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ABSTRACT

Handling non-answers is desirable in information retrieval systems.
Current e-commerce websites usually try to suppress the somewhat
dreaded message that no results have been found. Possible solu-
tions include, for example, augmenting the data with synonyms
and common misspellings based on query logs. Nonetheless, this
is only achievable if we can know the cause of the non-answers.
Under the hood, most e-commerce data sits in some structured
format. Debugging non-answers in the underlying KWS-S systems
is therefore not trivial — non-answers in a KWS-S system could be
a problem of the data (e.g., absence of some keywords), the schema
(e.g., missing key-foreign-key joins), or due to empty join results
from one of possibly several joins in the generated SQL queries.
So far, we are unaware of any previous work that explores how to
enable developers to debug non-answers in a KWS-S system. In
this paper, we take a first step towards this direction by proposing
a KWS-S system that can expose non-answers to the developers.
Our system presents the developers with the maximal nonempty
sub-queries that represent the frontier cause of the non-answers.
We outline the challenges in building such a system and propose
a lattice structure for efficient exploration of the non-answer query
space. We also evaluate our proposed mechanisms over a real world
dataset to demonstrate their feasibility.

1. INTRODUCTION

Handling non-answers (i.e., queries that return no results) is
now a common practice in information retrieval systems. Current
SEO companies and e-commerce websites like Orcale Endeca [21],
HP Autonomy [9], and IBM Coremetrics [13] often try to avoid
showing the somewhat dreaded “No results found!” message when
they fail to return any results that can match user’s keyword queries.
Possible strategies include, for instance, substituting user’s original
keywords with different keywords from a controlled vocabulary
(e.g., synonyms, hyponyms, and hypernyms), or displaying a “Did
you mean?”’ style response with spelling corrections. Doing so
is critical to helping customers find what they are looking for and
improving user experience and ultimately retention.

Nonetheless, implementation of such seemingly simple strate-
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gies is not trivial. While users interact with a search box, under
the hood most e-commerce data sits in some structured format,
largely due to maintainablity reasons. To employ strategies such
as augmenting the data with synonyms and common misspellings
based on query logs, we first need to understand the cause of the
non-answers. For example, we need to convince ourselves that a
non-answer query is really caused by missing keywords in the data
before we decide to add the missing words into the vocabulary;
otherwise this action is not helpful. Unfortunately, debugging non-
answers in the underlying KWS-S (acronym for KeyWord Search
over Structured data) systems is challenging — non-answers in a
KWS-S system could be a problem of the data (e.g., absence of
some keywords), the schema (e.g., missing key-foreign-key joins),
or due to empty join results from one of possibly several joins in
the generated SQL queries. So far, we are unaware of any previous
work that explores how to enable developers to debug non-answers
in a KWS-S system.

In this paper, we take a first step towards systematically explor-
ing non-answers in KWS-S systems, and we focus on seeking the
maximal partial matches or sub-queries of the non-answers. Similar
ideas have been explored in the unstructured world. For example,
Figure 1 presents the screenshot from buy.com in response to the
keyword query “saffron scented candle”. Although no
saffron-scented candles are found, rather than displaying a blank
page that shows no results, other saffron-scented products and other
scented candles are presented to the user, corresponding to the three
sub-queries “saffron scented”, “saffron candle”, and
“scented candle”. We believe that this kind of information
could also be very helpful for debugging non-answers in KWS-S
systems, and our primary goal in this paper, akin to what has been
done over unstructured data, is to find results from sub-queries of
non-answers, but over structured data.

Moving from unstructured to structured data, however, is more
complicated than we might have thought. In typical KWS-S sys-
tems such as Banks [1, 14], DBXplorer [2], and DISCOVER [11],
users enter a set of keywords and the system responds with a
multitude of relationships connecting those keywords. In [2, 11,
17, 19] and many other KWS-S systems, this is done by mapping
the keyword query to several structured queries (i.e., SQL queries).
All of these structured queries are then evaluated, and the tuples
corresponding to the queries that produce answers are returned to
the user. Sub-queries of a non-answer query in a KWS-S system
thus refer to sub-queries of a structured SQL query rather than
the original keyword query. Since a KWS-S system can usually
generate many SQL queries in response to a single keyword query,
naively evaluating all possible sub-queries at runtime could be quite
expensive. To efficiently explore the space of sub-queries, our
basic idea is to exploit the common sub-queries that are shared by
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Product Type (P) Color (C) Attribute (A)

id | product-type id | color synonyms id | property value

1 oil 1 red crimson, orange 1 scent saffron
candle 2 | yellow golden, lemon 2 scent vanilla
incense 3 | pink peach, salmon 3 | pattern floral

Vw yellow, orange 4 pattern checkered
T /

id | name p-type | color attr | cost description

1 saffron scented oil 1 NA 1 4.99 3.4 oz. burns without fumes.

2 | vanilla scented candle 2 2 2 5.99 burn time 50 hrs. 6.4 oz. 2pck.

3 | crimson scented candle 2 1 3 3.99 | hand-made. saffron scented. 2pck.

4 red checkered candle 2 1 4 3.99 rose scented. made from essential oils.

Item (I)

Figure 2: Product database containing an Items Table (I), Product Type table (P), Color table (C) and Attributes table (A).

Sorry. Your search for saffron scented candle did not return an exact match.

How about searching for:

saffron scented cancle

See all 2,965 Results

saffron =c

seffren scented candle

See all 6,723 Results

See all 312 Results

Figure 1: Screenshot from buy.com where sub-queries and
their results are suggested to the user when “saffron scented
candles” returns zero products.

multiple structured SQL queries. To put things in context, let us
consider the following example:

EXAMPLE 1 (NON-ANSWERS IN KWS-S). Figure 2 shows
a toy database that will be used throughout this paper. It contains
an Items table I, a Product Type table P, a Colors table
C, and an Attributes table A. The arrows here present the
key-foreign-key associations between the tables.

Consider the keyword query “saffron scented candle’.
The KWS-S system maps it to two structured SQL queries (R* here
means the keyword k is mapped to the table R):

(q1) peandle g scented g yseffron \uhich tries to “find
scented candles whose color is saffron.”

(qo) Peomdle pq pscented g Aselfron \hich tries to “find
scented candles whose scent is saffron.”

Both q1 and q2 return no result tuples with the given database,
namely, they are non-answers. In the case of qi, while every
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keyword does occur in the database, the join of all the involved
tables produces no results. Exposing this information and g1 can
allow the developer or SEO person to add saffron as a synonym
of yellow, thus returning several relevant results to the user. In
existing KWS-S systems q1 would never be exposed.

As for qo, its sub-queries, which are peondle g pscented g,
poeented g Aseffron  do return answers, even though q2 does
not. More specifically, while the merchant does not carry any
saffron-scented candles, it does carry scented candles and saffron-
scented products that are not candles. Knowing this information
may not help return answers to the original query, like in the q1
case. However, it could be useful for merchandizing purposes.
Additionally (like in Figure 1), the partial queries serve as a good
alternative to returning nothing."

Inspired by Chapman and Jagadish [5], to explain causes of the
non-answers, we report their maximal sub-queries that return at
least one tuple. To illustrate, in Example 1, our system will display
Pcandle > Iscented and Csaffron for q1, and Pcandle > Iscented
and 1°°ented pg AsaffTom for go. Intuitively, these sub-queries sit
on the boundary of answers/non-answers and provide the developer
with information about the frontier causes of the non-answers.
Similar notions have been proposed in previous work as solutions to
“why not” style questions. For instance, in [5] the authors proposed
using frontier picky manipulations which are the highest operators
in a query tree or the latest manipulations in a workflow that rule
out data items interested by the user from the results.

To find the maximal nonempty sub-queries for the non-answers,
a naive strategy could be to enumerate all sub-queries and evaluate
them (i.e., run the SQL query over the database) to check if they are
empty. This is clearly inefficient. Our key observation here is that
sub-queries of the non-answers overlap. For example, the g1 and g2
in Example 1 share the common join query P4l pq Jecented,
In our experiments, we found that this overlap is significant on
real data. Motivated by this observation, we propose a lattice
structure that represents all the structured queries that a KWS-S
system explores (details in Section 2). This structure is constructed
offline and is used to capture the overlap between the sub-queries
of each query (Section 2.2). Additionally, it also lends itself to
systematic exploration of the sub-queries of non-answer queries.
Note that, once we know the status of a query (i.e., if it is empty),

"The situation here is a bit more symmetric than that described in
this example: given another instance of the tables, it might be g2
that can be fixed via a synonym, whereas g; might be the query
where non-answers are explained via maximal sub-queries.



this information can be utilized to determine the status of other
queries based on the hierarchical relationships between queries
presented in the lattice. For instance, in Example 1, we do not
need to run the two SQL queries corresponding to P°?™%¢ and
Iscentcd once we know Pcandle > Iscented is nonempty —
they must both be nonempty as well. This raises the interesting
question of in which order we should visit the nodes in the
lattice with the purpose of minimizing the number of SQL queries
that need to be executed, which is the key to runtime system
performance. We studied both fop-down and bottom-up strategies
to traverse the lattice structure (Section 2.5), and found that their
performance depends on the distribution of the non-answer sub-
queries within the hierarchy. Specifically, top-down/bottom-up
strategies are more efficient when the maximal nonempty sub-
queries are at higher/lower levels of the lattice. With this in mind,
we further propose a greedy algorithm based on a scoring function
that measures the potential reduction in the search space from
examining a certain sub-query (Section 2.5.3). Our experimental
results show that, while top-down and bottom-up strategies suffer
from certain distributions of the non-answers, the greedy algorithm
can perform relatively well in all the cases we tested.

While our proposed framework can efficiently find all the max-
imal non-empty sub-queries for non-answers, in our experiments
we observed that the number of sub-queries is sometimes large.
This is actually an inherent problem of KWS-S systems. Existing
KWS-S systems usually use ranking functions to present users with
only the most relevant results. For instance, Hristidis et al. [10]
studied the problem of efficiently presenting the end users with a
list of top-k matches. However, such strategies cannot work for
the goal of debugging non-answers in KWS-S systems. This is
simply because of the nature of debugging, which needs to find
the cause of the non-answers no matter how trivial the cause might
be. It is akin to debugging a normal computer program, where all
possible bugs should be reported. Of course, there is a number
of possible solutions to alleviate the problem of overwhelming
number of sub-queries. For example, one option could be to allow
the developer to define various filters or a priority hierarchy on
the returned sub-queries. We do not try to explore all of these
possible postprocessing techniques in this paper, most of which
are application-specific and therefore may not have a uniformly
optimal solution. Rather, we focus on an essential foundational task
that must be solved before any higher-level postprocessing can be
performed: the task of efficiently finding non-answers in response
to a keyword query over structured data. It is our hope that our
solution for this task provides a building block that can be used in
conjunction with future research to build more customized systems.

In the rest of the paper, we start by introducing the system
architecture of the proposed system and detailing its components in
Section 2. We then evaluate our proposed approaches in Section 3.
We discuss related work in Section 4 and conclude in Section 5.

2. EXPLORING NON-ANSWERS

In this section we describe our proposed solution for efficiently
determining and explaining non-answer queries. Figure 3 presents
the proposed system in its entirety. Phase 0 is performed offline. In
this phase, based on the schema graph of the underlying database,
we generate a lattice in which each node is labeled with an
uninstantiated SQL query. This structure is designed to exploit
the overlap between the queries that are explored by our system.
Following this, in Phase 1 user’s keyword query is accepted and
used to prune the lattice generated in Phase 0. At the end of Phase
1 each node in the pruned lattice is labeled with an instantiated
SQL query with respect to the keyword query. In Phase 2 we
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prune the lattice even further by retaining only those nodes that
contain answer queries or non-answer queries, with respect to the
current keyword query, and their respective descendants. Finally,
we traverse the pruned lattice to determine and explain non-answer
queries in Phase 3. Based on the information obtained, the user can
subsequently choose to modify the keyword query as needed. We
start by providing a formal problem definition describing the input
and output of the proposed system.

2.1 Problem Definition

The input to our system is the keyword query submitted by the
user. We convert the keyword query to join networks of tuple sets
and candidate networks (see DISCOVER [11] for definitions).

The output of our system contains three parts: (i) answer queries,
i.e., candidate networks that return at least one tuple; (ii) non-
answer queries, i.e., candidate networks that return no tuples; (iii)
additionally, for non-answer queries, we return the maximal sub-
networks (i.e., subgraphs) that return at least one tuple. This is
analogous to the queries in Figure 1, and is meant to provide some
insight into the reasons behind the non-answer queries.

More formally, let J be a join network of tuple sets (JNTS) of a
keyword query K. Let q(J) be the SQL query corresponding to J
and R(J) be the result set of tuples obtained by executing g(.J).

Let C(K) be the set of candidate networks (CNs) generated for
K. For each C € C(K), we say that C'is an answer query of K if
R(C) # 0. Otherwise C is a non-answer query. We denote A(K)
and NV (K) as the sets of answer and non-answer queries of K.

For each C' € N(K), let S(C) be the set of INTSs that are
sub-networks of C. A J € S(CO) is said to be maximal if: (i)
R(J) # 0 and (ii) there isno J' € S(C) s.t. J is a sub-network of
J" and R(J") # 0. We use M(C) to denote the maximal INTSs
in §(C) and M (K) to denote the set of maximal JNTSs for all the
non-answer queries, i.e., M(K) = Ugcepr(re) M(C).

With the above definitions and notation, we can now formally
define the input and output of our system as follows:

e Input: An unstructured keyword query K.
e Output: O(K) = A(K) UN(K) JM(K).
2.2 Offline Lattice Generation (Phase 0)

Phase O of the system is performed offline. In this phase we
generate a lattice-structure that serves as the starting point for
every keyword query. The goal of this structure is to capture all
the queries that a KWS-S system explores (i.e., join-queries that
contain no projections). Each node in the lattice is labeled with the
SQL query corresponding to the node. The base level nodes of the
lattice contain the simplest queries — single table queries, one for
each table. The next level is generated by joining in tables to each
single-table query (avoiding cross products and using the joins that
are implicit in the schema graph), and so forth.

Our goal is to cover all queries with up to m joins. Since each
relation can appear many times in a single query, we maintain
copies Ri...Ry,41 of each relation R. In this way we know
we can generate all possible m-join queries (including the extreme
case where a m-join query contains m + 1 instances of the same
relation). In addition to this we also maintain a copy Ry of every
relation R in the database (explained in the next section).

EXAMPLE 2 (LATTICE). Consider a database with only two
relations R(a,b) and S(c,d). Assume that m = 1, namely, we
allow only one key-foreign-key join R.b > S.c. As a result, the
lattice contains two (i.e., m +1 = 14+ 1 = 2) copies for each
relation (except for the special Ry and So).
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Figure 3: System Architecture for the proposed system. (MTN means Minimal-Total Node: see Section 2.4.)

Figure 4: Example lattice with two relations R(a,b) and
S(e,d), and a schema graph containing only one key-foreign-
key join R.b < S.c.

Let “k1 k2 be the user’s keyword query. As shown in Figure 4,
the generated lattice has two levels. Additionally, each node in the
lattice is bound to a SQL query template. For instance, the node
R1 1 S2 corresponds to the template

SELECT » FROM R1, S2 WHERE Rl.b = S2.c
AND Rl.a LIKE ’"%k1l%’ AND S2.d LIKE ’"%k2%’.

Note that, the copies here are just conceptual symbols rather
than physical replicas. The purpose of introducing the copies is
to maintain a 1-1 mapping between lattice nodes and SQL query
templates, which reduces the run-time query processing overhead.
If, on the other hand, no additional copies were maintained, then
the lattice in Figure 4 can be reduced to containing only three
nodes R, S, and R p< S. While this could reduce the storage
overhead, each node in the lattice would correspond to multiple
SQL query templates, and the parent-child relationships between
the nodes would need to be reconstructed at run-time. This would
adversely impact the time required to process keyword queries.

Furthermore, if a node NN in the lattice is a descendant of a
node N’, then the query in N is a sub-query of the query in
N’. The lattice structure hence organizes the queries and sub-
queries that in a hierarchical fashion. As we will see, this structure
has three primary advantages — (i) it allows reuse of evaluated
queries; (ii) sometimes, it allows us to infer the outcome of a SQL
query without executing it; and (iii) its hierarchical structure allows
us to systematically explore sub-queries, which can be used to
better understand non-answer queries. Also, since this structure
is computed offline, it bypasses the costly candidate network
generation phase, which is a part of traditional KWS-S systems.

While offline processing allows us to generate all the combi-
nations of join-queries without taking a performance hit at run-
time, this process leaves us with many duplicates. The duplicates
are due to the fact that a node in the lattice can be obtained by
different extensions of its children. For example, in Figure 4,
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the node R; < S2 can be obtained by either extending the node
R (joining it with S2) or extending the node S> (joining it with
R1). We therefore need to eliminate as many duplicates as possible
offline, to avoid expensive graph isomorphism tests at run-time.
Eliminating duplicate nodes also helps with reuse. We talk more
about reuse in Section 2.5.2.

Algorithm 1: Lattice Generation
1 Input: R = {R1, Ro, ..., R, }, set of instance relations; SG,
schema graph; maxJoins, max number of joins
Output: L, lattice
/I Generate the base level £
L1+ 0
foreach R; € R do
for 1 < j < maxJoins+ 1do
L | L1+ L1U{CreateSingleNodeGraph(R;)}
/I Generate higher levels Ly, for 2 < k < mazJoins + 1
foreach 2 < k < maxJoins + 1 do
Ly + 0
foreach Graph G € L;_1 do
foreach R € Nodes(G) do
G’ « ExtendGraph(R,G, SG)
foreach G’ € G’ do
// Offline Pruning 1: detect duplicates
if G’ & L, then
L Ly LU {G/}

o NA A WN

10
11
12
13
14
15
16
17
18

19 return £

The details of the lattice generation algorithm are presented in
Algorithm 1. It works as follows. We first create mazJoins + 1
copies for each input instance relation (lines 5 to 7). These
constitute the bottom level of the lattice. We then construct the
upper levels (lines 9 to 18). When generating the graphs at the level
k (i.e., Ly for 2 < k < maxJoins + 1), we check each graph G
at the level £ — 1 (i.e., Lx_1). For each relation R in GG, we look
up the schema graph SG to find possible edges that are connected
with R. Whenever we find such an edge e = (R, R’), for each
copy R, of R, we create a new graph G’ by first copying G and
then inserting the edge (R, R.) into G'. This is done by calling the
function ExtendGraph (line 14). For each such extension G’, we
then check whether G’ € L. If not, G’ is added into L, (lines
15 to 18). Note that here, to detect the duplicates, we need to test
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Figure 5: Two isomorphic trees and their canonical form.

the isomorphism between graphs, which is a problem not known as
either P or N P-complete. However, since G’ is a candidate join-
query network, which by definition must be a tree [11], there are
efficient algorithms (in linear time) for this special case. We use a
variant of the algorithm in [3], by computing a canonical labeling
for each graph (tree). Two graphs (trees) are isomorphic if and only
if they have the same canonical labeling.

Specifically, given a candidate join-query network (tree) 7, let
V(T) and E(T) be its nodes and edges. For any v € V(T'), the
label of v is defined as the relation name R; associated with v. For
any e € E(T), the label of e is defined as (R;.a, S;.b), where
R;i.a > S;.b is the join associated with e. We further map the
labels to integer ID’s. Let ¢d(v) and id(e) be the ID’s assigned to a
node v and an edge e. We compute the canonical labeling of 1" as
shown in Algorithm 2. Example 3 illustrates this.

Algorithm 2: Canonical Labeling

1 Input: 7', a candidate join-query network
2 Output: /7, canonical labeling of T’
3 GetCode(u):
4 1 «“lid(u)”
5 if HasChildren(u) then
6 1. Append(“|”)
7 foreach v € Children(u) do
8 | I(v) +*id(e)GetCode(v)” I e = (u,v)
9 Sort v € Children(u) with respect to [(v)
10 foreach v € Children(u) do
11 | 1. Append(l(v))
12 1. Append(“]”)
13 return !
14
15 Main:
16 R «+ {r|r = arg min, {id(v)|v € V(T)}}
17 Lg «+ {l;|l < getCode(r),r € R}
18 Ir min{lr|lr S LR}
19 return It
EXAMPLE 3 (CANONICAL LABELING). Figure 5(a) and (b)

show two isomorphic trees. Their canonical form is shown in (c).
The corresponding canonical labeling computed by Algorithm 2 is:
[v1e1[v2]ez[vs]es[va]].

In Algorithm 2, we first define R to be the set of nodes with the
minimum node ID (line 16), and then call GetCode to compute
the labeling [, for each » € R (line 17). The minimum [/, in
lexicographic order is the canonical labeling for 7" (line 18). The
procedure GetCode (lines 3 to 13) first puts the ID of the current
node u into the labeling. If w has children, it appends a delimiter
“”, and then recursively calls Get N ode to construct the label [(v)
of each child node v (lines 7 to 8). The label of v is appended with
respect to the ordering of I(v) (lines 9 to 11).
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Once the lattice is generated and duplicates are removed, each
node is labeled with a SQL query corresponding to the node.
Since Phase 0 is performed offline, the SQL query in each node
has an uninstantiated “where” clause. More specifically, the join
conditions (e.g., Item.cid = Color.id) in the “where” clause are
present, but the keywords (e.g., Color.name contains “saffron”
OR Color.synonym contains “saffron”) can be added to it only at
run-time, once user’s keyword query is available. Keyword query
is accepted in the next phase.

2.3 Keyword Based Pruning (Phase 1)

Once the user inputs the keyword query K, we map each
keyword to a relation using an inverted index over the data. A
keyword k; can be mapped to a relation R if k; occurs in some
tuple in R. Recall that we generated copies R ... Ry,+1 for each
relation R in the database. If k; maps to R, k; is bound to one of the
copies R; of relation R. Additionally, we bind the empty keyword
to the copy Ry for each relation R in the database.

We do this because relations to which no keywords are bound
can still contribute to valid relationships. For example, for the
keyword query “red candle”, suppose that “red” is bound to the
Color (C) table and “candle” is bound to the Product Type
(P) table. While these two tables cannot be directly joined due to
the lack of a key-foreign-key association, the ITtems (I) table can
be used to form a path between them. The resulting join network is
then C1 o P1, which represents the query “Find all products where
product type is candle and color is red”. The Iy here is used to
indicate that no keyword is bound to the Items table. This is
analogous to a free tupleset in Discover [11].

At the base level, all the nodes that contain queries with copies
of relations to which no keyword is bound are pruned. Their
respective ancestors are also pruned. For the keyword query
“red candle”, a sample lattice with the Item (I), Color (C),
and Product Type (P) relations from the sample database in
Figure 2 is presented in Figure 6. Upon using the inverted index
“red” is bound to C'; and “candle” to P;. Co, Iy and Py are bound
to the empty keyword and are not pruned. Only the shaded nodes in
the lattice are retained. The remaining nodes are pruned.

In our implementation, we handle cases where keywords can
have multiple interpretations by dealing with one interpretation at a
time. Additionally, if a keyword does not occur anywhere in the
database, the system displays all such keyword(s) and does not
investigate the query any further. This is in accordance with “and”
semantics for keyword search.

At the end of Phase 0, each node is labeled with a SQL query
with an uninstantiated “where” clause. Once we bind keywords
to copies of relations, the “where” clauses of the queries in each
remaining node in the lattice can then be instantiated. We now
have an instantiated, pruned lattice for the keyword query K.

2.4 Finding Answer and Non-Answer Query
Nodes (Phase 2)

Once the lattice has been pruned based on keyword query K,
the next step is to find nodes that contain queries that correspond
to answer queries and non-answer queries. To do this, first we
introduce some terminology.

e Total/Partial Node: A node can be total or partial. A node N
is said to be total if its query contains tables corresponding
to every keyword k; in K. Otherwise NN is said to be partial.
Since we assume “and” semantics for keyword search, only
a total node can contain an answer query.

>We further note that totality decreases by moving down in the



Figure 6: Sample lattice for the query “red candle”. The un-shaded nodes are pruned.

o Alive/Dead Node: A node N is said to be alive if its query
returns at least one tuple upon execution. If the query returns
zero tuples, IV is said to be dead. Typically a node can be
classified as dead or alive only after executing its underlying
structured query. As we shall see later in this section, in
many cases, using the lattice structure helps us classify a
node without actually executing its query.

e Possibly Alive Node: This node has not yet been classified as
dead or alive. In the beginning, all the nodes in the pruned
lattice are possibly alive.

o Minimal-Total Node (MTN): A node N is said to be minimal-
total, if IV is total and no descendant of NV is total. MTNs
correspond to candidate networks in KWS-S systems [11],
and contain answer and non-answer queries.

In Phase 2, we prune the lattice even further by only retaining
MTNs and their descendants. To continue with our example, the
node marked P;IoC1 is the only MTN in the lattice in Figure 6.
(None of the other shaded nodes are total.) We are now left with
the task of classifying MTNs as dead or alive and explaining the
reason(s) for the dead MTNs. We do this using Maximal Partial
Alive Nodes (MPANS).

o Maximal Partially Alive Node (MPAN): A node N is said
to be a MPAN of a MTN M if it is both partial and alive,
and if there exists no other node N’ € Desc(M) such that
N € Desc(N’) and N’ is alive.

There can be multiple reasons for a non-answer query. For
example, the SQL query ¢» in Example 1 for the keyword query
“saffron scented candle”, where saffron is a scent, could be a
non-answer query due to several reasons — the store carries
products that are saffron scented but are not candles, they only carry
unscented candles, they carry scented candles but none of them are
saffron-scented or maybe they only carry products that are neither
saffron-scented nor candles. The options that an administrator
needs to explore in order to determine why g2 is a non-answer
query can get dauntingly large for manual debugging. Given that
each keyword may have multiple interpretations (e.g., saffron could
be a color or a scent), this task gets even more daunting.

We display the maximal alive query because we know that all its
descendants are alive (i.e., if “find scented candles” returns some
result tuples, then both “find scented products” and “find candles”
will also return some result tuples). In Example 1, “find scented
candles” and “find saffron scented products” are both MPANs of

lattice, because the descendant sub-queries of a query ¢ in general
refer to fewer tables than ¢ itself. This allows us to speak of
minimal total nodes as in the following.
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q2. Collectively they convey that while the store does not carry
saffron-scented candles, it does carry scented candles and other
saffron-scented products. Notably, since all possible reasons for
a non-answer query are sub-queries of the non-answer query, they
can be systematically explored using our proposed lattice structure.

In the final phase of our system and in the rest of this section
we discuss lattice traversal strategies to efficiently determine dead
MTNs and their respective MPANS.

2.5 Lattice Traversal (Phase 3)

One approach to classifying the MTNs as dead or alive and
finding MPANSs is to simply execute the SQL queries for all the
nodes in £. However, this may not be necessary. Since each MTN
is derived from its descendants, we can use the following two rules
to avoid executing many of the SQL queries in L.

Node Classification Rules:
e (R1) Node N is alive = All Desc(N) are alive.
o (R2) If any N’ € Desc(N) is dead = N is dead.

The descendants of a node in the lattice represent sub-queries of
the node. R1 says that if a node is alive, all its sub-queries should
also return some tuples when executed. R2 says that if a node is
dead, all the queries of which it is a sub-query will also return no
tuples. Next, utilizing the above two rules we propose traversal
strategies that classify MTNs and find MPANS in the lattice.

2.5.1 Bottom-Up/Top-Down Traversal

In the bottom-up (BU) strategy, we classify one MTN at a
time and traverse the sub-lattice consisting of the MTN and its
descendants from the single-table level up. At each level we
evaluate the SQL query corresponding to each node. If a node
N is dead (i.e., its SQL query returns no result tuples), all the
nodes in Asc(N), including the MTN, can be marked as dead (by
R2). If a node is alive, it is marked as a potential MPAN until one
of its ancestors is found to be alive. This process is repeated for
all the MTNs until they are all classified as dead or alive and the
corresponding MPANSs are found.

This strategy performs well when the MTNs and MPANs corre-
sponding to dead MTNs are found at lower levels of the lattice. In
this case BU can avoid executing several expensive SQL queries at
higher levels of the lattice. For keywords where MTNs and MPANs
are found at higher levels, a better approach might be a top-down
traversal of the lattice.

Top-down (TD) traversal is similar to BU, except that we traverse
the sub-lattice for each MTN from its highest level down to the
single-table level. We evaluate the SQL query corresponding to
each node at each level. If a node N is alive, all the nodes in
Desc(N) can be marked as alive (by R1). This is done till all
the nodes in the lattice are classified and all the MPANSs are found.



Algorithm 3: Bottom-Up with Reuse Approach

1 Imput: SG, schema graph; K = {k1, ko, ..., kn}, keyword
query; L, lattice; M, set of MTNs found during Phase 2

2 Output: A, set of alive MTNs; D, set of dead MTNs; P, set
of corresponding MPANSs for each dead MTN

3 GetBaseNodes(K, £):

4 baseNodes <+ 0, nonKeywords <+ ()
5 foreach k € K do

6 T <+ GetBaseTables(k)

7
8

if T == () then
L nonKeywords.add(k)
9 else
10 L baseNodes.add(L.Get BaseN odes(T))

if nonKeywords # () then
12 Display non K eywords
13 baseNodes < )

return baseN odes

Main:
M’ +— M, currLevel < 1
foreach m € M do
L MP[m]<+ GetDescendants(m) // potential MPAN's

B + GetBaseNodes(K, L), curr < B, next <+ 0

21 if B == () then

22 | return

23 while currLevel < maxJoins + 1 and M’ # () do

24 foreach node € curr do

25 isAlive < true

26 if node ¢ B and execSQ L(node).nTuples == 0 then
27 L isAlive + false

28 if node € M then

29 LM'(—M'—node

30 if isAlive == true and node ¢ M then

31 next + next|J L.Get ParentNodes(node)
32 foreach m € M do

33 if node € MP[m] then

34 L L.RemoveAllDesc(MP[m],node)
35 else if isAlive == false then

36 MarkAsDead(L.Get AscN odes(node))

37 if node ¢ M then

38 foreachm € M do

39 if node € MP[m] then

40 L.RemoveAll Asc(MP[m],node)
41 L.Remove(MP[m],node)

42 else

43 | Plnodel« MP[node] // MPANs

44 | curr < next, next < 0

45 L currLevel < currLevel + 1

2.5.2  Bottom Up and Top Down with Reuse

We found that there is usually substantial overlap between the
descendants of each MTN. Based on this observation, we modify
BU and TD to process all the MTNs and their descendants simulta-
neously. We find that we can substantially reduce the redundancy in
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executing SQL queries corresponding to the common descendants
of the MTNs. The corresponding algorithms are termed bottom-up
with reuse (BUWR) and top-down with reuse (TDWR). The details
of BUWR are presented in Algorithm 3. TDWR is very similar to
BUWR so we do not elaborate on it any further.

Algorithm 3 works as follows. It first finds the descendants for
the MTNs in M, which are all the potential MPANs (lines 18 to
19). It then traverses the lattice £ in a bottom-up manner. For
each keyword k, GetBaseNodes (lines 3 to 14) collects the base
nodes (i.e., tables) in the lattice containing the keyword k. If some
keyword is not contained by any base table, then this is reported to
the user (lines 11 to 13) and no further exploration is needed (lines
21 to 22). Otherwise, answers and non-answers will be reported to
the user by climbing up the lattice £ (lines 23 to 45). For each node
node at the current level, the algorithm first checks its aliveness
(if not known yet) by executing the SQL query associated with it
(lines 25 to 27). If node is alive, and it is not a MTN in M, then we
can remove its descendants from candidate MPANs of each MTN
m € M, since they must be alive and cannot be MPANSs because of
the aliveness of node (lines 30 to 34). On the other hand, if node
is dead, then all of its ancestors must be dead (line 36). If node
is not a MTN, once again we can remove node and its ancestors
from candidate MPANs of each MTN m € M, since they cannot
be MPANSs because of their deadness (lines 37 to 41). Otherwise,
node is a dead MTN, and we need to report its MPANSs (lines 42
to 43). Note that the MPANs must be those candidates that are
still remaining in MP[node]. This is because, due to the nature
of bottom-up traversal, the aliveness of each member in MP[node]
must have been either explicitly (by executing the corresponding
SQL query) or implicitly (by using the two node classification rules
R1 and R2) checked and hence known before node is examined.
After checking all the nodes at the current level, the algorithm can
proceed to the next level (line 44). The next level only needs to
include the parents of the alive nodes at the current level (line 31),
since ancestors of dead nodes must also be dead and therefore can
be excluded from further examination.

While we find that these approaches perform well in general, like
any bottom-up or top-down approach, they suffer poor performance
in certain cases. For example, TD will perform poorly if many
MPANSs are present at the lowest level in the lattice. On the
contrary, BU will perform poorly if many MTNs at higher levels
of the lattice are alive. In the rest of this section, we propose a
score-based greedy approach, with the goal of avoiding the worst-
case performance of both BU and TD.

2.5.3 Score Based Heuristic for Traversal

Given that the main advantage of the lattice structure is reuse
amongst MTNs, the goal of this approach is to evaluate nodes in
an opportunistic manner with the goal of minimizing the number
of evaluated SQL queries. We do this by assigning a score to each
unevaluated node in the lattice. This score indicates the amount of
reduction in the search space that would result from evaluating this
node. In other words, we evaluate the nodes that are most likely to
influence the classification of other nodes first. Table 1 summarizes
the notation used in the following discussion.

We start by investigating the effect that evaluating a node n; in £
has on the remaining nodes in the search space S(m;) of eachm,; €
M. §(m;) contains potential MPANSs of m; with unknown status.
SQL queries might be required to determine aliveness of the nodes
in S(m;). Initially, S(m;) = Desct(m;) = {m;} | Desc(m;).
Figure 7 demonstrates how n; and m; and their descendants could
overlap. We next consider the cases when n; is alive or dead.

o If the current node n; is alive :



Case 2

Case 1

\
: \\\\":

Figure 7: Ways in which a minimal complete node m, an unexplored node n, and their respective descendants may overlap.

Notation Description

N N = {n1...nq}, the set of nodes in the lattice £
M M = {my ...mp}, the set of MTNs

P(m;) the set of MPANS for each dead m; € M

S S

S(my) the search space for each m; € M to find P(m;)
Desc(n) the set of descendants of the node n in £

Asc(n) the set of ancestors of the node n in £

Desct(n) | Desct(n) = {n} UDesc(n)

Asct(n) | Asct(n) = {n} U Asc(n)

Table 1: Notation used in the score-based heuristic

Case 1 (n; € Desc(m;)): If the current node n; is a descendant
of an MTN m;, then all descendants of n; are also
alive. Since n; is alive, these alive descendants cannot
be maximal (i.e., cannot be in P(m;)), and thus can be
removed from the search space S(m;) as well.

S(m;) = S(my) — Desct (n;).

Case 2 (Desc(n;)NDesc(m;) # O andn; & Desc(m;)): Let ny

be the root node of the intersection Desc(n;) NDesc(m;).
The descendants of nj can also be removed from S(m;)
because they cannot be MPANSs in P(m;).

S(m;) = S(ms) — Desc™ (ng).

Case 3 (Desc(nj) N Desc(m;) = 0): The intersection of the

descendants of n; and m; is empty. This implies that n;
has no impact on the search space of m;.

Case 4 (n; = m;): Here n; is the MTN. S(m;) = (.

Case 5 (m; € Desc(n;)): This case cannot occur because it
implies that m; is not minimal and hence not an MTN.

o If the current node n; is dead :

Case 1 (n; € Desc(m;)): In this case, all nodes in Asc(n;) are
also dead and therefore can be removed from S(m;).

S(m;) = S(my) — Asct (n;).

Case 2 (Desc(nj) N Desc(m;) # 0 and n; & Desc(m;)): No
change in S(m;).

Case 3 (Desc(n;) N Desc(m;) = 0): No change in S(m;).
Case 4 (n]- = m;): m; is the MTN.
S(mi) = S(mi) —{n;}.

Case5 (m; € Desc(nj)): This case cannot occur because it
implies that m; is not minimal and hence not an MTN.
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We define S¢,.,(m;) to be the expected search space of m; if n;
is alive and SZ,.,, (m;) to be the expected search space of m; if n is
dead. Now, if p, is the average probability that a node in the graph
is alive, we define the score for n; to be:

Z Pa - |ngp(m1)| + (1 _pa) : |Sga7p(ml)| (1)
m; EM

Score(n;) =

Intuitively, this score measures the expected size of the search space
given the information that n; is alive/dead.
We give some further analysis to the score so defined. Let

Cover(n) = {n} U Desc(n) U Asc(n)

be the coverage of a node n. We can then express S¢,,(m;) and
S, (m;) more explicitly:

Sepp(ms) Desct (m;) — Desc™ (n;)
= (Desct(m;) — Cover(n;))
U (Desc (m:) N Asc(n;))
and
ngp(mi) Desc™ (m;) — Asct (ny)
= (Desct(m;) — Cover(n;))

U (Desct (mi) N Desc(n;)).
Since Desct(m;) — Cover(n;) and Desct (m;) N Asc(n;) are
disjoint, we have

|Sp(mi)l = [Desc* (ms) — Cover(ny)|
+  |Desct(m;) N Asc(n;),
and similarly,
|Sap(mi)| = |Desc” (ms) — Cover(n;)]
+  |Desct(m;) N Desc(ny)|.

Therefore, according to Equation (1), we have

Score(n;) = Z |Desc+(m¢)*cov67’(”j)‘
m;EM
+ pa- Z |Desc™ (m;) N Asc(n;)]
m;EM
+ (1=pa)- D [Desct(mi) N Desc(n;)).
m;EM

Based on the above equation, we can see that the score actually
takes three factors into consideration:

(1) the descendants of the MTNs that are not covered by n; (the 1st
summand): these nodes must be explored no matter whether n;
is alive or dead;

(2) the descendants of the MTNs that are ancestors of n; (the 2nd
summand): these nodes are explored when n; is alive;
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Figure 8: Relational schema for the DBLife dataset.

(3) the descendants of the MTNs that are descendants of n; (the
3rd summand): these nodes are explored when n; is dead.

Hence, a smaller score means a smaller expected search space.
We then use a simple greedy strategy based on this score to traverse
the lattice — each time we pick the node n; with the minimum
score, check its aliveness, and eliminate other nodes from the lattice
according to this information as before. This algorithm terminates
when all nodes have been classified and the MPANs for all dead
MTNs have been found.

The remaining issue is how to determine the probability pg.
We note here that setting p, affects performance, not correctness.
Estimating the probability value p, accurately requires evaluating
all the queries and finding out what percentage of them are empty.
However, our experiments show that the simple assumption that p,
= 0.5 works surprisingly well. Nonetheless, it is still interesting
future work to explore lightweight estimation approaches for p,.

3. EVALUATION

In this section we evaluate our proposed approaches. We ran
our experiments using PostgreSQL 8.3.6 on an Intel(R) Core(TM)
2 Duo 2.33 GHz system with 3GB of RAM. We implemented
all the query processing algorithms in Java, and used JDBC to
connect to the database. We further implemented the inverted
indexes over the data using Lucene [18]. We evaluated the proposed
approach over a 40MB snapshot of the DBLife [7] dataset that
has 801,189 tuples in 14 tables (Figure 8). Note that in the
DBLife schema, keywords are contained in 5 entity tables, namely,
Person,Publication,Conference,Organization,and
Topic. The 9 relationship tables connect the entity tables but do
not contain any text attributes.

3.1 Lattice Generation

In Figure 9(a), we look at the number of nodes in the lattice.
Having several copies of each table adds to the number of seed
tables and consequently to the number of nodes in the lattice. As
expected, the number of nodes grows exponentially as the level
(and number of joins) increases. It is thus important to have
efficient traversal and pruning strategies. Figure 9(a) shows the
number of nodes generated and the number of duplicate nodes in
the lattice. On average 11.7% of the generated nodes were removed
due to duplicate elimination (note that the Y-axis is in log scale).

Next, in Figure 9(b), we look at the time spent in generating the
lattice. We vary the level on the X-axis and measure the time taken
on the Y-axis. We observe that lattice generation completes in less

45

10000000 100000
5]
1000000 Nodes
Opuplicate Nodes 10000
100000
10000 -g-lm"
1000 : T
1 v 100
100 | 5
| 10
10 m |
. "
1 2 3 6 7 1 2 3 4.5 6 7
Level Level
(a) )

Figure 9: (a) The number of nodes generated in the lattice
at each level and the number of duplicates are shown.
As expected, the number of nodes in the lattice grows
exponentially. On an average 11.7% of the nodes were pruned
due to duplicate elimination. (b) The time spent in generating
the lattice is shown. We note that the lattice is generated offfine.

than 100 seconds, even for a lattice with 7 levels (i.e., 6 joins). We
note that this is a one-time cost, and is done offline.

3.2 Keyword Queries

Table 2 lists the keyword queries we used in our following
experiments. DBLife has a star schema, with the Person table
at the center. As a result, queries with many person names (e.g.,
Q3) often lead to many MTNs. Q7, Q9, and Q10 do not contain
any person names and Q8 contains the term “Washington” which
occurs in the Person, Publication, and Organization
tables. Q4 and Q6 lead to empty queries at the two-table level, but
MTNs are found at higher levels as KWS-S explores relationships
with more joins.

D Keyword Query

Q1 Widom Trio

Q2 Hristidis Keyword Search
Q3 Agrawal Chaudhuri Das
Q4 DeRose VLDB

Q5 Gray SIGMOD

Q6 DeWitt tutorial

Q7 Probabilistic Data

Q8 Probabilistic Data Washington
Q9 SIGMOD XML

Q10 | Stream data histograms

Table 2: Keyword queries

3.3 Keyword Based Pruning (Phase 1) and
Finding MTNs (Phase 2)

The next step involves mapping user’s keyword query to schema
terms and is performed online. This primarily involves lookups
over the inverted indexes on the data. For the 10 testing queries,
the time to map the keywords to schema terms varied between 7
ms and 66 ms with an average time of 26 ms.

Next, we measured the number of nodes in the lattice that remain
in the lattice upon the introduction of keywords. We note that
keyword-based pruning reduced the number of relevant nodes by
98% on average. Once the keywords are mapped to schema terms,
the next step is to find the MTNs. This process took up to 23 ms
for the 10 queries, in a lattice for level = 5. The number of MTNs
ranged from 3 to 85.

Figure 10 summarizes these results. It also shows the number of
unique descendants for the MTNs. We note that Q3 and Q8 have
lower number of unique descendants, allowing higher possibility
of reuse, as we will show later. We also computed these statistics
for level = 7, and observed that the number of nodes after pruning



varied from 277 to 18,904 with an average of 9,226 nodes, a
reduction of 94.3% from the 161,440 nodes in the original lattice.
The number of MTNs ranged from 35 to 1,418. This shows that
even though a large number of lattice nodes are generated, phases
1 and 2 can prune the lattice substantially.

3.4 Comparison of Traversal Strategies

The goal of our traversal strategies is to efficiently determine if
an MTN is alive or dead and to find the MPANs for the dead MTNS.
We compared the five strategies for lattice traversal from end-to-
end. Figure 11 shows the number of SQL queries that needed to
be executed by each traversal approach for level = 5. Figure 12
shows the times taken by each approach for the corresponding
queries. Note that both BUWR and TDWR perform better than
their respective counterparts without reuse. This is especially true
for Q3 and Q8, because for these queries, the total number of
unique descendants are much smaller than that with duplicates.
The number of SQL queries executed for Q3 is shown in Table 4.
Q2 leads to only 3 MTNs, all of which are alive (i.e., Q2 has
0 MPANs). One of these 3 MTN queries is a join between the
Person and Publication tables, with the keywords occurring
in many tuples. This query takes around 20 seconds to execute. The
proposed score-based heuristic (SBH) approach performs well in
almost all cases, owing to its opportunistic choice of nodes during
the pruning/traversal process. Further, we also note that TD and
TDWR perform better than BU and BUWR respectively. Next, we
explain the reason for the performance difference.

3.5 Impact of MTN and MPAN Distributions

For the DBLife dataset, we find that as the maximum level of
the lattice increases, BU and BUWR generally perform poorly
when compared to TD, TDWR, and SBH. This is because even
keyword queries that return no answers at lower levels might return

200 -
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Figure 10: Keyword queries enable substantial pruning of the
lattice (98% on an average). The number of MTNs and their
descendants and unique descendants are presented to show the
extent of overlap between the nodes in the lattice.
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Figure 11: The number of SQL queries generated by the system
for each keyword query.
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Figure 12: The time taken to execute all the SQL queries for
each keyword query.

answers at higher levels. These answers correspond to relationships
with many hops. Since the number of nodes in the lattice grows
exponentially as the number of joins increases, TD and TDWR
have a better pruning effect than BU and BUWR.

In Table 3, we present the distributions of MTNs and MPANs at
levels 3, 5, and 7. Note that as most of the MTNs and MPANSs are
concentrated at higher levels, TD and TDWR perform better than
BU and BUWR. We find that SBH performs well regardless of the
distribution of MTNss.

MTNs MPANs
Q L3 | LS L7 | L3 | LS L7
Q1 1 6 41 0 4 34
Q2 0 3 35 0 0 0
Q3 0| 85 | 1418 0| 94 | 1584
Q4 41 20 144 8| 28 130
Q5 41 24 164 2| 10 42
Q6 1 6 41 2 4 18
Q7 2| 14 92 41 12 70
Q8 0| 31 451 0| 87 | 1172
Q9 0 8 40 0 4 4
Q10 0 6 83 0| 10 92

Table 3: Distributions of MTNs and MPANs at levels 3, 5,
and 7 for the 10 keyword queries (L3 is short for “Level 37,
and so forth). Note that most of the MTNs and MPANs are
concentrated at higher levels.

3.6 Performance at Higher Levels

We now investigate how the approaches perform as we vary the
maximum level of the lattice. Table 4 shows the number of SQL
queries executed for Q3 when increasing the maximum level from 3
to 7. As before, we note that the number of SQL queries executed
increases as the maximum level is increased. We also note that
reuse-based approaches perform better by executing fewer queries
— BUWR executes 28% fewer queries than BU, while TDWR
executes 52% fewer queries than TD, at level 7. Further, TDWR
performs better than BUWR, owing to the presence of a large
number of MPANs and MTNss at higher levels of the lattice. Finally,
we note that SBH provides substantial reduction (79% reduction
compared to BU) in the number of queries executed at higher levels
of the lattice.

3.7 Performance Improvement with Reuse

We were interested in investigating the extent of the overlap
between the descendants of each MTN. Increased overlap would
allow more reuse, decrease the number of SQL queries executed
and consequently improve runtime performance. Figure 13 shows

the percentage of reuse, i.e., 100 * (1 — %), where N, is the



Level BU | BUWR TD | TDWR | SBH
3 0 0 0 0 0
5 294 233 225 136 101
7 5036 3624 | 3866 1818 | 1026

Table 4: Number of SQL queries executed in all the traversal
techniques for Q3 with lattice level = 3, 5, 7. SBH provides
substantial reduction in the number of queries executed at
higher levels of the lattice. The approaches with reuse perform
better than their respective counterparts without reuse.
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Figure 13: Percentage of reuse for the 10 keyword queries.
While reuse is keyword dependent, it increases as the number
of joins increases.

number of unique descendants of MTNs, and N is the total number
of descendants of MTNs. The percentage of reuse for levels 3, 5,
and 7 is shown. As expected, reuse increases as more joins are
allowed. At level 3, only queries Q4 and Q5 show some overlap.
However, we see substantial overlap between the descendants of
the MTNs at levels 5 and 7. Specifically, Q2 and Q10 show a steep
increase in overlap from level 5 to level 7. This increase is reflected
in the performance of the reuse-based approaches and helps explain
the performance of SBH over the other traversal approaches.

3.8 Comparison with Other Alternatives

Our proposed approach is not the unique one that can address the
non-answer exploration problem. We therefore further compared
our approach with other alternatives. Here we consider a simple
indicator that is correlated with the “work™ required to diagnose a
non-answer. Our intent is to explore a simple quantitative metric
that captures the intuition for why we think our approach may be
helpful. Specifically, we compare our approach with the following
two alternatives:

e Return Nothing (RN): Return nothing to the user for non-
answers. This is the standard, existing KWS-S approach.
To address the “why not” question, a developer would likely
repeatedly submit modified queries by removing keywords
from the original query. For instance, if the original keyword
query were “k1 k2 k3, then a user trying to understand
the reason for the non-answer might additionally submit the
queries: “kl kQ”, “k1 k3”, “kz k‘g”, “k‘l”, “kz”, and “k3”.

o Return Everything (RE): Do not build the lattice and return
MPANS of the non-answers. Instead, explore alive descen-
dants at runtime. For each descendant, issue the associated
SQL query to determine its aliveness.

RN requires additional user effort to submit more queries. Both
RE and our proposed approach remove this burden from the user.
Meanwhile, the set of alive descendants returned by RN is both
incomplete and redundant. It is incomplete, since only minimal
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Figure 14: Response time when lattice level = 5
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Figure 15: Response time when lattice level =7

alive descendants can be returned by existing KWS-S systems.
That is, each leaf node of a candidate network is required to be
bound by a keyword. As a result, alive descendants, including
some MPAN:Ss, that do not satisfy this requirement will not appear
in the results and hence are missing. It is also redundant, since
some of the alive descendants returned may belong to answers
(i.e., alive MTNs) but not non-answers (i.e., dead MTNs). Both
incompleteness and redundancy are unsatisfactory for the purpose
of debugging non-answers. On the other hand, RE returns the
complete set of alive descendants. However, it is still redundant,
since the aliveness of some descendants can be automatically
inferred based on the aliveness of the others. Compared with RE,
with the help of the lattice structure, our proposed approach can
rule out this redundancy without sacrificing the completeness.

We further tested the system response time when the three
approaches were adopted, in terms of the total execution time of the
SQL queries issued. Figure 14 and 15 present the results for lattice
levels 5 and 7. Our approach substantially reduces the response
time for the more complicated queries Q2, Q3, Q8, and Q10, which
contain three keywords, while the other queries only contain two.
The improvement is more dramatic when multi-way joins (i.e.,
higher lattice levels) are allowed. For example, the response times
are reduced by 84% and 99% for the two most costly queries Q2
and Q3, when the lattice level is 7 (i.e., up to 6 allowable joins).

4. RELATED WORK

Although we are not aware of any previous work that pertains
to non-answers in the KWS-S context, the related work for the
approaches and ideas presented in this paper is extensive.



Banks [1, 14], DBXplorer [2], and DISCOVER [11] are seminal
papers in KWS-S. While Banks operates on a data graph, our paper
is geared towards approaches like DISCOVER and DBXplorer,
which use the underlying schema graph to explore relationships
between the keywords. Several other KWS-S systems have been
proposed over the years as well (see Yu et al. [25] for an extensive
survey). Notably, Markowetz et al. [19] explored efficient genera-
tion and evaluation of candidate networks and briefly mentioned
purging dead tuples in their paper about keyword search over
streaming data. The Helix system [22] proposed a rule-based
method for mapping keyword queries to structured queries. They
automatically mined and manually tuned a set of patterns from
query logs and mapped each pattern to a template query. A query
was mapped to the best template once it arrived at runtime. Our
static lattice structure is somewhat analogous to these templates.
EASE [16] extensively leveraged offline computation to speed up
runtime performance but did not consider the problem of non-
answers. KWS-S-F [6] also leveraged offline computation but
did not deal with non-answers. In addition, lattice structure has
also been used in relaxing selection and join queries in relational
databases to help users find more results [15].

We drew inspiration from Why Not [5] and Provenance of Non-
Answers [12]. This work addressed non-answers in the context of
single SQL queries and did not deal with KWS-S systems. Huang
et al. [12] and Herschel et al. [8] provided tuple insertions or
modifications that would yield the missing tuples. Chapman and
Jagadish [5] tried to find the manipulation that led to a non-answer
query. Tran and Chan [24] generated a modified query whose
results included the user-specified missing tuple(s). In contrast,
in a KWS-S system we cannot rely on user input, given that the
user is assumed to be schema agnostic and may not even be aware
that the KWS-S system is executing structured queries. Our notion
of MPANSs is similar to that of a frontier picky manipulation [5]
in spirit. However, we feel that MPANs are more suited for the
keyword search context; they represent the subset of keywords
that would render a dead relationship alive. Work on lineage and
provenance including [4, 20] influenced the lattice structure and use
of MPANSs to explain non-answer queries in KWS-S.

While we focused on pure relational database techniques in this
paper, there has also been work on mapping sets of structured
tuples to virtual documents and then applying information retrieval
techniques to find results that match the keywords (e.g., the EKSO
system [23]). However, this idea relies on inverted indices built
over materialized views. In typical industry systems, these indices
are updated only at some pre-determined time-intervals (mostly, on
a nightly basis). This then implies that they may suffer from severe
data staleness issues, for in the daily use of a relational database,
any changes to the underlying data can impact answers and non-
answers to keyword queries almost immediately. Moreover, it
actually cannot work for non-answers if only “and” semantics is
considered. Using “and” semantics, non-answers would never be
displayed to the user. Nonetheless, this raises a very interesting
point that there might be an alternative way to deal with the
problem: replace “and” semantics by “or” semantics, though
it seems to be equivalent to the “Returning Nothing” strategy
discussed in Section 3.8 and thus suffers from issues such as
incompleteness and redundancy. In fact, Hristidis et al. have
considered the “or” semantics in KWS-S systems [10]. However,
their focus was to efficiently present the end users with a list of
top-k matches for moderate values of k. In contrast, our goal is
to enable system developers to debug non-answers so providing
top-k matches is insufficient. Nevertheless, this merits further
exploration but it is out of the scope of this paper.
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S. CONCLUSION

In this work we take a first step towards building a KWS-S
system that exposes non-answer queries to system developers for
the purpose of debugging the system. Given the exponential com-
plexity of answer generation in KWS-S, exposing and explaining
non-answer queries is a time-consuming process. We leveraged
offline computation to generate a lattice structure and exploited the
overlap between the queries to efficiently determine non-answer
queries and their closest alive sub-queries.

While we concentrated on improving the performance of discov-
ering and investigating non-answer queries in the KWS-S domain,
this work opens up a couple of interesting directions for future
work. For instance, debugging is often an interactive process and
it is worth studying how to combine the search for MPANs with
user intervention. Meanwhile, pushing user-defined constraints
into the search procedure might greatly prune the search space
and therefore significantly improve the efficiency. All of these are
interesting questions that deserve further investigation.
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