
The NPD Benchmark: Reality Check for OBDA Systems

Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese

Faculty of Computer Science, Free University of Bozen-Bolzano

Piazza Domenicani 3, Bolzano, Italy

{dlanti,mrezk,xiao,calvanese}@inf.unibz.it

ABSTRACT
In the last decades we moved from a world in which an enterprise
had one central database—rather small for todays’ standards—to a
world in which many different—and big—databases must interact
and operate, providing the user an integrated and understandable
view of the data. Ontology-Based Data Access (OBDA) is becom-
ing a popular approach to cope with this new scenario. OBDA sep-
arates the user from the data sources by means of a conceptual view
of the data (ontology) that provides clients with a convenient query
vocabulary. The ontology is connected to the data sources through
a declarative specification given in terms of mappings. Although
prototype OBDA systems providing the ability to answer SPARQL
queries over the ontology are available, a significant challenge re-
mains when it comes to use these systems in industrial environ-
ments: performance. To properly evaluate OBDA systems, bench-
marks tailored towards the requirements in this setting are needed.
In this work, we propose a novel benchmark for OBDA systems
based on real data coming from the oil industry: the Norwegian
Petroleum Directorate (NPD) FactPages. Our benchmark comes
with novel techniques to generate, from the NPD data, datasets
of increasing size, taking into account the requirements dictated
by the OBDA setting. We validate our benchmark on significant
OBDA systems, showing that it is more adequate than previous
benchmarks not tailored for OBDA.

1. INTRODUCTION
In the last decades we moved from a world in which an enter-

prise had one central database, to a world in which many differ-
ent databases must interact and operate, providing the user an inte-
grated view of the data. In this new setting five research areas in the
database community became critical [1]: (i) scalable big/fast data
infrastructures; (ii) ability to cope with diversity in the data man-
agement landscape; (iii) end-to-end processing and understanding
of data; (iv) cloud services; and (v) managing the diverse roles of
people in the data life cycle. Since the mid 2000s, Ontology-Based
Data Access (OBDA) has become a popular approach used in three
of these five areas— namely (ii), (iii), and (v).

In OBDA, queries are posed over a high-level conceptual view,
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and then translated into queries over a potentially very large (usu-
ally relational and federated) data source. The conceptual layer is
given in the form of an ontology that defines a shared vocabulary,
hides the structure of the data sources, and can enrich incomplete
data with background knowledge. The ontology is connected to
the data sources through a declarative specification given in terms
of mappings that relate each (class and property) symbol in the on-
tology to a (SQL) view over (possibly federated) data. The W3C
standard R2RML [8] was created with the goal of providing a stan-
dardized language for the specification of mappings in the OBDA
setting. The ontology together with the mappings exposes a vir-
tual instance (RDF graph) that can be queried using SPARQL, the
standard query language in the Semantic Web community.

To make OBDA useful in an industrial setting, OBDA systems
must provide answers in a reasonable amount of time, especially in
the context of Big Data. However, most research in academia has
focused on correct SPARQL-to-SQL translations, and expressivity
of the ontology/mapping languages. Little effort (to the best of our
knowledge) has been spent in systematically evaluating the perfor-
mance of OBDA systems. To properly evaluate such performance,
benchmarks tailored towards the requirements in this setting are
needed. In particular, the benchmark should resemble a typical
real-world industrial scenario in terms of the size of the data set,
the complexity of the ontology, and the complexity of the queries.
In this work, we propose a novel benchmark for OBDA systems
based on the Norwegian Petroleum Directorate (NPD) FactPages1.
The NPD FactPages contains information regarding the petroleum
activities on the Norwegian continental shelf. Such information is
actively used by oil companies, such as Statoil. The Factpages are
synchronized with the NPD’s databases on a daily basis. The NPD
Ontology [26] has been mapped to the NPD FactPages and stored
in a relational database2. The queries over such an ontology have
been formulated by domain experts starting from an informal set of
questions provided by regular users of the FactPages.

The contributions of this paper are as follows: (1) We identify
requirements for benchmarking of OBDA systems in a real world
scenario. (2) We identify requirements for data generation in the
setting of OBDA. (3) We propose a benchmark that is compliant
with the requirements identified. (4) We provide a data generator
for OBDA together with an automatized testing platform. (5) We
carry out an extensive evaluation using state-of-the-art OBDA sys-
tems and triple stores, revealing strength and weaknesses of OBDA.

This work extends the previous workshop publications [6, 17]
with an automatized testing platform, with new experiments, and
with a larger and more challenging query set, including also ag-
gregate queries. This new query set highlights the importance of

1http://factpages.npd.no/factpages/
2http://sws.ifi.uio.no/project/npd-v2/
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semantic query optimisation in the SPARQL-to-SQL translation
phase.

The rest of the paper is structured as follows. In Section 2, we
briefly survey other works related to benchmarking. In Section 3,
we present the necessary requirements for an OBDA benchmark.
In Section 4, we discuss the requirements for an OBDA instance
generator. In Section 5, we present the NPD benchmark3 and an
associated relational database generator that gives rise to a virtual
instance through the mapping; we call our generator Virtual In-
stance Generator (VIG). In Section 6, we describe a set of exper-
iments performed using our benchmark over OBDA systems and
triple stores. We conclude in Section 7.

2. RELATED WORK
Benchmarks are used to assess the quality of a system against a

number of measures related to its design goals. Although OBDA
systems have recently gained popularity, and the interest of a num-
ber of important enterprises like Siemens or Statoil (c.f. Optique
Project4), no benchmark has yet been proposed in this setting. Al-
though there are no guidelines nor benchmarks specific for OBDA,
one must observe that these systems integrate both well-established
database technologies and Semantic Web features. Driven by this
observation, and given that both databases and knowledge-based
systems have a vast literature on benchmarking, a natural starting
point for deriving requirements for an OBDA benchmark is a syn-
thesis of the requirements coming from both of these worlds.

For the databases world, two of the most popular benchmarks
are the Wisconsin Benchmark [9] and the TPC Benchmark5 The
Wisconsin Benchmark specifies a single relation, and columns with
different duplicates ratios allow one to easily manipulate the selec-
tivity of the test queries. The TPC Benchmark comes in different
flavors so as to test database systems in several popular scenar-
ios, like transactions in an order-entry environment (TPC-C), or a
brokerage firm with related customers (TPC-E). These benchmarks
gained popularity for a number of reasons, prominently because
they capture concrete use-cases coming from industry, they are sim-
ple to understand and run, and they provide metrics that allow one
to clearly identify winners and losers (e.g., cost per transaction or
query mixes per hour).

For the Semantic Web world, the situation is much less standard-
ized, and a high number of benchmarks have been proposed. The
most popular ones are LUBM [12], and BSBM [3], which are rather
simple in the sense that they come either with a simple ontology,
or with no ontology at all. These benchmarks do not allow one
to properly test the performance of the reasoners in the context of
complex and expressive ontologies—which are the vast majority
when it comes to real-world applications. This aspect was pointed
out in [31], where the authors proposed an extension of the LUBM
benchmark (called UOBM) in order to overcome these limitations.
Rather than proposing a new benchmark, [13] identifies a number
of requirements for benchmarking knowledge base systems. In this
work we follow a similar scheme, as we first identify a number of
key requirements for OBDA benchmarking and then we validate
our benchmark against those requirements.

A recent and relevant effort concerning benchmarks in the Se-
mantic Web context comes from the DBPedia Benchmark [20].
In this benchmark, the authors propose a number of key features,
like a data generator to produce “realistic” instances of increasing
sizes, a number of real-world queries gathered from the DBPedia

3https://github.com/ontop/npd-benchmark/
4http://www.optique-project.eu/
5http://www.tpc.org/

SPARQL endpoint, and the DBPedia ontology. Although this is an
extremely valuable effort in the context of knowledge base systems,
there are still a number of characteristics that make the DBPedia
Benchmark unsuitable for OBDA benchmarking (see Section 3).

The last effort in order of time comes from the attempt to create
a council like TPC in the context of graph-like data management
technologies, like Graph Data Base Management Systems or sys-
tems based on RDF graphs. The council is called LDBC6, and it has
so far produced two benchmarks related to data publishing and so-
cial use-cases. This is a remarkable effort, however the ontologies
used in these benchmarks are in RDFS, rather than full OWL 2 QL;
therefore, they might miss to test important OBDA-specific pitfalls,
such as reasoning w.r.t. existentials [23].

3. REQUIREMENTS FOR BENCHMARK-
ING OBDA

In this section, we study the requirements that benchmark to
evaluate OBDA systems has to satisfy. In order to define these re-
quirements, we first recall that the three fundamental components
of such systems are: (i) the conceptual layer constituted by the on-
tology; (ii) the data layer provided by the data sources; and (iii) the
mapping layer containing the declarative specification relating each
(class and property) symbol in the ontology to an (SQL) view over
(possibly federated) data. It is this mapping layer that decouples
the virtual instance being queried, from the physical data stored
in the data sources. Observe that triple stores cannot be consid-
ered as full-fledged OBDA systems, since they do not make a dis-
tinction between physical and virtual layer. However, given that
both OBDA systems and triple stores are considered as (usually
SPARQL) query answering systems, we consider it important that
a benchmark for OBDA can also be used to evaluate triple stores.
Also, since one of the components of an OBDA system is an ontol-
ogy, the requirements we identify include those to evaluate general
knowledge based systems [19, 13, 30]. However, due to the addi-
tional components, there are also notable differences.

Typically OBDA systems follow the workflow below for query
answering:

1. Starting phase. The system loads the ontology and the map-
pings, and performs some auxiliary tasks needed to pro-
cess/answer queries in a later stage. Depending on the sys-
tem, this phase might be critical, since it might include
some reasoning tasks, for example inference materialization
or the embedding of the inferences into the mappings (T-
mappings [22]).

2. Query rewriting phase. The input query is rewritten to a (typ-
ically more complex) query that takes into account the infer-
ences induced by the intensional level of the ontology (we
forward the interested reader to [4, 15]).

3. Query translation (or unfolding) phase. The rewritten query
is translated into a query over the data sources. This is the
phase where the mapping layer comes into play [21].

4. Query execution phase. The data query is executed over the
original data source, answers are produced according to the
data source schema, and are translated into answers in terms
of the ontology vocabulary and RDF data types, thus obtain-
ing an answer to the original input query.

Note that a variation of the above workflow has actually been pro-
posed in [19], but without identifying a distinct starting phase, and
6http://www.ldbcouncil.org/
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Table 1: Measures for OBDA
Performance Metrics

name triple store related to phase

Loading Time (T) 1
Rewriting Time (T⇤) 2
Unfolding Time — 3
Query execution time (T) 4
Overall response time (T) 2, 3, 4

Quality Metrics
Simplicity R Query (T⇤) 2
Simplicity U Query — 3
Weight of R+U (T⇤) 2, 3, 4

instead singling out from query execution a result translation phase.
It is critical to notice that although optimisation is not mentioned in
this workflow, it is the most challenging part in the query answer-
ing process, and definitely essential to make OBDA applicable in
production environments.

There are several approaches to deal with Phase 2 [15, 29]. The
most challenging task in this phase is to deal with existentials in the
right-hand side of ontology axioms. These axioms infer unnamed
individuals in the virtual instance that cannot be retrieved as part
of the answer, but can affect the evaluation of the query. An ap-
proach that has proved to produce good results in practice is the
tree-witness rewriting technique, for which we refer to [15]. For
us, it is only important to observe that tree-witnesses lead to an
extension of the original query to account for matching in the ex-
istentially implied part of the virtual instance. Below, we take the
number of tree-witnesses identified in Phase 2 as one of the param-
eters to measure the complexity of the combination ontology/query.
Since existentials do not occur very often in practice [15], and can
produce an exponential blow-up in the query size, some systems
allow one to turn off the part of Phase 2 that deals with reasoning
with respect to existentials.

Ideally, an OBDA benchmark should provide meaningful mea-
sures for each of these phases. Unfortunately, such a fine-grained
analysis is not always possible, for instance because the system
comes as a black-box with proprietary code with no APIs providing
the necessary information, e.g., the access to the rewritten query;
or because the system combines more phases into one, e.g., query
rewriting and query translation. Based on the above phases, we
identify in Table 1 the measures important for evaluating OBDA
systems. The meaning of the Performance Metrics should be clear
from their names; instead, we will give a brief explanation of the
meaning of the Quality Metrics:

• Simplicity R Query. Simplicity of the rewritten query in
terms of language dependent measures, like the number of
rules in case the rewritten query is a Datalog program. In ad-
dition, one can include system-dependent features, e.g., the
number of tree-witnesses in Ontop .

• Simplicity U Query. This measures the simplicity of the
query over the data source, including relevant SQL-specific
metrics like the number of joins/left-join, the number of in-
ner queries, etc.

• Weight of R+U. It is the cost of the construction of the SQL
query divided by the overall cost.

We label with (T) those measures that are also valid for triple stores,
and with (T⇤) those that are valid only if the triple store is based on
query rewriting (e.g., Stardog). Notice that the two Simplicity mea-
sures, even when retrievable, are not always suitable for comparing

different OBDA systems. For example, it might not be possible to
compare the simplicity of queries in the various phases, e.g., when
such queries are expressed in different languages.

With these measures in mind, the different components of the
benchmark should be designed so as to reveal strengths and weak-
nesses of a system in each phase. The conclusions drawn from the
benchmark are more significant if the benchmark resembles a typ-
ical real-world scenario in terms of the complexity of the ontology
and queries, and the size of the data set. Therefore, we consider the
benchmark requirements in Table 2.

The current benchmarks available for OBDA do not meet several
of the requirements above. Next we list some of the best known
benchmarks and their shortcomings when it comes to evaluating
OBDA systems. We show general statistics in Table 3.

Adolena: Designed in order to extend the South African National
Accessibility Portal [14] with OBDA capabilities. It provides
a rich class hierarchy, but a quite poor structure for proper-
ties. This means that queries over this ontology will usually
be devoid of tree-witnesses. No data-generator is included,
nor mappings.
Requirements Missing: O1, Q2, D2, S1

LUBM: The Lehigh University Benchmark (LUBM) [12] consists
of a university domain ontology, data, and queries. For data
generation, the UBA (Univ-Bench Artificial) data generator
is available. However, the ontology is rather small, and the
benchmark is not tailored towards OBDA, since no mappings
to a (relational) data source are provided.
Requirements Missing: O1, Q2, M1, M2, D1

DBpedia: The DBpedia Benchmark consists of a relatively
large—yet, simple7—ontology, a set of user queries chosen
among the most popular queries posed against the DBpedia8

SPARQL endpoint, and a synthetic RDF data generator able
to generate data having properties similar to the real-world
data. This benchmark is specifically tailored to triple stores,
and as such it does not provide any OBDA specific compo-
nents like R2RML mappings, or a data set in the form of a
relational database.
Requirements Missing: O1, O2, Q2, M1, M2

BSBM: The Berlin SPARQL Benchmark [3] is built around an e-
commerce use case. It has a data generator that allows one to
configure the data size (in triples), but there is no ontology to
measure reasoning tasks, and the queries are rather simple.
Moreover, the data is fully artificial.
Requirements Missing: O1, O2, Q2, M1, M2, D1,

FishMark: FishMark [2] collects comprehensive information
about finned fish species. This benchmark is based on the
FishBase real world dataset, and the queries are extracted
from popular user SQL queries over FishBase; they are more
complex than those from BSBM. However, the benchmark
comes neither with mappings nor with a data generator. The
data size is rather small (⇡20M triples).
Requirements Missing: O1, D2, S1

A specific challenge comes from requirements D1 and D2, i.e.,
given an initial real-world dataset, together with a rich ontology
and mappings, expand the dataset in such a way that it populates the
7In particular, it is not suitable for reasoning w.r.t. existentials.
8http://dbpedia.org/sparql/
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Table 2: Benchmark Requirements
O1 Q1 M1

The ontology should include rich hierar-
chies of classes and properties.

The query set should be based on actual
user queries.

The mappings should be defined for ele-
ments of most hierarchies.

O2 Q2 M2
The ontology should contain a rich set of
axioms that infer new objects and could
lead to inconsistency, in order to test the
reasoner capabilities.

The query set should be complex enough
to challenge the query rewriter.

The mappings should contain redundan-
cies, and suboptimal SQL queries to test
optimizations.

D1 D2 S1
The virtual instance should be based on
real world data.

The size of the virtual instance should be
tunable.

The languages of the ontology, mapping,
and query should be standard, i.e., based
on R2RML, SPARQL, and OWL respec-
tively.

Table 3: Popular Benchmark Ontologies: Statistics
Ontology Stats. (Total) Queries Stats. (Max)

name #classes #obj/data_prop #i-axioms #joins #opt #tw

adolena 141 16 189 5 0 0
lubm 43 32 91 7 0 0
dbpedia 530 2148 3836 7 8 0
bsbm 8 40 0 14 4 0
fishmark 11 94 174 24 12 0

virtual instance in a sensible way (i.e., coherently with the ontology
constraints and relevant statistical properties of the initial dataset).
We address this problem in the next section.

4. REQUIREMENTS FOR DATA GENERA-
TION

In this section, we present the requirements for an OBDA data
generator, under the assumption that we have an initial database
that can be used as a seed to understand the distribution of the data
that needs to be increased. To ease the presentation, we illustrate
the main issues that arise in this context with an example.

EXAMPLE 4.1. Consider a database D made of four tables,
namely TEmployee, TAssignment, TSellsProduct, and
TProduct. Table 4 shows a fragment of the content of the tables
and their schemas, where bold font denotes primary keys and the
foreign keys are in italics. We assume that every employee sells
the majority of the products, hence the table TSellsProduct
contains roughly the cross product of the tables TEmployee and
TProduct. Next we present only a fragment of the data.

Table 4: Database D

TEmployee

id name branch

1 John B1
2 Lisa B1

TAssignment

branch task

B1 task1
B1 task2
B2 task1
B2 task2

TSellsProduct

id product

1 p1
2 p2
1 p2
2 p3

TProduct

product size

p1 big
p2 big
p3 small
p4 big

Table 5 defines the set M of mapping assertions used to
populate the ontology concepts :Employee, :Branch, and
:ProductSize, plus the object properties :SellsProduct
and :AssignedTo.

The virtual instance corresponding to the database D and map-
pings M includes the following RDF triples:

:1 rdf:type :Employee.
:2 rdf:type :Employee.
:1 :SellsProduct :p1.
:1 :SellsProduct :p2.
:2 :AssignedTo :t1.

Suppose now we want to increase the virtual RDF graph by a
growth-factor of 2. Observe that this is not as simple as doubling
the number of triples in every concept and property, or the number
of tuples in every database relation. Let us first analyze the behavior
of some of the ontology elements w.r.t. this aspect, and then how
the mappings to the database come into play.

• :ProductSize: This concept will contain two individ-
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Table 5: Mappings M
M1 :{id} rdf:type :Employee  SELECT id from TEmployee
M2 :{branch} rdf:type :Branch  SELECT branch FROM TAssignments
M3 :{branch} rdf:type :Branch  SELECT branch FROM TEmployee
M4 :{id} :SellsProduct :{product}  SELECT id, product FROM TSellsProduct
M5 :{size} rdf:type :ProductSize  SELECT size FROM TProduct
M6 :{id} :AssignedTo :{task}  SELECT id, task FROM TEmployee

NATURAL JOIN TAssignments

uals, namely :small and :big, independently of the
growth-factor. Therefore, the virtual instances of the concept
should not be increased when the RDF graph is extended.

• :Employee and :Branch: Since these classes do not de-
pend on other properties, and since they are not intrinsi-
cally constant, we expect their size to grow linearly with the
growth-factor.

• :AssignedTo: Since this property represents a cartesian
product, we expect its size to grow roughly quadratically
with the growth-factor.

• :SellsProduct: The size of this property grows with the
product of the numbers of :Employees and :Products.
Therefore, when we double these numbers, the size of
:SellsProduct will roughly quadruplicate.

In fact, the above considerations show that we do not have one
uniform growth-factor for the ontology elements. Our choice is to
characterize the growth in terms of the increase in size of those
concepts in the ontology that are not intrinsically constant (e.g.,
:ProductSize), and that do not “depend” on any other con-
cept, considering the semantics of the domain of interest (e.g.,
:Employee). We take this as measure for the growth-factor.

The problem of understanding how to generate from a given RDF
graph new additional triples coherently with the domain semantics
is addressed in [30, 20]. The algorithm in [30] starts from an ini-
tial RDF graph and produces a new RDF graph, considering key
features of the original graph (e.g., the distribution of connections
among individuals). However, this approach, and all approaches
producing RDF graphs in general, cannot be directly applied to the
context of OBDA, where the RDF graph is virtual and generated
from a relational database. Trying to apply these approaches indi-
rectly, by first producing a “realistic” virtual RDF graph and then
trying to reflect the virtual data into the physical (relational) data-
source, is far from trivial due to the correlations in the underlying
data. This problem, indeed, is closely related to the view update
problem [7], where each class (resp., role or data property) can be
seen as a view on the underlying physical data. The view update
problem is known to be challenging and actually decidable only
for a very restricted class of queries used in the mappings [10].
Note, however, that our setting does not necessarily require to fully
solve the view update problem, since we are interested in obtaining
a physical instance that gives rise to a virtual instance with certain
statistics, but not necessarily to a specific given virtual instance.
The problem we are facing nevertheless remains challenging, and
requires further research. We illustrate the difficulties that one en-
counters again on our example.

• The property :SellsProduct grows linearly w.r.t. the
size of the table TSellsProduct, hence also this ta-
ble has to grow quadratically with the growth-factor.
Since TSellsProduct has foreign keys from the tables
TEmployee and TProduct, to preserve the fact that every

employee must be connected to every product, the two tables
TEmployee and TProduct have both to grow linearly.
It is worth noting that, to produce one :SellsProduct
triple in the virtual instance, we have to insert three tuples in
the database.

• Since the :Branch concept should grow linearly with
the growth-factor, in order to preserve the duplicates ra-
tio in the TAssignment.branch column then also the
TAssignment table should grow linearly, and there should
always be less branches than employees in TEmployee.

• Since :ProductSize does not grow, the attribute Size
must contain only two values, despite the linear growth of
TProduct.

The previous example illustrated several challenges that need to
be addressed by the generator regarding the analysis of the vir-
tual and physical data, and the insertion of values in the database.
Our goal is to generate a synthetic virtual graph where the cost
of the queries is as similar as possible to the cost that the same
query would have in a real-world virtual graph of comparable size.
Observe that the same virtual graph can correspond to different
database instances, that could behave very differently w.r.t. the cost
of SQL query evaluation. Therefore, in order to keep the cost of the
SPARQL query “realistic”, we need to keep the cost of the trans-
lated SQL “realistic” as well.

We are interested in data generators that perform an analysis
phase on real-world data, and that use the statistical information
learned in the analysis phase for their task. We present first in Ta-
ble 6 the measures that are relevant in the analysis phase. We then
derive the requirements for the data generator by organizing them
in two categories: one for the analysis phase, and one for the gen-
eration phase.

Measures for the Analysis Phase.
The measures are summarized in Table 6. The table is divided in

three parts:

The top part refers to measures relevant at virtual instance level,
i.e., those capturing the shape of the virtual instance. Virtual Multi-
plicity Distribution (VMD) describes the multiplicity of the proper-
ties, i.e., given a property p, and a number k, the VMD is the prob-
ability that a node n in the domain of p is connected to k elements
through p. For instance, the VMD of :AssignedTo assigns prob-
ability 1 to the number 2. Observe that VMD is affected by the
growth of the database (e.g., if the growth factor is 2, and the num-
ber of “tasks” grows linearly then the VMD of :AssignedTo
assigns probability 1 to the number 4). Virtual Growth (VG) is the
expected growth for each ontology term w.r.t. the growth-factor.
For instance, the virtual growth of :AssignedTo is quadratic.

The middle part refers to measures at the physical level that af-
fect the VMD of the properties through the mappings. They are
based on the sets of attributes of a table used in the mappings to
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Table 6: Relevant measures at the virtual and physical instance level
Measures affecting the virtual instance level

Virtual Multiplicity Distribution (VMD) Virtual Growth (VG)
Multiplicity distribution of the properties in the virtual graph. Function describing how fast concepts (resp., role/data properties)

grow w.r.t. the growth-factor.
Measures affecting virtual multiplicity distribution

Intra-table IGA Multiplicity Distribution (Intra-MD) Inter-table IGA Multiplicity Distribution (Inter-MD)
Multiplicity distribution between IGAs belonging to the same ta-
ble and generating objects connected through a virtual property.

Multiplicity distribution between IGAs belonging to different ta-
bles and connected through a virtual property.

Measures affecting RDBMS performance and virtual growth
IGA Duplication (D)

Repeated IGAs
Intra-table IGA-pair Duplication (Intra-D) Inter-table IGA-pair Duplication (Inter-D)

Repeated pairs of intra-table correlated IGAs. Repeated pairs of inter-table correlated IGAs.

define individuals and values in the ontology. We call such a set
of attributes an IGA (individual-generating attributes). We say that
two IGAs are related if and only if they occur in the same mapping
defining the subject and the object of a property. Establishing the
relevant statistics requires to identify pairs of IGAs through map-
ping analysis. Intra-table Multiplicity Distribution (Intra-MD) is
defined for two related IGAs of the same table, both mapped to
individuals/values at the virtual level. It is defined for tuples over
the IGAs in the same way as the VMD is defined for individuals.
For instance, the Intra-MD for the IGAs {id} and {product} with
respect to the property :SellsProduct assigns probability 1 to
the number 2. Inter-table Multiplicity Distribution (Inter-MD) is
defined for related IGAs belonging to two different tables. It is cal-
culated like the Intra-MD but over the joins specified in the map-
pings, e.g., the join of TEmployee and TAssignment.

The bottom part refers to measures at the physical level that
do not affect VMD, but that influence growth at the virtual level
and the overall performance of the system. Specifically, IGA
Duplication (D) measures the ratio of identical copies of tuples
over an IGA not occurring in a property definition, while (Intra-
table and Inter-table) IGA-pair Duplication (Intra-D and Inter-
D) are measured as the ratio of identical copies of a tuple over
two related IGAs. For instance, the IGA Duplication for the IGA
TAssignment.branch is 1/2 (half of the tuples are dupli-
cated).

Now we are ready to list the requirements for a data generator
for OBDA systems.

Requirements for the Analysis Phase.
The generator should be able to analyze the physical instance and

the mappings, in order to acquire statistics to assess the measures
identified in Table 6.

Requirements for the Generation Phase.
We list now important requirements for the generation of physi-

cal data that gives rise through the mappings to the desired virtual
data instance.

Tunable. The user must be able to specify a growth factor accord-
ing to which the virtual instance should be populated.

Virtually Sound. The virtual instance corresponding to the gener-
ated physical data must meet the statistics discovered during
the analysis phase and that are relevant at the virtual instance
level.

Physically Sound. The generated physical instance must meet the

statistics discovered during the analysis phase and that are
relevant at the physical instance level.

Database Compliant. The generator must generate data that does
not violate the constraints of the RDBMS engine—e.g., pri-
mary keys, foreign keys, constraints on datatypes, etc.

Fast. The generator must be able to produce a vast amount of
data in a reasonable amount of time (e.g., 1 day for gener-
ating an amount of data sufficient to push the limits of the
considered RDBMS system). This requirement is important
because OBDA systems are expected to operate in the con-
text of “Big-Data” [11].

5. NPD BENCHMARK
The Norwegian Petroleum Directorate9 (NPD) is a governmen-

tal organisation whose main objective is to contribute to maximize
the value that society can obtain from the oil and gas activities.
The initial dataset that we use is the NPD FactPages (see Foot-
note 1), containing information regarding the petroleum activities
on the Norwegian Continental Shelf (NCS).

The NPD benchmark consists of an an initial dataset reflecting
the content of the FactPages, an ontology, a query set, a set of map-
pings, a data generator able to meaningfully increase the size of
the initial dataset, and an automated testing platform.10 The ontol-
ogy, the query set, and the mappings to the dataset have all been
developed at the University of Oslo [26], and are freely available
online (see Footnote 2). We adapted each of these, fixing some mi-
nor inconsistencies, adding missing mappings, and slightly modi-
fying the query set to make the queries more suitable for an OBDA
benchmark. Next we provide more details on each of these items.

The Dataset.
The data from FactPages has been translated from CSV files into

a structured database [26]. The obtained schema consists of 70
tables with 276 distinct columns (⇡1000 columns in total), and 94
foreign keys. The schemas of the tables overlap in the sense that
several attributes are replicated in several tables. In fact, there are
tables with more than 100 columns. The total size of the initial
dataset is ⇡50Mb.

The Ontology.
The ontology contains OWL axioms specifying comprehensive

information about the underlying concepts in the dataset; in par-
9http://www.npd.no/en/

10https://github.com/ontop/npd-benchmark/
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Table 7: Statistics for the queries considered in the benchmark
query #join #tw max(#subcls) # opts Agg Filt. Mod.
Q1 4 0 0 0 N Y N
Q2 5 0 0 0 N Y N
Q3 3 0 0 0 N Y Y
Q4 5 0 0 0 N Y Y
Q5 5 0 0 0 N Y Y
Q6 6 2 23 0 N Y Y
Q7 7 0 0 0 N Y N
Q8 3 0 0 0 N Y N
Q9 3 0 38 0 N Y Y
Q10 2 0 0 0 N Y Y
Q11 7 2 23 0 N Y Y
Q12 8 4 23 0 N Y Y
Q13 2 0 0 2 N Y N
Q14 2 0 0 2 N Y N
Q15 4 - 0 0 Y Y N
Q16 3 - 0 0 Y Y N
Q17 8 - 0 0 Y N Y
Q18 4 - 0 0 Y N N
Q19 8 - 0 0 Y N N
Q20 3 - 0 0 Y N N
Q21 3 - 0 0 Y N N

ticular, the NPD ontology presents rich hierarchies of classes and
properties, axioms that infer new objects, and disjointness asser-
tions. We took the OWL 2 QL fragment of this ontology, and we
obtained 343 classes, 142 object properties, 238 data properties,
1451 axioms, and a maximum hierarchy depth of 10. Since we are
interested in benchmarking OBDA systems that are able to rewrite
queries over the ontology into SQL-queries that can be evaluated by
a relational DBMS, we concentrate here on the OWL 2 QL profile11

of OWL, which guarantees rewritability of unions of conjunctive
queries (see, e.g., [4]). This ontology is suitable for benchmarking
reasoning tasks, given that (i) it is a representative [18] and com-
plex real-world ontology in terms of number of classes and max-
imum depth of the class hierarchy (hence, it allows for reasoning
w.r.t. class hierarchies); (ii) it is complex w.r.t. properties, therefore
it allows for reasoning w.r.t. existentials.
From the previous facts, it follows that the ontology satisfies re-
quirements O1, O2, S1.

The Query Set.
The original NPD SPARQL query set contains 20 queries ob-

tained by interviewing users of the NPD dataset. Starting from the
original NPD query set, we devised 21 queries having different de-
grees of complexity (see Table 7). We also fixed some minor issues
in the queries/ontology, e.g., the absence in the ontology of certain
concepts present in the queries, fixing type inconsistencies, and
flattening of nested sub-queries. In particular, observe that most
complex queries involve both classes with a rich hierarchy and tree
witnesses, which means that they are particularly suitable for test-
ing the reasoner capabilities. Aggregates are also a source of com-
plexity in the context of OBDA, since they increase the complexity
of the semantic query optimisation tasks. These aggregate queries
were not part of the first draft of this benchmark [6, 17], and they
either add aggregates to queries without them—for instance, q15 is
obtained from q1—or they are a fragment of aggregate queries in
the original NPD query set—for instance, q17 and q19. Next, we
provide some example queries from the benchmark.

The following query (q6) is a query with tree-witnesses that asks
for the wellbores, their length, and the companies that completed
the drilling of the wellbore after 2008, and sampled more than 50m

11http://www.w3.org/TR/owl2-profiles/

of cores.
SELECT DISTINCT ?wellbore (?length AS ?lenghtM)

?company ?year
WHERE {

?wc npdv:coreForWellbore
[ rdf:type npdv:Wellbore ;
npdv:name ?wellbore ;
npdv:wellboreCompletionYear ?year ;
npdv:drillingOperatorCompany
[npdv:name ?company ]] .

{ ?wc npdv:coresTotalLength ?length }
FILTER(?year >= "2008"^^xsd:integer &&

?length > 50
)}

When existential reasoning is enabled, query q6 produces 2
tree-witnesses, and gets rewritten into a union of 73 inter-
mediate queries (query rewriting phase). The tree-witnesses
arise due to existential axioms containing npdv:Wellbore and
npdv:coreForWellbore.

The following query (q16) is a simple aggregate query that asks
for the number of production licenses granted after year 2000.

SELECT (COUNT(?licence ) AS ?licnumber)
WHERE { [ ] a npdv:ProductionLicence ;

npdv:name ?licence ;
npdv:dateLicenceGranted ?dateGranted ;
FILTER(?dateGranted > 2000) }

From the previous facts, it follows that the queries satisfy re-
quirements Q1, Q2, S1.

The Mappings.
The R2RML mapping consists of 1190 assertions mapping a to-

tal of 464 among classes, objects properties, and data properties.
The SQL queries in the mappings count an average of 2.6 unions
of select-project-join queries (SPJ), with 1.7 joins per SPJ. We ob-
serve that the mappings have not been optimized to take full advan-
tage of an OBDA framework, e.g., by trying to minimize the num-
ber of mappings that refer to the same ontology class or property,
so as to reduce the size of the SQL query generated by unfolding
the mapping. This gives the opportunity to the OBDA system to
apply different optimization on the mappings at loading time.
From the previous facts, it follows that the mappings satisfies re-
quirements M1, M2, S1.

Automatized Testing Platform.
The benchmark comes with a testing platform (called OBDA

Mixer12) that allows one to automatize the runs of the tests and
the collection of results. Mixer comes in the form of an easily ex-
tensible Java project, which can be extended to work with other
OBDA systems as long as they provide a Java API and public inter-
faces able to return interesting statistics (e.g., unfolding or rewriting
times).

5.1 VIG: The Data Generator
Next we present the Virtual Instances Generator (VIG) that we

implemented in the NPD Benchmark. VIG produces a virtual in-
stance by inserting data into the original database. The generator is
general in the sense that, although it currently works with the NPD
database, it can produce data also starting from instances different
from NPD. The algorithm can be divided into two main phases,
namely (i) an analysis phase, where statistics for relevant mea-
sures on the real-world data are identified, and (ii) a generation
phase, where data is produced according to the identified statistics.

12https://github.com/ontop/obda-mixer
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VIG starts from a non-empty database D. Given a growth factor
g, VIG generates a new database D0 such that |T 0| ⇡ |T | · (1+ g),
for each table T of D (where |T | denotes the number of tuples of
T ). The size is approximated since, due to foreign key constraints,
some tables might require the addition of extra tuples. In other
words, the current implementation of the data generator assumes
that the size of each table T grows accordingly to the growth fac-
tor. This rules out for example the case when the size of a table
T depends on the cartesian product of two foreign keys (as in Ex-
ample 4.1), since in this case the size of T depends quadratically
on the sizes of the referred tables. In the case of NPD, however,
there are no such tables and therefore the growth for each table is at
most linear. Observe that the chosen generation strategy does not
imply that every concept or property at the virtual level grows as
the growth factor, since the growth depends not only on the content
of the tables but also on the shape of the SQL queries defined in
the mappings (c.f. Example 4.1).

We now describe how VIG approximates the measures described
in Table 6.

Measures (D), (Intra-D).
We compute (an approximation for) these measures by Duplicate

Values Discovery. For each column T.C of a table T 2 D, VIG
discovers the duplicate ratio for values contained in that column.
The duplicate ratio is the ratio (||T.C|| � |T.C|)/||T.C||, where
||T.C|| denotes the number of values in the column T.C, and |T.C|
denotes the number of distinct values in T.C. A duplicate ratio
“close to 1” indicates that the content of the column is essentially
independent from the size of the database, and it should not be
increased by the data generator.

Measures (Intra-MD), (Inter-MD), (Inter-D).
Instead of computing (an approximation for) these measures,

VIG identifies the domain of each attribute. That is, for each col-
umn T.C in a table T , VIG analyzes the content of T.C in or-
der to decide the range of values from which fresh non-duplicate
values can be chosen. More specifically, if the domain of T.C is
String or simply unordered (e.g., polygons), then a random fresh
value is generated. Instead, if the domain is a total order, then fresh
values can be chosen from the non-duplicate values in the inter-
val [min(T.C),max(T.C)] or in the range of values adjacent to
it. Observe that this helps in maintaining the domain of a column
similar to the original one, and this in turn helps in maintaining
Intra- and Inter-table Multiplicity Distribution. VIG also preserves
standard database constraints, like primary keys, foreign keys, and
datatypes, that during the generation phase will help in preserving
the IGA Multiplicity Distribution. For instance, VIG analyses the
loops in foreign key dependencies in the database. Let T1 ! T2

denote the presence of a foreign key from table T1 to table T2. In
case of a cycle T1 ! T2 ! · · · ! Tk ! T1, inserting a tu-
ple in T1 could potentially trigger an infinite number of insertions.
VIG performs an analysis on the values contained in the columns
involved by the dependencies and discovers the maximum number
of insertions that can be performed in the generation phase.
Next we describe the generation phase, and how it meets some of
the requirements given in Section 6.

Duplicate Values Generation.
VIG inserts duplicates in each column according to the dupli-

cate ratio discovered in the analysis phase. Each duplicate is cho-
sen with a uniform probability distribution. This ensures, for those
concepts that are not dependent from other concepts and whose in-
dividual are “constructed” from a single database column, a growth

that is equal to the growth factor. In addition, it prevents intrinsi-
cally constant concepts from being increased (by never picking a
fresh value in those columns where the duplicates ratio is close
to 1). Finally, it helps keeping the sizes for join result sets “real-
istic” [28]. This is true in particular for the NPD database, where
almost every join is realized by a single equality on two columns.
Requirement: Physically/Virtually Sound.

Fresh Values Generation.
For each column, VIG picks fresh non-duplicate values from

the interval I discovered during the analysis phase. If the num-
ber of values to insert exceeds the number of different fresh values
that can be chosen from the interval I, then values outside I are
allowed. The choices for the generation of new values guarantees
that columns always contain values “close” to those already present
in the column. This ensures that the number of individuals for con-
cepts based on comparisons grows accordingly to the growth factor.
Requirement: Physically/Virtually Sound.

Metadata Constraints.
VIG generates values that do not violate the constraints of the

underlying database, like primary keys, foreign keys, or type con-
straints. The NPD database makes use of geometric datatypes avail-
able in MYSQL. Some of them come with constraints, e.g., a poly-
gon is a closed non-intersecting line composed of a finite number
of straight lines. For each geometric column in the database, VIG
first identifies the minimal rectangular region of space enclosing all
the values in the column, and then it generates values in that region.
This ensures that artificially generated geometric values will fall in
the result sets of selection queries.
Requirement: Database Compliant/Virtually Sound.

Length of Chase Cycles.
In case a cycle of foreign key dependencies was identified during

the analysis phase, then VIG stops the chain of insertions according
to the boundaries identified in the analysis phase, while ensuring
that no foreign key constraint is violated. This is done by inserting
either a duplicate or a null in those columns that have a foreign key
dependency.
Requirement: Database Compliant.

Furthermore, VIG allows the user to tune the growth factor, and
the generation process is considerably fast, for instance, it takes
⇡10hrs to generate 130 Gb of data.

5.2 Validation of the Data Generator
In this section we perform a qualitative analysis of the virtual

instances obtained using VIG. We focus our analysis on those con-
cepts and properties that either are supposed to grow linearly w.r.t.
the growth factor or are supposed not to grow at all. These are 138

concepts, 28 object properties, and 226 data properties.
We report in Table 8 the growth of the ontology elements w.r.t.

the growth of databases produced by VIG and by a purely random
generator. The first column indicates the type of ontology elements
being analyzed, and the growth factor g (e.g., “class_npd2” refers
to the population of classes for the database incremented with a
growth factor g = 2). The columns under “avg dev” show the
average deviation of the actual growth from the expected growth,
in terms of percentage of the expected growth. The remaining
columns report the number and percentage of concepts (resp., ob-
ject/data properties) for which the deviation was greater than 50%.

Concerning concepts, VIG behaves close to optimally. For prop-
erties, the difference between the expected virtual growth and the
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Table 8: Comparison between VIG and a random data generator
avg dev err �50% (absolute) err �50% (relative)

type_db heuristic random heuristic random heuristic random

class_npd2 3.24% 370.08% 2 67 1.45% 48.55%
class_npd10 6.19% 505.02% 3 67 2.17% 48.55%
obj_npd2 87.48% 648.22% 8 12 28.57% 42.86%
obj_npd10 90.19% 883.92% 8 12 28.57% 42.86%
data_npd2 39.38% 96.30% 20 46 8.85% 20.35%
data_npd10 53.49% 131.17% 28 50 12.39% 22.12%

Table 9: Tractable queries (MySQL)
db avg(ex_time) avg(out_time) avg(res_size) qmpH #(triples)

msec. msec. msec.

NPD 44 102 15960 2167.37 ⇡2M
NPD2 70 182 30701 1528.01 ⇡6M
NPD10 148 463 81770 803.86 ⇡25M
NPD50 338 1001 186047 346.87 ⇡116M
NPD100 547 1361 249902 217.36 ⇡220M
NPD500 2415 5746 943676 57.80 ⇡1.4B
NPD1500 6740 18582 2575679 17.66 ⇡4B

actual virtual growth is more evident. Nevertheless, VIG performs
significantly better than a purely random approach (one order of
magnitude for object properties, 2-3 times for data properties).
We shall see how this difference strongly affects the results of the
benchmark (Section 6).

5.3 Related Work on Data Generation
There are several data generators that come with database and

semantic web benchmarks [3, 20, 12] (see also Footnote 5). As ex-
plained before, it is not trivial to re-use a semantic web triple gener-
ator (e.g., [30]) since in OBDA this implies solving the view update
problem. Therefore, we focus on DB data generators. To the best of
our knowledge, most of them (such as the ones for TPC or Wiscon-
sin) are tailored to a given DB schema, and moreover such schemas
are rather simple (often around 20 tables). A notable example is the
TPC-DS data generator. TPC-DS is the latest TPC benchmark with
a scaling, correlation, and skew methodology in the data generator
(MUDD) [27]. MUDD takes the distribution of each pair colum-
n/table as a manually predefined input, and generates data accord-
ing to the defined distribution. On the other hand, VIG, collects
different statistics about each table, and generates data to keep the
statistics constant. MUDD allows a more sophisticate and precise
data generation, but it requires a deep understanding of the dataset,
and manual settings that can be challenging as the complexity of the
schema increases (the TPC-DS schema contains 20 tables, whereas
the NPD schema contains 70 tables). We plan to extend our work
with distribution analysis so as to replicate the skew that is usu-
ally present in real-world data. However, observe that in general
skew might not be a crucial factor in determining the shape of vir-
tual instances since repeated triples are removed in the virtual RDF
graphs.

6. BENCHMARK RESULTS
We ran the benchmark on the Ontop system13 [23, 16], which,

to the best of our knowledge, is the only fully implemented OBDA
system that is freely available. In addition, we tried a closed OBDA
system, Mastro [5], that is used in large industrial projects, and
two systems that use mappings but that do not provide reasoning,
namely OpenLink Virtuoso Views14 and Morph15. Unfortunately,

13http://ontop.inf.unibz.it/
14http://virtuoso.openlinksw.com/
15https://github.com/oeg-upm/morph-rdb/

Table 10: Tractable Queries (PostgreSQL)
db avg(ex_time) avg(out_time) avg(res_size) qmpH #(triples)

msec. msec. msec.

NPD 61 36 2.3 ⇤ 104 5278 ⇡2M
NPD2 121 71 4.2 ⇤ 104 2684 ⇡6M
NPD5 173 99 7.1 ⇤ 104 1893 ⇡12M
NPD10 222 138 1.1 ⇤ 105 1429 ⇡25M
NPD50 592 355 2.7 ⇤ 105 542 ⇡116M
NPD100 1066 516 4.1 ⇤ 105 325 ⇡220M
NPD500 4.1 ⇤ 104 467 3.3 ⇤ 105 12 ⇡1.3B
NPD1500 2.6 ⇤ 105 3470 1.15 ⇤ 106 1.9 ⇡4B

N N2 N5 N10 N50 N100 N500N1500
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Figure 1: Full summary of Ontop-MySQL vs Ontop-PostgreSQL

Mastro and Virtuoso do not fully support R2RML mappings and
Morph is not able to load the mappings for NPD. Ultrawrap [25]
is another commercial OBDA system but we were not granted the
right to test it.

In order to provide a meaningful comparison, we looked for a
triple store that allows for OWL 2 QL reasoning through query
rewriting—Virtuoso does not provide this feature. Thus, we com-
pared Ontop with Stardog 2.1.3. Stardog16 is a commercial RDF
database developed by Clark&Parsia that supports SPARQL 1.1
queries and OWL 2 for reasoning.

Since Stardog is a triple store, we needed to materialize the vir-
tual RDF graph exposed by the mappings and the database using
Ontop . For the aggregate queries we used an experimental unre-
leased version of Ontop (V2.0) that does not support existential
reasoning in conjunction with aggregates.

MySQL and PostgreSQL were used as underlying relational
database systems. The hardware consisted of an HP Proliant server
with 24 Intel Xeon X5690 CPUs (144 cores @3.47GHz), 106 GB
of RAM and a 1 TB 15K RPM HD. The OS is Ubuntu 12.04 LTS.
Due to space constraints, we present the results for only one run-
ning client. We obtained results with existential reasoning turned
on (for non-aggregate queries) and off.

In order to test the scalability of the systems w.r.t. the growth of
the database, we used the data generator described in Section 5.1
and produced several databases, the largest being approximately
1500 times bigger than the original one (“NPD1500” in Table 9,
⇡117 GB of size on disk).

16http://stardog.com/
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Table 12: Hard queries-Ontop/MySQL
query NPD NPD2 NPD5 NPD10 NPD10 RAND

rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U
(sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio)

No Existential Reasoning
q6 1.5/0.07 8.2/0.02 23/<0.01 51/<0.01 54/<0.01
q9 0.6/0.17 2.3/0.03 4/0.03 50/<0.01 51/<0.01
q10 0.07/0.14 0.1/0.1 0.16/0.06 0.2/0.05 0.3/0.03
q11 0.9/0.1 36/<0.01 198/<0.01 1670/<0.01 70/<0.01
q12 0.8/0.16 41/<0.01 275/<0.01 1998/<0.01 598/<0.01
q13 0.1/0.01 0.2/<0.01 0.2/0.01 0.4/<0.01 1.1/<0.01
q14 0.3/<0.01 1.0/<0.01 1.4/<0.01 0.6/<0.01 5.3/<0.01
q15 1015.7/<0.01 — — — —
q16 1.4/<0.01 13.2/<0.01 32.7/<0.01 171.9/<0.01 406.1/<0.01
q17 — — — — —
q18 — — — — —
q19 — — — — —
q20 211.1/<0.01 1913.4/<0.01 — — —
q21 210.9/<0.01 1905.6/<0.01 — — —
Existential Reasoning
q6 8.5/0.35 18/0.19 36/0.09 85/0.04 88/0.03
q9 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2
q10 0.1/0.2 0.1/0.2 0.3/0.07 0.7/0.03 1.8/0.01
q11 3/0.2 25/0.03 980/<0.01 980/<0.01 41/0.02
q12 686/0.97 733/0.91 868/0.74 2650/0.24 880/0.74

Table 11: Hard Queries Rewriting And Unfolding
Ext. Reasoning OFF

query #rw #un rw time un time
sec. sec.

q6 1 48 0 0.1
q9 1 570 0 0.1
q10 1 24 0 0.9
q11 1 24 0 0.1
q12 1 48 0 0.2
q13 1 4 0 0.005
q14 1 2 0 0.01
q15 1 4 0 0.03
q16 1 26 0 0.05
q17 1 40 0 0.1
q18 1 38 0 0.2
q19 1 40 0 0.1
q20 1 13 0 0.04
q21 1 13 0 0.06

Ext. Reasoning ON
q6 73 1740 1.8 1.3
q9 1 150 0 0.03
q10 1 24 0 0.01
q11 73 870 0.03 0.7
q12 10658 5220 525 139

Tables 9, 10, and Figure 1 show 7 queries from the initial query
set, for which the unfolding produces a single select-project-join
(SPJ) SQL query after being optimised by Ontop . Such optimi-
sations remove redundant self-joins, redundant unions, push joins
into unions, etc. (see [24] for a complete description). These results
show the scalability of this approach. The query mix of 7 queries
was executed 10 times (in each dataset, NPD1–NPD1500), each
time with different filter conditions so that the effect of caching
is minimized, and statistics were collected in each execution. We
measured the sum of the query execution time (avg(ex_time)),
the time spent by the system to display the results to the user
(avg(out_time)), the number of results (avg(res_size)), and the
query mixes per hour (qmpH), that is, the number of times that
these 7 queries can be answered in one hour. In this experiment
we can see that Ontop-PostgreSQL runs orders of magnitude faster
than Ontop-MySQL whenever the query does not contain Option-
als. However, for queries that contain optionals, MySQL performs

much better. By looking at the query plans17 in both DB engines,
we found out that MySQL can better optimise the query by elimi-
nating left joins over the same table.

For instance, the SQL translation of query 14 requires 2 left joins
over the same table. PostgreSQL materialises the subqueries and
then performs both left joins. MySQL, on the other hand, can avoid
such redundant left joins over the same table.

Table 11 contains results showing the number of unions of SPJ
queries generated after rewriting (#rw) and after unfolding (#un)
for the 5 hardest queries. In addition, it shows the time spent by
Ontop on rewriting and unfolding. Here we can observe how exis-
tential reasoning can produce a noticeable performance overhead,
by producing queries consisting of unions of more than 5000 sub-
queries (c.f., q12). This blow-up is due to the combination of rich
hierarchies, existentials, and mappings. These queries are meant to
be used in future research on query optimization in OBDA.

Tables 12 and 13 contain results for the 13 hardest queries in
Ontop . Some of these queries take hours to be executed, therefore
qmpH is not so informative in this case. Thus, we run each query
twice with a timeout of 2 hours on the response time. The dashes in
the tables represent timeouts. Observe that the response time tends
to grow faster than the growth of the underlying database. This fol-
lows from the complexity of the queries produced by the unfolding
step, which usually contain several joins (remember that the worst
case cardinality of a result set produced by a join is quadratic in
the size of the original tables). Column NPD10 RAND witnesses
how using a purely random data generator gives rise to datasets for
which the queries are much simpler to evaluate. This is mainly due
to the fact that a random generation of values tends to decrease the
ratio of duplicates inside columns, resulting in smaller join results
over the tables [28]. Hence, purely randomly generated datasets are
not appropriate for benchmarking.

In Figure 2, we compare the response times in Ontop and Star-
dog. As expected, the queries with worst performance in OBDA
(q6, q9, q10,. . . etc.) are those that were affected by the blow-up
shown in Table 11. In this case, Stardog performs orders of mag-

17Available in http://www.inf.unibz.it/~dlanti/
techreportNPD-EDBT.pdf
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Table 13: Hard queries-Ontop/PostgreSQL
query NPD NPD2 NPD5 NPD10 NPD10 RAND

rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U
(sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio)

No Existential Reasoning
q06 1.2/0.15 1.3/0.11 3.9/0.04 4.3/0.03 3.6/0.03
q09 6.4/0.28 6.0/0.21 7.5/0.32 8.6/0.19 1.5/0.1
q10 0.2/0.16 0.6/0.03 0.7/0.03 0.9/0.03 1.4/0.01
q11 1.1/0.12 22.1/<0.01 66.1/<0.01 160.3/<0.01 110.9/<0.01
q12 1.9/0.16 20.9/0.01 101.6/<0.01 195.6/<0.01 121.5/<0.01
q13 0.9/0.06 0.2/0.02 0.5/<0.01 0.4/<0.01 0.7/<0.01
q14 453.2/<0.01 — — — —
q15 122.9/<0.01 366.3/<0.01 771.3/<0.01 1491.2/<0.01 1296.9/<0.01
q16 1.5/0.01 17.0/<0.01 64.6/<0.01 237.8/<0.01 588.6/<0.01
q17 — — — — —
q18 — — — — —
q19 — — — — —
q20 1.8/<0.01 5.2/<0.01 10.5/<0.01 20.0/<0.01 19.2/<0.01
q21 1.8/<0.01 5.2/<0.01 10.5/<0.01 19.7/<0.01 12.2/<0.01
Existential Reasoning
q06 14.9/0.14 48.6/0.04 52.0/0.07 55.0/0.02 58.0/0.01
q09 0.4/0.16 0.3/0.15 0.7/0.1 1.0/0.1 0.5/0.1
q10 0.2/0.14 0.5/0.07 0.6/0.04 0.8/0.06 1.4/0.02
q11 17.5/0.08 117.3/<0.01 — — —
q12 1395.6/0.5 4090.8/0.47 — — —

nitude faster than Ontop . These queries should guide the future
research in query optimisation in OBDA. On the other hand, the
queries that perform well (q1, q2, q3,. . . etc.) are those where the
different optimizations lead to a simple SPJ SQL query. Note that
the times required to materialize (by Ontop) and load the dataset in
Stardog go from 1 min. (NPD1) to 1 hour (NPD10).

7. CONCLUSIONS AND FUTURE WORK
The benchmark proposed in this work is the first one that thor-

oughly analyzes a complete OBDA system implementation in all
significant components, including query rewriting, query unfold-
ing, and query execution. So far, little or no work has been done in
this direction, as pointed out in [19]. This benchmark reveals the
strengths and pitfalls of OBDA. We confirmed that this approach
can be orders of magnitude faster than standard triple stores, fully
exploiting the highly optimized DB engines. To achieve such per-
formance, structural and semantic optimizations of the SQL trans-
lation are required. However, the results also show that the expo-
nential blowup in the unfolding phase is a major source of perfor-
mance loss of modern OBDA systems. If this issue is not handled
properly, it can prevent OBDA systems from being deployed in pro-
duction environments. This explosion, however, can be strongly
reduced using tuning and optimisation techniques that exploit the
information hidden in the data, such as functional dependencies,
redundant mappings, etc. We are currently working on this topic.

For a better analysis it is crucial to refine the generator in such a
way that domain-specific information is taken into account, and a
better approximation of real-world data is produced.
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