O

proceedings

QaRS: A User-Friendly Graphical Tool for Semantic Query
Design and Relaxation

Geéraud Fokou
LIAS/ISAE-ENSMA
University of Poitiers

Futuroscope Cedex - France

geraud.fokou@ensma.fr

Stéphane Jean
LIAS/ISAE-ENSMA
University of Poitiers

Futuroscope Cedex - France

stephane.jean@ensma.fr

Allel Hadjali
LIAS/ISAE-ENSMA
University of Poitiers

Futuroscope Cedex - France

allel.hadjali@ensma.fr

Mickaél Baron
LIAS/ISAE-ENSMA
University of Poitiers

Futuroscope Cedex - France
mickael.baron@ensma.fr

ABSTRACT

This paper presents a Query-and-Relaz System (QaRS)
designed to facilitate the exploitation of large knowledge
bases. QaRS proposes a graphical interface to construct a
SPARQL query and use different cooperative answering tech-
niques. The proposed cooperative techniques help users in
finding alternative answers when their queries fail or do not
return the expected number of answers. The present demon-
stration includes three main relaxation strategies: (1)- au-
tomatic where the system automatically relaxes the query
based on similarity measures, (2)- manual where the user
can specify the conditions that can or cannot be relaxed as
well as the tolerance values and (3)- interactive where QaRS
computes the causes of the query failure as a set of Mini-
mal Failing Subqueries (MFSs) and then the user chooses the
relaxation operators according to these MFSs.

General Terms

Algorithms, Design, Experimentation

Keywords
SPARQL, Relaxation, Minimal Failing Subquery, Similarity

1. INTRODUCTION

In recent years, several large Knowledge Bases (KBs)
have been created such as YAGO [5] or Knowledge Vault
[1] which contain millions of entities and facts about them.
Such information is usually stored in RDF format and queried
with the SPARQL language. Large KBs are difficult to use as
(1)- their schema (often called ontology) and its underlying
semantics are rarely understood by end users and (2)- RDF

(©2015.Copyright is with the authors. Published in Proc. 18th Interna-
tional Conference on Extending Database Technology (EDBT), March 23-
27,2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

953

can be used to represent data ranging from unstructured to
structured data leading to more or less sparse data [2]. A
common issue encountered by users is the problem of failing
queries, i.e., query results are empty or do not contain the
number of expected answers.

As an example, let us consider the ontology inspired by
the LUBM Benchmark depicted in Figure 1. If a user wants
to find the professors who are assisted by one of her/his
phD student in an UnderGraduateCourse, (s)he may write
the query:

SELECT 7X ?Y ?Z
WHERE { ?Z ub:teacherOf ?Y.
?7Y rdf:type ub:UnderGraduateCourse.
?X ub:teachingAssistantOf ?7Y.
?7Z ub:advisorOf 7X.
?X rdf:type ub:AssistantProfessor. }

teacherOf

takesCourse. l
Course

| UnderGraduate

Course

]

GraduateCourse

——f> SubClassOf

advisorOf=—p

Person

4
I l

Student

A

UnderGraduate
GraduateStudent Studentt

I

Professor

Full Professor

o

Professor

Name Class name? Property

Figure 1: Ontology Example

In this query, the user makes the false assumption that a
teaching assistant of a course is an AssistantProfessor (in-
stead of a GraduateStudent). With a deeper knowledge of
the ontology, the user could have known that the teachingAs-
sistantOf property has the GraduateStudent class as domain
and thus his/her query can not return any result.

Moreover, even if the query was written without any mis-
conception, the query could still have failed if it is too re-
strictive or if the target KB is incomplete. To solve these

10.5441/002/edbt .2015.56

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.56

problems, several works have proposed relaxation techniques
for SPARQL queries (e.g., [3, 7]). But none of them proposes
a simple and intuitive graphical system to build a SPARQL
query and relax it with or without the help of the user.
Conversely, several works have proposed graphical systems
to query large knowledge bases (e.g., [8, 9]). But they do not
support any cooperative query answering technique needed
to return alternative answers to failing queries. The QaRS
system described in this paper aims at filling this gap. First,
the functionalities of this system and its architecture are dis-
cussed. Then, the demonstration scenarios that we intend
to show the audience are presented.

2. QARS’S FUNCTIONALITIES

The system we propose has three main functionalities,
(i) a visual assistant for designing consistent queries, (ii) a
visual help for queries relaxation and (iii) an explanation of
both queries’s failure and relaxation process.

2.1 Graphical query design

The ontology browser panel displays the ontology as a
graph (see Figure 2). As an ontology can be large, a search
box with auto completion feature is available for finding
classes and properties that will be used in the query. When
a class or property is selected, the graph is centered around
this concept to see all the related concepts.

= LUBM Ontolog;

Relationships

subCl

lassOf

Graph Query: query | Selected Variables
X
X

Figure 2: QaRS Query Design Panel

The visual construction of a query is composed of three
main steps:
1) dragging and dropping classes and/or properties from the
ontology browser into the query panel. Dropping a class C
in this panel creates a graph corresponding to the triple
(?v; rdf:type C') where v; is a variable which has not been
previously used in the query. In the same way, dropping a
property P creates a graph showing the triple (?v; P ?v;).
2) Linking the triple patterns defined in the previous step by
identifying the variables that they share. This action is done
by dragging a variable and dropping it into an other variable.

554

It indicates that the two variables are the same. In this step,
QaRS checks whether the query can return a result by testing
its consistency w.r.t. the domain and range of the properties.
In our running example, since we know that X is a teaching
assistant of the course Y, according to the ontology, one
can deduce that X can not be an AssistantProfessor. So
the last triple of this query leads to an inconsistency. As
another example, the query Q:

SELECT ?X 7Y WHERE {
?X rdf:type ub:GraduateStudent.
?X ub:teachingAssistantOf ?7Y.
7Y rdf:type ub:GraduateCourse. }

is consistent when it has only the first two triple patterns
as depicted in Figure 3-(a) (there are graduate students who
are teaching assistants). But when the last triple pattern is
added, the query becomes inconsistent, i.e. it can not return
any answer (graduate students can not be teaching assistants
of a graduate course). In this case, QaRS alerts the users.

3) adding FILTER, OPTIONAL and/or UNION operators by
selecting the components of the query on which they must
be applied (a variable, a triple or a set of triples), right
clicking on them and choosing the corresponding operators.
Each one of these operators is graphically identified in the
query by a specific color or component. The SPARQL query
corresponding to the graphical query can also be displayed
and the user can interact both with the textual or graphical
query to edit it. Modifying the graphical query automati-
cally changes the textual query and vis-versa.

2.2 Query relaxation strategies

Automatic relaxation. When executing the query de-
signed in the previous step, the user can specify the mini-
mum number, say k, of expected answers. If the query result
does not have k answers, QaRS considers it as a failing query
and automatically relaxes it. Basically, this automatic re-
laxation process consists in computing a set of possible re-
laxed queries (see further) from the initial query, ordering
them according to their similarities with the initial query
and executing them following this order until the number of
expected results is reached. If the result of a relaxed query is
large, the answers are ordered according to their satisfaction
degrees w.r.t. the initial query and then the user is provided
with the top — k answers.

Manual relaxation. Users may have some constraints
on the parts of the query that can be relaxed as well as on
the tolerance values that are acceptable. They can manually
specify these constraints in the design query panel. Three
kind of constraints can be graphically defined by users. (i)
Triple patterns that must not be relaxed. The user simply
selects a subset of the query graph that must not be relaxed,
right clicks on it and selects the corresponding option. (ii)
Allowed classes (resp. properties) in the hierarchy of a class
(resp. property) that can be used to relax the query. The
user selects a class or property, right clicks on it and selects
the relaxation option. The hierarchy of the class or property
is then displayed and the user can select the classes or prop-
erties that can be used in the relaxation process (see Figure
3-(b)). In this step, QaRS checks that the selected classes or
properties lead to a consistent relaxed query. (iii) Allowed
values to relax filters. In a similar way as above, the user
selects a filter that can be relaxed, right clicks on it and

Graph Query: query2

Relax Graph Query: query2

Explaination Graph of Query Relaxation: query2

X | teachingAssistantOF % @ teachingAssistantOf Y type GraduateCourse [X] teachingassistantor 2 type [GraduateCourse |
Allow Properties o] e |
type teacherOf @ :
type teacherOf | o Variables [x] teachingassistamcor [¥] e ([UnderGraduateCourse)
— —
z GraduateStudent FullProfessor | [UnderGraduateCourse |
v RDF & RDFS Predicates type] teacheror |]
type
G domain
] [fange o - @ [X] teachingassistantor [¥] ope (| UnderGraduateCourse)|
subClassOf l
> Onoloay rediats NI

(a) Design of Standard SPARQL Query

(b) Design of Relaxed SPARQL Query

(c) Explanation of Relaxation Process

Figure 3: User interface of the System

selects the relaxation option. According to the datatype of
the filter, a panel allows the user to define the tolerance val-
ues. Thanks to methods borrowed from fuzzy logic theory,
one can obtain satisfaction degrees of the relaxed value of
the filter. Finally, the user specifies the minimum number of
expected results and executes the query. If the query fails,
QaRs triggers the relaxation process while respecting his/her
constraints (see Figure 3-(c)).

Interactive relaxation. In the previous scenario, the
user does not know the causes of the failure of his/her query.
QaRS can provide him/here with explanation. This expla-
nation consists in displaying a set of Minimal Failing Sub-
queries (MFSs) [4] of the query. For the query @ (section
2.1), the cause of its failure is the subquery below.

SELECT 7X 7Y
WHERE { ?X ub:teachingAssistantOf ?Y.
7Y rdf:type ub:GraduateCourse. }

Each MFS (i) is a failing subquery of the initial query and
(ii) does not include a failing subquery. Thus, if the MFSs of
a query are not relaxed, the initial query will never return
non-empty answers. In this scenario, the relaxation process
is a two-step procedure: (i) QaRS displays the set of MFSs of
the query; (ii) the user can automatically or manually relax
each MFS like in the previous scenarios. By default, QaRS
proposes to make optional the triple patterns of the MFSs.

2.3 Explanation and customization

Similarity is a key notion in QaRS. It is leveraged by
the system, on the one hand, for measuring the similarity
between the initial query and the relaxed ones and, on the
other hand, for computing the satisfaction degrees of alter-
native answers returned w.r.t the initial query. The latter
point allows to provide user with discriminated set of an-
swers and then (s)he can select the top-k answers (where k
is the minimum number of expected answers). As for query
similarity, it helps users to rank-order the relaxed queries
and choose an appropriate set of queries to be executed to
obtain k answers. These executed queries can be seen as an
explanation for the user to (progressively) reach the desired
answers. As different similarity measures can be used to
compute the similarity between two classes (or properties)
of an ontology, relaxation performed by QaRS can be cus-
tomized by selecting measures that fit best the user’s needs.

3. SYSTEM ARCHITECTURE

The architecture of QaRS is illustrated in Figure 4. It
comprises two main parts. The first part includes two com-
ponents: Graphical Design Of SPARQL Query (GDSQ) and

555

SPARQL Query Analyzer (SQLA). While the second part,
which is related to the core of query relaxation, is composed
of four modules: Relazation Operator Interpretor, Auto-
matic Query Relazation, MFS Engine for SPARQL Query and
Ranking Alternative Answers Engine. The module Eztended
SPARQL Query Engine is an extension of standard SPARQL
query engine which allows us to launch the relaxation pro-
cess when the query at hand fails. This module also makes
easy the integration of QaRS in any triplestore environment.
Now, we provide details about each component of QaRS.

[~ E—— -) _
— 5 =T Graphical @ Rnoption
—— eyt Design Of SPARQL Queryl
i) SPARQL Query| ARG Qudy | Analyzer
SELECT 2X 7Y
SPARQL | WHERE{ 7X rdf:type ub:GraduateStudent

X ubiteachingAssistantOf 7Y
2 rdfitype ub:GraduateCourse }
W RELAX (GENub GraduateStudent,ubPerson)

Query

Extented
SPARQL Query
Engine

L = E
¢ Answersto Standard Sucess SPARQL Query

Failing
SPARQL
Query

y

Query Relaxation

Relaxation
Relaxation With Explicit operators (Manual)

Operator
Scenario 1

Interpretor

USERS

\ Ranking
Alternative:

ETES Alternative

RELAX (GEN(ub:GraduateStudent, ub:Person))

Automatic

/Answers Engine|

Relaxation For TOP-K Answers (Automatic)

- -
/ P Query

Scenario 2 Relaxation

MFS Search

MFSadvising for Relaxation (Interactive) Engine For

Scenario 3

SELECT X 7Y ISPARQL Query

'WHERE {?X ub:teachingAssistantOf 7Y .
7Y rdf:type ub:GraduateCourse .} ‘

o Ordered Set of Alternative Answers
e

Figure 4: Architecture of QaRS

GDSQ and SQA modules

GDSQ offers a user-friendly interface to assist users in the
design and building of their SPARQL queries in a graphical
and intuitive way. As for SQA module, which is an online
analyzer, it checks on-the-fly the syntax and the consistency
of the designed query. It also proposes auto completion and
suggests concepts for designing the query.

Relaxation interpretor

This module interprets each of the three relaxation operators
studied in [3] and generates the corresponding set of relaxed
SPARQL queries. GEN operator takes as input a concept
C; and a super concept Cy. The system generates SPARQL
queries with C; replaced by the classes in the path from C;

to Cy in the ontology. As for SIB operator, the system
generates SPARQL queries where a concept Cy is replaced by
its sibling classes C'1,Cy, ..., Cy,. In the case of PRED op-
erator, it incrementally relaxes filters involving simple data
types (numeric, string, etc). This module is launched when
the clause RELAX is used in the designed SPARQL query.

Automatic query relaxation

This module is called when users want to have the top-k an-
swers without setting the relaxation operators to use. QaRS
generates all the relaxed queries using the three previous op-
erators and their combinations, in the spirit of the approach
proposed by [6]. A rank-ordering of these queries is estab-
lished according to their similarity w.r.t. the failing query.
The following similarity measure between classes is used [3]:
Sim(Ci, Cy) = IC(msca(Cy, Cy))
I1C(Cy) + IC(Cy) — IC(msca(Ci, Cy))

Then, the relaxed queries are executed from the most simi-
lar to the least similar and the answers obtained are sent to
the Ranking alternative answers engine.

Ranking alternative answers engine

QaRS provides the user with a set of alternative answers in
a discriminated way. Each answer h; is associated with a
satisfaction score computed as follows [3]:

SatQ(hs) = min(Sim(Q', Q). SatQ(hy))

where Sim(Q, Q') stands for the similarity measure between
the initial query Q and its relaxed form Q" and SatQ’(h;)
for a satisfaction degree of h; w.r.t. Q’. This latter degree
is obtained thanks to the formula [3]:

SatQ’ (hi) = min(max Sim(t,c), up(hi.propRelaz))
tetype(h;)

where ¢’ is the relaxed class which gives the answer h; and y,,
is the membership function of the (fuzzy) property propRelazx.

MFS search engine

The MFS search engine is a module which identifies the causes
of query failure. To do so, a set of MFSs of the failing query
are computed. MFSs provide user with a clear explanation on
the empty answer problem. First, we transform the target
SPARQL query into a set of triple patterns to form a con-
junctive query. Next, an MFS of the conjunctive query is
computed. To find the other MFSs, a set of significant sub-
queries (SSQs) is calculated. Each SSQ is characterized by
three properties: (i) it does not contain the MFSs found; (ii)
it is not included in those MFSs and, (iii) it does not include
any other SSQ. The above two step-procedure is executed
recursively on each element of the set of SSQs. All MFSs
produced by this procedure are shown to the user as an ex-
planation about his/her query failure.

4. DEMO SCENARIOS

We run two scenarios on LUBM ontology data. The first
scenario aims at relaxing a failing query @ manually. The
second one shows the interest of the MFSs as explanation of
the query failure and their use for an efficient relaxation. To
run the above scenarios, we use Jena triplestore to load the
generated LUBM's data.

Scenario 1

The user wants to find all “the graduate students who are
teaching assistants of a graduate course”. The SPARQL query
for this request is given in section 2.1. To obtain non empty

956

answers, the user can ask a generalization (resp. substitu-
tion) of GraduateStudent (resp. GraduateCourse) concept
to Person (resp. with UnderGraduate Course) concept. This
can be done graphically as shown in figure 3-(b). The re-
laxation operators proposed by QaRS depend of the query’s
concept to relax and ontology. As it can be seen in the
ontology of Figure 1, the relaxed query may result in non
empty answers since GraduateStudent may be teaching as-
sistants of UnderGraduateCourse which is a sibling Class
of GraduateCourse. It is worthing to note that this kind
of relaxation does not always guarantee the success of the
relaxation process. It is the case for the generalization of
GraduateStudent to Person (where there is none subclass
of Person with teachingAssistantOf as property, except the
subclass GraduateStudent).

Scenario 2

To avoid the main flaw of the above scenario, we first iden-
tify the causes (i.e., MFSs) of query failure, then we apply
appropriate relaxations on the triple patterns involved in the
MFSs of the query. For our running example of section 2.1,
which contains one MFS (see section 2.2), QaRS identifies it
and shows this MFS graphically to the user. Then, the sys-
tem suggests appropriate operators for relaxing the MFS. In
our case, GEN or SIB operator will be proposed to relax
the triple (?Y rdf:type ub:GraduateCourse) included in the
MFS. By this way, alternative answers that fit best the user’s
needs are returned by the system.

5. REFERENCES

[1] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang.
Knowledge Vault: A Web-scale Approach to
Probabilistic Knowledge Fusion. In ACM SIGKDD,
(KDD ’14), pages 601-610, 2014.

[2] S. Duan, A. Kementsietsidis, K. Srinivas, and
O. Udrea. Apples and Oranges: A Comparison of RDF
Benchmarks and Real RDF Datasets. In SIGMOD 11,
pages 145-156, 2011.

[3] G. Fokou, S. Jean, and A. Hadjali. Endowing Semantic
Query Languages with Advanced Relaxation
Capabilities. In ISMIS’1/, pages 512-517, 2014.

[4] P. Godfrey. Minimization in Cooperative Response to
Failing Database Queries. International Journal of
Cooperative Information Systems, 6(2):95-149, 1997.

[5] J. Hoffart, F. M. Suchanek, K. Berberich, and
G. Weikum. YAGO2: A spatially and temporally
enhanced knowledge base from wikipedia. Artificial
Intelligence, 194:28-61, 2013.

[6] H. Huang, C. Liu, and X. Zhou. Approximating Query
Answering on RDF Databases. World Wide Web,
15(1):89-114, 2012.

[7] C. A. Hurtado, A. Poulovassilis, and P. T. Wood.
Query Relaxation in RDF. Journal on data semantics
X, pages 31-61, 2008.

[8] N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and
R. Elmasri. GQBE: Querying knowledge graphs by
example entity tuples. In IEEE ICDE’14, pages
1250-1253, 2014.

[9] A. Russell and P. R. Smart. NITELIGHT: A Graphical
Editor for SPARQL Queries. In Proceedings of the
Poster and Demonstration Session at ISWC’08, 2008.

