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ABSTRACT
With the explosion of large, dynamic graph datasets from various
fields, graph partitioning and repartitioning are becoming more and
more critical to the performance of many graph-based Big Data ap-
plications, such as social analysis, web search, and recommender
systems. However, well-studied graph (re)partitioners usually as-
sume a homogeneous and contention-free computing environment,
which contradicts the increasing communication heterogeneity and
shared resource contention in modern, multicore high performance
computing clusters. To bridge this gap, we introduce PARAGON,
a parallel architecture-aware graph partition refinement algorithm,
which mitigates the mismatch by modifying a given decomposition
according to the nonuniform network communication costs and the
contentiousness of the underlying hardware topology. To further
reduce the overhead of the refinement, we also make PARAGON
itself architecture-aware.

Our experiments with a diverse collection of datasets showed
that on average PARAGON improved the quality of graph decom-
positions computed by the de-facto standard (hashing partitioning)
and two state-of-the-art streaming graph partitioning heuristics (de-
terministic greedy and linear deterministic greedy) by 43%, 17%,
and 36%, respectively. Furthermore, our experiments with an MPI
implementation of Breadth First Search and Single Source Short-
est Path showed that, in comparison to the state-of-the-art stream-
ing and multi-level graph (re)partitioners, PARAGON achieved up to
5.9x speedups. Finally, we demonstrated the scalability of PARAGON
by scaling it up to a graph with 3.6 billion edges using only 3 ma-
chines (60 physical cores).

1. INTRODUCTION
It is well-known that graph (re)partitioning has been extensively

studied in the area of scientific simulations [14, 34]. Yet, its impor-
tance is continuously increasing due to the explosion of large graph
datasets from various fields, such as the World Wide Web, Pro-
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tein Interaction Networks, Social Networks, Financial Networks,
and Transportation Networks. This has led to the development of
graph-specialized parallel computing frameworks, e.g., Pregel [21],
GraphLab [19], and PowerGraph [13].

Pregel, as a representative of these computing frameworks, em-
braces a vertex-centric approach where the graph is partitioned across
multiple servers for parallel computation. Computations are often
divided into a sequence of supersteps separated by a global syn-
chronization barrier. During each superstep, a user-defined func-
tion is computed against each vertex based on the messages it re-
ceived from its neighbors in the previous step. The function can
change the state and outgoing edges of the vertex, send messages
to the neighbors of the vertex, or even add or remove vertices/edges
to the graph.

Traditional Graph Partitioners Clearly, the distribution of the
graph data across servers may impact the performance of target ap-
plications significantly. Graph partitioning has been studied for
decades [14, 34], attempting to provide a good partitioning of the
graph data, whereby both the skewness and the communication
(edge-cut) among partitions are minimized as much as possible,
in order to minimize the total response time for the entire compu-
tation. However, classic graph partitioners such as METIS [23] and
Chaco [7] do not scale well with large graphs.

Streaming Graph Partitioners Streaming graph partitioners (e.g.,
DG/LDG [39], arXiv’13 [11], and Fennel [42]) have been proposed
in order to overcome the scalability challenges of classic graph
partitioners, by examining the graph incrementally. One of the
main shortcomings of these approaches is that they also assume
uniform network communication costs among partitions as classic
graph partitioners do. That is, they all assume that the communica-
tion cost is proportional only to the amount of data communicated
among partitions. This assumption is no longer valid in modern
parallel architectures due to the increasing communication hetero-
geneity [47, 8]. For example, on a 4 � 4 � 4 3D-torus interconnect,
the distance to different nodes starting from a single node varies
from 0 to 6 hops.

Architecture-Aware Graph Partitioners Architecture-aware graph
partitioners [24, 8, 46] have been proposed to improve the map-
ping of the application’s communication patterns to the underlying
hardware topology. Chen et al. [8] (SoCC’12) took architecture-
awareness a step further, by making the partitioning algorithm itself
partially aware of the communication heterogeneity. However, both
[8] and [24] (ICA3PP’08) are built on top of existing heavyweight
graph partitioners, namely, METIS [23] and PARMETIS [30], which
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Figure 3: Old Decomposition
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Figure 4: Better Decomposition
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Figure 5: Best Decomposition
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Figure 6: Relative Network
Communication Costs

We define the communication cost of a partitioning P as:

comm(G;P ) = � ∗
X

e=(u,v)∈E
and u∈Pi and v∈Pj and i6=j

w(e) ∗ c(Pi; Pj) (2)

where � specifies the relative importance between communication
and migration cost, which is usually set to be the number of su-
persteps carried out between two consecutive refinement/reparti-
tioning steps, w(e) is the edge weight, indicating the amount of
data communicated along the edge per superstep, and c(Pi; Pj)
can be either the relative network communication cost, the degree
of shared resource contentiousness between Pi and Pj or a hybrid
of both. Existing architecture-agnostic graph (re)partitioners usu-
ally assume c(Pi; Pj) = 1.

The migration cost of the refinement is defined as:

mig(G;P; P ′) =
X
v∈V

and v∈Pi and v∈P ′
j and i 6=j

vs(v) ∗ c(Pi; P ′j) (3)

where vs(v) is the vertex size, reflecting the amount of application
data represented by v, and P ′ denotes the partitioning after being
refined/repartitioned.

The skewness of a partitioning, P , is defined as:

skewness(G;P ) =
max{w(P1); w(P2); · · · ; w(Pn)}∑n

i=1 w(Pi)

n

(4)

wherew(Pi) =
P
v∈Pi

w(v) withw(v) denoting the vertex weight
(i.e., the computation requirement of the vertex).

Self Architecture-Awareness In fact, the refinement algorithm it-
self should be architecture-aware (during its execution), since the
refinement may also result in a lot of communication.

4. OUR PRIOR WORK: ARAGON
ARAGON is a serial, architecture-aware graph partition refine-

ment algorithm proposed by us in [48]. It is a variant of the Fiduccia-
Mattheyses (FM) algorithm [12]. It tries to reduce the application
communication cost by modifying the current decomposition ac-
cording to the nonuniform network communication costs of the un-
derlying hardware topology. Each time it takes as input two par-
titions of the n-way decomposition and the relative network com-
munication costs among partitions. For each input partition pair,
it attempts to improve the mapping of the application communi-
cation pattern to the underlying hardware topology by iteratively
moving vertices between them. During each iteration, it tries to
find a single vertex such that moving it from its current partition
to the alternative partition would lead to a maximal gain, where the
gain is defined as the reduction in the communication and migration
cost. Upon each movement of a vertex, v, it also updates the gain
of v’s neighbors of the partition pair. This process is repeated until
all vertices are moved once or the decomposition cannot be fur-
ther improved after a certain number of vertex movements. Since

ARAGON can only refine one partition pair at a time, it is repeatedly
applied to all partition pairs sequentially.

The gain of moving vertex v from its current partition, Pi, to its
refinement partner, Pj , is defined as:

gi,j(v) = gi,jstd(v) + gi,jtopo(v) + gi,jmig(v) (5)

Here, gi,jstd(v) considers the impact of the movement on the com-
munication between Pi and Pj , defined as:

gi,jstd(v) = � ∗ (dext(v; Pj)− dext(v; Pi)) ∗ c(Pi; Pj) (6)

where dext(v; Pi) denotes the amount of data v communicates with
vertices of partition Pi, formally defined as

dext(v; Pi) =
X

e=(v,u)∈E
and v∈Pi and u∈Pj and i6=j

w(e) (7)

The second term of Equation 5, gi,jtopo(v), considers the impact of
the movement on the communication between v and its neighbors
in other partitions in addition to Pi and Pj . We define it as:

gi,jtopo(v) = �∗
nX
k=1

and k 6=i and k 6=j

dext(v; Pk)∗(c(Pi; Pk)−c(Pj ; Pk))

(8)
The third term of Equation 5, gi,jmig(v), considers the impact of the
movement on migration cost, which is defined as:

gi,jmig(v) = vs(v) ∗ (c(Pi; Pk)− c(Pj ; Pk)) (9)

where Pk is the owner of v in the original decomposition. The
current owner of v, Pi, may be different from its original owner,
Pk, due to the refinement.
Example In the decomposition shown in Figure 3, we have a graph
with unit weights and sizes and is initially distributed across 3 ma-
chines: N1, N2, and N3. The relative network communication
costs among partitions are shown in Figure 6. Clearly, the number
of edges among partitions goes from 4 in Figure 3, to 3 in Fig-
ure 4. In fact, if we assume uniform network communication costs
among partitions, Figure 4 would be the optimal decomposition of
the graph. However, if we consider the case where all network
costs are not equal (as in Figure 6), then the decomposition in Fig-
ure 4 can be further improved by moving vertex a to P2 (Figure 5).
Even though moving vertex a from P1 to P2 increases the com-
munication cost between P1 and P2 by 1, it actually reduces the
communication cost between a and j by 5, since the relative net-
work communication cost between P1 and P3 is 6, while that of P2

and P3 is 1. For the same reason, moving a to P2 also decreases
the migration cost of a by 5, since vertex a was originally in P3.

5. PARAGON
Motivation Clearly, one naive implementation of ARAGON could
be as follows: server M [i] is responsible for the refinement of Pi
with all its partners Pi+1; Pi+2; · · · ; Pn, and server M [i + 1] can
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Figure 14: BFS JET with Graph Dynamism
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Figure 15: BFS JET vs Graph Size
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Figure 16: Refinement Time vs Graph Size

large graphs even if performed in parallel. Furthermore, they are
all architecture-agnostic. Although [24], a METIS variant, consid-
ers the communication heterogeneity, it is a sequential static graph
partitioner, which is inapplicable for massive graphs or dynamic
graphs. Several recent works [48, 8] have been proposed to cope
with the heterogeneity and dynamism. However, they are also too
heavyweight for massive graphs because of the high communica-
tion volume they generate. As a consequence, they are not ap-
propriate for online graph repartitioning in large-scale distributed
graph computation. Furthermore, they disregard the issue of re-
source contention in multicore systems.

Lightweight Graph Repartitioning As a result of the shortcom-
ings of heavyweight graph (re)partitioners, many lightweight graph
repartitioners [37, 43, 26, 17, 45] have been proposed. They ef-
ficiently adapt the partitioning to changes by incrementally mi-
grating vertices among partitions based on some heuristics (rather
than repartitioning the entire graph). Nevertheless, they are not
architecture-aware. Also, many of them assume uniform vertex
weights and sizes, and some [43, 26] even assume uniform edge
weights, which may not always be true.

In fact, work [17] is a Pregel-like graph computing engine, which
migrates vertices based on runtime characteristics of the workload
(i.e., # of message sent/received by each vertex and response time)
instead of the graph structure (i.e., the distribution of vertex neigh-
bors, edge weights, and vertex sizes). Paper [45] also presents
a repartitioning system that migrates vertices on-the-fly based on
some runtime statistics (i.e., the average compute and communica-
tion time of each superstep and the probability of a vertex becoming
active in the next superstep).

Recently, a novel distributed graph partitioner, Sheep [22], has
been proposed for large graphs. It is similar in spirit to METIS.
That is, they both first reduce the original graph to a smaller tree or
a sequence of smaller graphs, then do a partition of the tree or the
smallest graph, and finally map the partitioning back to the origi-
nal graph. In terms of partitioning time, Sheep outperforms both
METIS and streaming partitioners. For partitioning quality, Sheep
is competitive with METIS for a small number of partitions and is
competitive with streaming graph partitioners for larger numbers
of partitions. However, Sheep is unable to deal with both weighted
and dynamic graphs, and it is architecture-agnostic.

Streaming Graph Partitioning Recently, a new family of graph
partitioning heuristics, streaming graph partitioning [39, 11, 42],
has been proposed for online graph partitioning. They are able to
produce partitionings comparable to the heavyweight graph par-
titioner, METIS, within a relative short time. However, they are
architecture-agnostic. Although [46] has presented a streaming
graph partitioner with awareness of both compute and communi-
cation heterogeneity, it may lead to suboptimal performance in the
presence of graph dynamism.

Vertex-Cut Graph Partitioning Several vertex-cut graph parti-
tioners [44, 31, 13] were also proposed to improve the performance
of distributed graph computation. Vertex-cut solutions partition

the graph by assigning edges of the graph across partitions in-
stead of vertices. It has been shown that vertex-cut solutions re-
duce the communications with respect to edge-cut ones, especially
on power-law graphs. However, it also has to deal with the issue
of communication heterogeneity and the issue of shared-resource
contention, since vertices appearing in multiple partitions need to
communicate with each other during the computation. Neverthe-
less, its discussion is beyond the scope of this paper.

Overview of Related Work Table 6 visually classifies the state-
of-the-art graph (re)partitioners according to algorithm and graph
properties. In terms of algorithm properties, we characterize each
approach as to whether it (a) runs in parallel and (b) is architecture-
aware (i.e., CPU heterogeneity, network cost non-uniformity, and
resource contention). In terms of graph properties, we charac-
terize each approach as to whether it can handle graphs with (a)
dynamism, (b) weighted vertices (i.e., nonuniform computation),
(c) weighted edges (i.e., nonuniform data communication), and (d)
vertex sizes (i.e., nonuniform data sizes on each vertex).

9. CONCLUSIONS
In this paper, we presented PARAGON, a parallel architecture-

aware graph partition refinement algorithm that bridges the mis-
match between the application communication pattern and the un-
derlying hardware topology. PARAGON achieves this by modify-
ing a given decomposition according to the nonuniform network
communication costs and consideration of the contentiousness of
the underlying hardware. To further reduce its overhead, we made
PARAGON itself architecture-aware. Compared to the state-of-the-
art, PARAGON improved the quality of graph decompositions by
up to 53%, achieved up to 5.9x speedups on real workloads, and
successfully scaled up to a 3.6 billion-edge graph.
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