization, we need to
add more steps to the classification procedure to account for
the adaptive parameter sets for different classes. Different
classes may have different best SAX parameter combinations
(SPCs). We learn the best SPCs for each class respectively
as described previously. Then we apply Algorithms 1 and
2 to obtain the representative patterns for each SPC. We
combine all these representative patterns together and re-
move the correlated patterns by applying feature selection
again. We then obtain the final set of representative pat-
terns, which will be used as the input for the algorithm
described in Section 3.1 to classify test data.

5. EXPERIMENTAL EVALUATION

5.1 Setup and Baseline
We evaluate the classification performance of our tech-

nique on the standard time series archive from the UCR
repository [14]. Information on the datasets is shown in
Table 1. The code and datasets used for the case study
(discussed next section) are available on [1]. We compare
our method Representative Pattern Mining (RPM) with five
other classification techniques, among which are two nearest-
neighbor classifiers based on the global distance measures:
Euclidean distance (1NN-ED) and DTW with the best warp-
ing window (1NN-DTWB), and three classifiers based on
the use of class-characteristic local patterns: Fast Shapelets
(FS) [27], SAX-VSM [31] and Learning Shapelets (LS) [7].
These three subsequence-based techniques rely on different
numbers of patterns for classification – while Fast Shapelets
uses a minimal number of patterns to build a classification
tree, SAX-VSM accounts for all patterns extracted via slid-
ing window in each of the class-representing weight vectors.
Learning Shapelets has the best accuracy so far.

5.2 Classification Accuracy
Table 1 shows the classification error rates for all six meth-

ods on the UCR datasets. The best error rate for each
dataset is denoted with boldface. In addition, Figure 7
shows the summary comparison of our proposed technique
with other methods. The results shown are with parame-
ter optimization, and the γ (minimum cluster size) is set
to be 20% of the training size for the class. From the re-
sults, our method is the second best on classification ac-
curacy among these six methods. We slightly lose to the
Learning Shapelets method, which has the most “wins” in
classification. However, the p-value of wilcoxon test is 0.834
> 0.05, so the difference is not significant with a confidence
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Table 1: Datasets description and the classification error rates.

Dataset Classes Train Test Length 1NN-
ED

1NN-
DTWB

SAX-
VSM

FS LS RPM

50words 50 450 455 270 0.369 0.242 0.374 0.483 0.232 0.242
Adiac 37 390 391 176 0.389 0.391 0.417 0.425 0.437 0.355
Beef 5 30 30 470 0.333 0.333 0.233 0.467 0.240 0.233
CBF 3 30 900 128 0.148 0.004 0.010 0.092 0.006 0.001
ChlorineConcentration 3 467 3840 166 0.352 0.350 0.341 0.667 0.349 0.355
CinC ECG torso 4 40 1380 1639 0.103 0.070 0.344 0.225 0.167 0.125
Coffee 2 28 28 286 0.000 0.000 0.000 0.071 0.000 0.000
Cricket X 12 390 390 300 0.423 0.252 0.308 0.549 0.209 0.236
Cricket Y 12 390 390 300 0.433 0.228 0.318 0.495 0.249 0.379
Cricket Z 12 390 390 300 0.413 0.238 0.297 0.533 0.201 0.190
DiatomSizeReduction 4 16 306 345 0.065 0.065 0.121 0.078 0.033 0.069
ECG200 2 100 100 96 0.120 0.120 0.140 0.250 0.126 0.170
ECGFiveDays 2 23 861 136 0.203 0.203 0.001 0.000 0.000 0.000
FaceAll 14 560 1690 131 0.286 0.192 0.245 0.408 0.218 0.231
FaceFour 4 24 88 350 0.216 0.114 0.114 0.091 0.048 0.045
FacesUCR 14 200 2050 131 0.231 0.088 0.109 0.296 0.059 0.034
Fish 7 175 175 463 0.217 0.154 0.017 0.189 0.066 0.065
Gun Point 2 50 150 150 0.087 0.087 0.013 0.040 0.000 0.027
Haptics 5 155 308 1092 0.630 0.588 0.584 0.610 0.532 0.562
InlineSkate 7 100 550 1882 0.658 0.613 0.593 0.733 0.573 0.535
ItalyPowerDemand 2 67 1029 24 0.045 0.045 0.089 0.063 0.031 0.044
Lightning2 2 60 61 637 0.246 0.131 0.213 0.361 0.177 0.262
Lightning7 7 70 73 319 0.425 0.288 0.397 0.397 0.197 0.219
MALLAT 8 55 2345 1024 0.086 0.086 0.199 0.054 0.046 0.020
MedicalImages 10 381 760 99 0.316 0.253 0.516 0.443 0.271 0.262
MoteStrain 2 20 1252 84 0.121 0.134 0.125 0.202 0.087 0.113
OliveOil 4 30 30 570 0.133 0.133 0.133 0.300 0.560 0.100
OSULeaf 6 200 242 427 0.479 0.388 0.165 0.421 0.182 0.211
SonyAIBORobotSurface 2 20 601 70 0.304 0.305 0.306 0.315 0.103 0.058
SonyAIBORobotSurfaceII 2 27 953 65 0.141 0.141 0.126 0.211 0.082 0.114
SwedishLeaf 15 500 625 129 0.211 0.157 0.278 0.229 0.087 0.070
Symbols 6 25 995 398 0.101 0.062 0.109 0.091 0.036 0.042
synthetic control 6 300 300 60 0.120 0.017 0.017 0.107 0.007 0.007
Trace 4 100 100 275 0.240 0.010 0.000 0.000 0.000 0.000
Two Patterns 4 1000 4000 128 0.093 0.002 0.004 0.741 0.003 0.005
TwoLeadECG 2 23 1139 82 0.253 0.132 0.014 0.075 0.003 0.048
uWaveGestureLibrary X 8 896 3582 315 0.261 0.227 0.323 0.316 0.200 0.226
uWaveGestureLibrary Y 8 896 3582 315 0.338 0.301 0.364 0.412 0.287 0.303
uWaveGestureLibrary Z 8 896 3582 315 0.350 0.322 0.356 0.353 0.269 0.279
Wafer 2 300 3000 426 0.005 0.005 0.001 0.003 0.004 0.013
WordsSynonyms 25 267 638 270 0.382 0.252 0.440 0.542 0.340 0.353
Yoga 2 300 3000 426 0.170 0.155 0.151 0.335 0.150 0.165

# of best (including ties) 2 9 7 2 19 15

Wilcoxon Test p-values
(RPM vs Other)

0.006 0.287 0.217 0.002 0.834 -
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Figure 7: Our technique and current state of the art classifiers performance comparison.
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of 95%. Moreover, as we can visually inspect from Figure
7, the error rate difference between Learning Shapelets and
RPM is very small — most of the points are located around
the diagonal. In the next section, we will show that our
method is much faster than the Learning Shapelets method.

5.3 Efficiency
The pre-processing, discretization and Sequitur grammar

induction all have linear time complexity in the size of train-
ing data and, in practice, can be done simultaneously, since
they process data sequentially. To select the best repre-
sentative patterns for each class, we need to first cluster
the candidate motifs identified by the grammar rules. The
time required for clustering depends on the number of mo-
tif instances identified. Suppose there are (on average) u
motif instances in each grammar rule, then the complex-
ity is O(u3 · |rules|) for hierarchical clustering. The cen-
troids of the qualifying clusters are the pattern candidates.
For each pattern candidate, we perform subsequence match-
ing to identify the best matches (O(|Candidates| · |Train|)).
Even though the number of pattern candidates for each class
is relatively small compared to the training size, this step
seems to be the bottleneck of the training stage due to the re-
peated distance call. We use early abandoning strategy [32]
to speed up the subsequence matching, but other options are
possible such as approximate matching. The training needs
to be repeated for each class. Thus, the training complexity
is O(|Train|+c·(u3 ·|rules|+|Candidates|·|Train|)), where
c is the number of classes, and u is the average number of
motif instances in each grammar rule.

If the best SAX parameters are known, our algorithm is
fast — in this case, simply using the classification method
described in Section 3.1 completes the classification task. To
get the best SAX parameters, we evaluated cross-validation
based parameter selection techniques, exhaustive search and
DIRECT described in section 4.1 and 4.2. Exhaustive search
was found time-consuming even with early abandoning, there-
fore we use DIRECT. The overall running time using DI-
RECT in the worst case is O((|Train| + c · (u3 · |rules| +
|Candidates| · |Train|)) ·R), where R is the number of SAX
parameters combinations tested by DIRECT algorithm. From
the experiments on 42 UCR time series datasets, the average
value for R is less than 200, which is smaller than the aver-
age time series length 363. In most of the R evaluations, the
program terminated search early because of the minimum
motif frequency requirement (Sec. 3.2). The classification
time, compared to training, is negligible.

We compare the total running time of our algorithm us-
ing DIRECT with that of Fast Shapelets (FS) and Learn-
ing Shapelets (LS), and the results are shown in Table 2.
Even when accounting for parameter selection, our algo-
rithm is comparable to Fast Shapelets in running time, and
as shown in Table 1, our method is significantly more accu-
rate than Fast Shapelets (p-value equals 0.002). Compared
to Learning Shapelets, our method is a lot faster. The great-
est speedup we achieve through these 42 datasets is 1587X
on dataset Adiac, and the average speedup is 178X. The
experiment results show that our method is comparable to
the fastest algorithm in speed and to the most accurate al-
gorithm in accuracy.

In Section 3.2.3, we use τ as the threshold to remove sim-
ilar patterns. We choose the value at the 30th percentile of
the pair-wise distances as the threshold. We also compare

the results using the 10th, 50th, 70th, and 90th percentiles.
The running time and classification error changes are shown
in Figure 9. The average running time and classification er-
ror changes on the 42 UCR data set are shown in Table 3.
The average standard deviation for running time is 268.71
seconds, and 0.014 for classification error .

Table 2: Running time and classification accuracy compar-
ison between Fast Shapelets, Learning Shapelets and Rep-
resentative Pattern Mining

Running Time (Seconds)

Dataset LS FS RPM

50words 3396298 1666 4221
Adiac 1551130 290 977
Beef 5971 175 202
CBF 275 7 32
ChlorineConcentration 7668 572 347
CinC ECG torso 46979 3521 1636
Coffee 293 15 98
Cricket X 252834 2286 438
Cricket Y 249889 2378 1208
Cricket Z 260107 2611 594
DiatomSizeReduction 1013 17 69
ECG200 224 12 55
ECGFiveDays 41 3 20
FaceAll 93442 538 2139
FaceFour 1853 69 43
FacesUCR 30516 195 2141
Fish 42766 802 755
Gun Point 209 6 34
Haptics 81751 8100 1575
InlineSkate 314244 43930 4970
ItalyPowerDemand 14 1 9
Lightning2 1657 1212 373
Lightning7 7923 219 93
MALLAT 65920 1645 267
MedicalImages 19864 136 555
MoteStrain 22 1 13
OliveOil 2499 123 287
OSULeaf 31181 2337 154
SonyAIBORobotSurface 34 1 6
SonyAIBORobotSurfaceII 44 1 10
SwedishLeaf 83656 317 3312
Symbols 3043 69 328
synthetic control 2616 37 18
Trace 6104 115 185
Two Patterns 11219 601 1241
TwoLeadECG 24 1 19
uWaveGestureLibrary X 267727 5060 274
uWaveGestureLibrary Y 373482 4429 567
uWaveGestureLibrary Z 409494 4230 619
Wafer 2746 217 1585
WordsSynonyms 852394 877 2271
Yoga 4414 2388 642

# best (including ties) 0 24 18
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Figure 8: Runtime comparison between Representative
Patterns, Fast Shapelets, and Learning Shapelets classifiers.

The average classification accuracy change with different
τ values is below 1%. That means this parameter does not
affect the classification result too much. The user can set a
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Table 3: The average running time and classification error
changes for different similar threshold on 42 UCR data. Pos-
itive value means increase, negative value means decrease.

10% -
30%

30% -
50%

50% -
70%

70% -
90%

Running Time Change (%) -4.66 -12.38 -15.09 -1.17
Error Change (%) -0.14 0.74 0.72 0.28
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Figure 9: The running time and accuracy with different
similarity threshold τ .

higher value for this parameter to achieve a fast speed and
still could maintain a high accuracy.

The τ value used for the experiment results (classification
error and running time) shown in Tables 1 and 2 is set as
30% because it gives the best accuracy and still has a fast
running speed.

6. CASE STUDY
In this section we demonstrate the application of our method

to classification of rotated time series data and Medical
Alarm data. We compare results with 1NN Euclidean dis-
tance, 1NN DTW with the best warping window, SAX-
VSM, Fast Shapelets, and Learning Shapelets classifiers.

6.1 Rotation invariance
Many global-distance-based techniques do not work well if

the time series data are shifted or out of phase. One type of
time series data that is particularly susceptible to this kind
of distortion is shape-converted time series [19], e.g. by ra-
dial scanning of the shape profile to convert the image into
a “time series.” Several datasets in the UCR repository are
shape-converted time series, e.g. OSU Leaf, Swedish Leaf,
Shields, etc. In this section we demonstrate the rotation-
or shift-invariance of our technique on a number of shifted
datasets. To shift or “rotate” a time series, we randomly
choose a cut point in the time series, and swap the sec-
tions before and after the cut point. This transformation
is equivalent to starting the radial scanning of the shape at
a different position on the shape profile. The out-of-phase
phenomenon is also common in many other real-world time
series data such as video. Figure 10 illustrates the original
GunPoint dataset time series and their rotation.

In our experiments, we leave the training set unmodified,
and shift only the test data. The rationale is that while it is
not uncommon for one to pre-process and create a “cleaned”
version of training data to build a good model, it is less
reasonable to expect that the test data will be in the same
cleaned format. In other words, we learn the patterns on
existing training data, but modify the test data to create
rotation distortion, in order to evaluate the robustness of
our technique.

It is possible that the rotation cuts the best matching sub-
sequence of the test time series. To handle this, we introduce

Table 4: Classification error rate on shifted time series

Dataset 1NN-
ED

1NN-
DTWB

SAX-
VSM

LS RPM

Coffee 0.536 0.460 0.000 0.036 0.000
Face Four 0.682 0.625 0.125 0.080 0.045
Gun point 0.460 0.493 0.047 0.200 0.047
Swedish Leaf 0.872 0.821 0.430 0.371 0.246
OSU Leaf 0.595 0.479 0.107 0.186 0.157

# best (including ties) 0 0 3 0 4
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Figure 10: Shifted GunPoint dataset and the best repre-
sentative patterns.

a new strategy to the test time series transformation step to
make our algorithm rotation invariant. When transforming
a raw time series into the new feature space of the closest
match distances, our algorithm needs to calculate the dis-
tance between the time series to each representative pattern.
In order to solve the aforementioned problem, our algorithm
will build another time series. For example, when transform-
ing a rotated time series A, we generate another new time
series B by cutting A from its midpoint and swapping the
first and the second halves. By doing so, B will contain the
concatenation of A’s tail and head. If the best-matching
subsequence happens to be broken up due to the rotation
(A), then by rotating it again at the midpoint, one of A
or B will contain the entirety of the best-matching subse-
quence. When computing the distance of A to a pattern p,
besides calculating a distance da between A and p, the algo-
rithm will also calculating another best match distance db
between B and p. The minimal distance of these two will be
used as the distance from A to p. This solution overcomes
the potential problem that arises when the best matching
pattern is cut into different parts due to the rotation.

The classification error rates of the rotated data are shown
in Table 4. The accuracy of our method or SAX-VSM does
not change very much from the unrotated version (though
our technique seems to be more robust, with 4 wins), while
the error rates of 1NN Euclidean distance and 1NN DTWB
increase drastically.

6.2 Medical Alarm
In this case study, we use the medical alarm data from

Intensive Care Unit (ICU) database (MIMIC II database
from PhysioNet) [6]. We used arterial blood pressure (ABP)
waveforms to create the dataset used in this work.

6.2.1 Normal or Alarm
We selected two types of ABP series segments: those that

triggered an alarm and those that did not. The data used are
all from the same patient. The selected dataset contains 52
time series of length of 2126. Each of the time series repre-
sents a segment of arterial blood pressure (ABP) waveform
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in a 17 second time range. The Normal class consists of
segments without any alarms, whereas the Alarm class con-
sists of segments that triggered the bedside patient monitors
and were verified by the domain expert as true alarms. The
dataset contains 26 time series in class Normal and 26 in
class Alarm. Training and test data are split into sets of 16
and 36 time series respectively. Examples of medical alarm
data from each class are shown in Figure 11.

The first row of Table 5 shows the accuracy of competing
classification techniques. Figure 11 shows the representa-
tive patterns from medical alarm time series and their best
matches on test data. Our method (RPM) achieves the best
accuracy on this dataset.

Table 5: Classification error rate on Medical Alarm data

Dataset 1NN-
ED

1NN-
DTWB

SAX-
VSM

FS LS RPM

NormalOrAlarm 0.333 0.333 0.167 0.306 0.111 0.056
FiveAlarmTypes 0.760 0.360 0.350 0.485 0.260 0.300
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Figure 11: Normal or Alarm data and the best represen-
tative patterns.

6.2.2 Five types of alarm
In PhysioNet’s MIMIC II database, there are five cate-

gories of critical arrhythmia alarms produced by a commer-
cial ICU monitoring system: Asystole, Extreme Bradycardia,
Extreme Tachycardia, Ventricular Tachycardia, and Ventric-
ular Fibrillation/Tachycardia. We collected a dataset by
taking the segments of an arterial blood pressure waveform.
Each segment contains a verified alarm. The objective is to
classify the alarm time series into one of the five types of
alarms.

The training set has 50 examples, 10 for each class. The
test set has 100 examples, 20 for each class. All time series
have the same length of 2126 (17 seconds). The time se-
ries example of each class, the representative patterns, and
the best matches are shown in Figure 12. Table 5 shows
the accuracy of competing classification techniques for this
dataset.

Our method (RPM) has the second best accuracy on this
dataset. We lose slightly to Learning Shapelets since we
have 30 incorrectly classified instances compare to 26 with
LS. However, our method finished in 1373 seconds compare
to 86195 seconds of LS. The speedup of our algorithm over
LS is 63X on this dataset.

7. CONCLUSIONS
In this work, we propose a novel method to discover rep-

resentative patterns of time series, specifically for the prob-
lem of classification. We demonstrate through extensive
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Figure 12: Five type of Medical Alarm and the best rep-
resentative patterns.

experimental evaluation that our technique achieves com-
petitive classification accuracy on the standard UCR time
series repository, and is able to discover meaningful sub-
space patterns. The accuracy of our technique remains sta-
ble even when the data are shifted, while NN classifiers with
global distance measures suffer from shift distortion. We
also demonstrate that our technique outperforms existing
techniques on a real-world medical alarm data that is ex-
tremely noisy.

In terms of efficiency, while our approach is competitive or
better than other techniques, there are other optimization
strategies that we can consider to speed up the algorithm
even further. From profiling, we identified the bottleneck
of the algorithm, which can be improved by adapting the
state-of-the-art subsequence matching strategies [26]. Also,
we used Euclidean distance as the base distance function for
pattern matching. We will consider a more robust distance
measure such as DTW in future work.
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[15] H. Kremer, S. Günnemann, A. Held, and T. Seidl.
Effective and robust mining of temporal subspace
clusters. In ICDM, pages 369–378, 2012.

[16] X. Li, E. Keogh, L. Wei, and A. Mafra-Neto. Finding
motifs in a database of shapes. In SDM, pages
249–260, 2007.

[17] Y. Li, J. Lin, and T. Oates. Visualizing variable-length
time series motifs. In SDM, pages 895–906, 2012.

[18] J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing
SAX: a novel symbolic representation of time series.
Data Mining and knowledge discovery, 2007.

[19] J. Lin, R. Khade, and Y. Li. Rotation-invariant
similarity in time series using Bag-of-Patterns
representation. Journal of Intelligent Inform. Systems,
39, 2012.

[20] A. Mueen, E. Keogh, and N. Young. Logical-shapelets:
an expressive primitive for time series classification. In
Proc. of 17th ACM SIGKDD Intl. Conf., 2011.

[21] A. Nanopoulos, R. Alcock, and Y. Manolopoulos.
Feature-based classification of time-series data.
International Journal of Computer Research, 10(3),
2001.

[22] S. Naoki. Local feature extraction and its application

using a library of bases. Ph.D. thesis, Yale University,
1994.

[23] C. G. Nevill-Manning and I. H. Witten. Identifying
hierarchical structure in sequences: A linear-time
algorithm. J. Artif. Intell. Res.(JAIR), 7:67–82, 1997.

[24] J. Platt. Fast training of support vector machines
using sequential minimal optimization. In Advances in
Kernel Methods - Support Vector Learning. MIT
Press, 1998.

[25] M. Radovanovic, A. Nanopoulos, and M. Ivanovic.
Time-series classification in many intrinsic dimensions.
In SDM, pages 677–688, 2010.

[26] T. Rakthanmanon, B. Campana, A. Mueen,
G. Batista, B. Westover, Q. Zhu, J. Zakaria, and
E. Keogh. Searching and mining trillions of time series
subsequences under dynamic time warping. In
Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’12, pages 262–270, New York, NY, USA, 2012.

[27] T. Rakthanmanon and E. Keogh. Fast shapelets: A
scalable algorithm for discovering time series
shapelets. In Proc. of SDM, 2013.

[28] C. A. Ratanamahatana and E. Keogh. Making
time-series classification more accurate using learned
constraints. SIAM, 2004.

[29] G. Salton. The SMART Retrieval System; Experiments
in Automatic Document Processing. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1971.

[30] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P.
Boedihardjo, C. Chen, S. Frankenstein, and M. Lerner.
Grammarviz 2.0: a tool for grammar-based pattern
discovery in time series. In Proc. ECML/PKDD. 2014.

[31] P. Senin and S. Malinchik. SAX-VSM: Interpretable
time series classification using sax and vector space
model. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on, pages 1175–1180. IEEE,
2013.

[32] X. Wang, A. Mueen, H. Ding, G. Trajcevski,
P. Scheuermann, and E. Keogh. Experimental
comparison of representation methods and distance
measures for time series data. Data Mining and
Knowledge Discovery, 26(2):275–309, 2013.

[33] L. Wei and E. Keogh. Semi-supervised time series
classification. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 748–753. ACM,
2006.

[34] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A.
Ratanamahatana. Fast time series classification using
numerosity reduction. In Proceedings of the 23rd
international conference on Machine learning, pages
1033–1040. ACM, 2006.

[35] Z. Xing, J. Pei, S. Y. Philip, and K. Wang. Extracting
interpretable features for early classification on time
series. In SDM, volume 11, pages 247–258. SIAM,
2011.

[36] L. Ye and E. Keogh. Time series shapelets: a new
primitive for data mining. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 947–956. ACM,
2009.

196


	RPM: Representative Pattern Mining for Efficient Time Series ClassificationXing Wang, Jessica Lin, Pavel Senin, Tim Oates, Sunil Gandhi, Arnold Boedihardjo, Crystal Chen, Susan Frankenstein

