

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.38

move with an average speed less then 40 mph and the cur-
rent context is no congestion then the context deriving query
updates the context to congestion for this road segment. To
save resources and thus to ensure prompt system responsive-
ness, such complex context detection should happen once.
Its results must be available on-time and shared among all
queries that belong to the detected context. In other words,
context processing queries are dependent on the results of
context deriving queries and a mechanism ensuring their cor-
rect execution must be employed.

The system responsiveness can be substantially improved
by exploiting the optimization opportunities enabled by the
application contests. (1) Only those event queries that are
relevant in the current contexts should be executed. All ir-
relevant computations should be suspended. (2) Workloads
of overlapping contexts should be shared. Furthermore, ap-
plication contexts break the application semantics into mod-
ules that facilitate the modular development and runtime
maintenance of an event stream processing application.

Challenges. To enable such event stream processing ap-
plications, the following challenges must be tackled:

Context-aware speci cation model. As motivated above,
event stream processing applications need to express rich se-
mantics. In particular, they have to specify application con-
texts as first class citizens and enable linkage of appropriate
event queries to their respective context. Furthermore, this
model must be in a convenient human-readable format to
facilitate on-the-fly reconfiguration, easy maintenance and
avoid fatal specification mistakes.

Context-exploiting optimization techniques. To meet the
demanding latency constraints of time-critical applications,
this powerful context-aware application model must be trans-
lated into an efficient physical query plan. This query plan
must be optimized by exploiting the optimization opportu-
nities enabled by context-aware event stream analytics. This
is complicated by the fact that the duration of a context is
unknown at compile time and potentially unbounded.

Context-driven execution infrastructure. An efficient run-
time execution infrastructure is required to support multiple
concurrent contexts. To ensure correct query execution, the
inter-dependencies between complex context deriving and
context processing queries must be taken into account.

State-of-the-Art. The challenges described above have
so far not been addressed in a comprehensive fashion.

Since the duration of a context varies, state-of-the-art win-
dow semantics such as fixed-length tumbling and sliding win-
dows [22, 8] are inadequate to model the proposed notion of
a context. Classical predicate windows [15] have variable du-
ration. However, conditions leading to an application con-
text can be rather complex and thus resource-consuming,
worse yet they can be dependent on the previous contexts
(Figure 1). Since predicate windows are independent from
each other, they fail to express context windows.

While some event query languages (e.g., CQL [10], SASE [5,
34]) could be used to hard-code the equivalent of a con-
text construct by queries that detect the context bounds.
However, this approach is cumbersome and error-prone —
requiring the careful specification of multiple complex inter-
dependent event queries [25]. Furthermore, no optimiza-
tion techniques have been developed to exploit the benefits
of context-awareness such as suspension of irrelevant event
queries nor the sharing workloads of overlapping contexts.

Business models [16, 28] focus on powerful modeling con-

414

structs to capture the semantics of processes and in that
sense express application contexts. However, these models,
targeting business process specification, were not designed
for event stream processing. Thus, they neglect its core
peculiarities such as the event-driven nature of context de-
tection achieving high performance analytics and the impor-
tance of temporal windows and their processing techniques.

The Proposed CAESAR Approach. In [25], we for-
mally defined the first context-aware event query processing
model for which we now design the Context-Aware Event
Stream Analytics in Real time system, CAESAR for short.

Our CAESAR model supports context windows as first-
class citizens and associates appropriate event queries with
each context window. Event queries that process events
within a context are called context processing queries. Event
queries that derive a context are called context deriving queries.
Both types of queries operate within context windows, a new
class of event query window we define.

To achieve near real-time system responsiveness, the CAE-
SAR model is transformed into a stream query plan com-
posed of context-aware operators of the CAESAR algebra.
This algebra serves as foundation for the CAESAR optimizer.
The optimizer exploits the notion of context windows to
avoid unnecessary computations by suspending those oper-
ators which are irrelevant to the current context. Further-
more, the optimizer saves computations by sharing work-
loads of overlapping context windows. Finally, we built the
CAESAR runtime infrastructure for correct yet efficient ex-
ecution of inter-dependent context-aware event queries.

Contributions can be summarized as follows:

1) We introduce a new notion of windows, called con-
text windows, to enable context-aware event query process-
ing critical to modeling event-based systems. The proposed
human-readable context-aware CAESAR model significantly
simplifies the specification of rich event-driven application
semantics by explicit support of context windows?. It also
opens new multi-query optimization opportunities by asso-
ciating appropriate event queries with each context.

2) We define the CAESAR algebra for our context-aware
event query processing. The CAESAR optimizer pushes the
context windows down to suspend the execution of irrelevant
operators. Furthermore, we propose the context window
grouping algorithm that exploits the sharing opportunities
from workloads of overlapping context windows.

3) We built the CAESAR runtime execution infrastruc-
ture that guarantees correct and efficient execution of inter-
dependent context deriving and context processing queries.

4) We evaluate the performance of the CAESAR system
and its optimization strategies using the Linear Road stream
benchmark [9] as well as the real world data set [26]. Our
CAESAR system performs on average 8-fold faster than the
context-independent solution for a wide range of cases.

Qutline. We start with preliminaries in Section 2 and
introduce the CAESAR model in Section 3. We present our
algebraic execution paradigm in Section 4 and its optimiza-
tion techniques in Section 5. Section 6 is devoted to the run-
time execution infrastructure. We conduct the performance
study in Section 7. Related work is discussed in Section 8,
and Section 9 concludes the article.

2Visual editor for the CAESAR model and its evaluation, out
of the scope of this article, are subjects for future research.
In [25] we compare our model to a set of CQL event queries.

415

to conclude that the windows overlap. CAESAR employs
established approaches for predicate subsumption [14].

The same event query can be appropriate in several dif-
ferent application contexts. For example, accident detection
happens in both the clear and the congestion contexts. In
contrast to that, the event query detecting accident clear-
ance is executed only in the accident context.

For simplicity, we have made two assumptions: (1) Event
queries associated with di erent contexts are independent,
meaning that they do not produce events that are consumed
by event queries in other contexts. (2) Only one context win-
dow of the same type can hold at a time per road segment.
If there are multiple accidents in a road segment the context
window accident holds until all of them are cleared.

3.4 Context-aware Event Queries

Figure 3: Context-aware event queries

The two application contexts, congestion and accident, are
shown in Figure 3. Di erent event queries are appropriate
within them. For compactness, only three of them within the
congestion context are shown. Clauses in square brackets are
optional since they are implied by the model. The CAESAR
event query language grammar is de ned in Figure 4.

Definition 3. (Context-aware event queries.)

A context-aware event query consists of several clauses.
Each clause performs one of the following tasks:

{ Context initiation (INITIATE CONTEXT clause).

{ Context switch (SWITCH CONTEXT clause).

{ Context termination (TERMINATE CONTEXT clause).

{ Complex event derivation (DERIVE clause).

{ Event pattern matching (PATTERN clause).

{ Event Itering (WHERE clause).

{ Context window speci cation (CONTEXT clause).

Context deriving queries perform three actions: (1) ini-
tiate a new context window w¢, (2) terminate an existing
context window wg, or (3) switch from the current context
window wc, into a new context window we,.

Context initiation and termination can be used to express
overlapping context windows. For example, accident and
congestion may overlap. That is, query 3 initiates the con-
text window accident when an accident is detected (Fig-
ure 3). However, query 3 does not terminate the context
window congestion. The event queries that detect accidents
are not shown for compactness.

In contrast, context switch expresses a sequence of two
non-overlapping context windows. It corresponds to the ter-
mination of the previous context window wc, and the initia-
tion of the new context window wc,. For example, the clear
context overlaps neither accident nor congestion contexts.

Context processing queries analyze the stream of simple
or complex events to derive higher-level knowledge in form
of complex events. For example, query 2 detects the cars en-
tering a congested road segment. These are vehicles which
are not on an exit lane and for which there is no previous po-
sition report from the same road segment within 30 seconds.
Query 1 derives toll noti cations for such vehicles.

Both context deriving and context processing queries con-
sume events that arrive during the context windows that
these queries are associated with. Hence, both types of
queries utilize event pattern matching and event Itering
clauses which are commonly used in event queries [34, 23].
Section 4.1 de nes when these clauses match.

Query = hWindowi j hRetrievali

Window := (INITIATE j SWITCH j TERMINATE)
CONTEXT Context

Retrieval := hDerivei hPatterni hW herei? hContexti

Derive ‘= DERIVE EventType ((Var:)? Attr; ?)+

Pattern := PATTERN hP atti

W here ‘= WHERE hEXpri

Context = CONTEXT (Context ;?)+

Patt = NOT? EventType Var? j SEQ((hPatti ;?)+)

Expr = Constant j Attr j hExpri hOpi hExpri

Op = +] J5 %j=j&j>j j<] JANDJOR

Figure 4: CAESAR event query language grammar

Putting the application contexts, transitions between them
(De nitions 1 and 2) and context-aware event queries (Def-
inition 3) together, we now de ne the CAESAR model.

Definition 4. (CAESAR model.) A CAESAR model is a
tuple (1;0;C;cq) where | and O are unbounded input and
output event streams and C is a nite set of context types
with the default context type cq 2 C.

While the goal of classical automata is to de ne a lan-
guage, the CAESAR model is designed for context-aware
event query execution. Thus, nal contexts are omitted.
The CAESAR model has a default context that holds when
no other context does, e.g., at the system startup (the clear
context in our example). The runtime processing of the
model is de ned in Section 4.1.

4. CAESAR ALGEBRA

The CAESAR model explicitly supports application con-
texts and the transition network to facilitate context-aware
event query speci cation (Figure 3). However, at execution
level an algebraic query plan tends to be easier to optimize
than an automaton-based model [30].> We thus de ne the
CAESAR algebra and the translation rules of the CAESAR
model into an algebraic query plan.

4.1 CAESAR Operators

The CAESAR algebra consists of six operators. While
event pattern, Iter and projection are quite common for
other stream algebras [30], [34], context initiation, termina-
tion and context window are unique operators of the CAE-
SAR algebra. Context initiation and termination consume a
stream | of events produced by other operators of the con-
text deriving queries and the set of current context windows

3There are approaches to optimization and distribution of
simpler automata than the CAESAR model however. We
describe them in detail in Section 8.

416

422

423

424

	Context-Aware Event Stream AnalyticsOlga Poppe, Chuan Lei, Elke Rundensteiner, Dan Dougherty

