
POIESIS: a Tool for Quality-aware
ETL Process Redesign

Vasileios Theodorou

1
Alberto Abelló

1
Maik Thiele

2
Wolfgang Lehner

2

1
Universitat Politécnica de Catalunya

2
Technische Universität Dresden

Barcelona, Spain Dresden, Germany

{vasileios,aabello}@essi.upc.edu {maik.thiele,wolfgang.lehner}@tu-dresden.de

ABSTRACT
We present a tool, called POIESIS, for automatic ETL pro-
cess enhancement. ETL processes are essential data-centric
activities in modern business intelligence environments and
they need to be examined through a viewpoint that concerns
their quality characteristics (e.g., data quality, performance,
manageability) in the era of Big Data. POIESIS responds
to this need by providing a user-centered environment for
quality-aware analysis and redesign of ETL flows. It gener-
ates thousands of alternative flows by adding flow patterns
to the initial flow, in varying positions and combinations,
thus creating alternative design options in a multidimen-
sional space of di↵erent quality attributes. Through the
demonstration of POIESIS we introduce the tool’s capabil-
ities and highlight its e�ciency, usability and modifiability,
thanks to its polymorphic design.

1. INTRODUCTION
The increasing volume of available data, as well as the re-

quirement for recording and responding to multiple events
coming from participants within Big Data ecosystems that
are characterized by the 3Vs (volume, variety, velocity) [3],
pose a serious challenge for modern data-centric processes.
As such, Extract-Transform-Load (ETL) processes are be-
coming more and more complex, while there is a growing de-
mand for their real time responsiveness and user-centricity.

It has recently been proposed that to tackle complexity,
the level of abstraction for ETL processes can be raised.
ETL processes have been decomposed to ETL activities [6]
and recurring patterns [1] as the main elements of their work-
flow representation, making them susceptible to analysis for
process evaluation and redesign.

Manual modification of ETL processes in order to improve
their quality characteristics is error-prone, non-trivial, time-
consuming and it su↵ers from incompleteness, ine�ciency,
and ine↵ectiveness. According to our experience with in-
dividuals with computer science expertise, most common

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

mistakes during this manual process are wrong configura-
tion of ETL operations, incomplete exploitation of quality
enhancement options and wrong placement of optimization
patterns.

It is apparent that there is a need for an automatized pro-
cess of ETL quality enhancement, as it would solve many of
the above-mentioned issues. Analysts should be in the cen-
ter of this process, where the large problem space is auto-
matically generated, simulated and displayed in an intuitive
representation, allowing for the selection among alternative
design choices.

In this paper we present our tool POIESIS, which stands
forProcessOptimization and Improvement forETL Systems
and Integration Services. Using a process perspective of an
ETL activity, our tool can improve the quality of an ETL
Process by automatically generating optimization patterns
integrated in the ETL flow, resulting to thousands of al-
ternative ETL flows. We apply an iterative model where
users are the key participants through well-defined collabo-
rative interfaces and based on estimated measures for di↵er-
ent quality characteristics. POIESIS implements a modular
architecture that employs reuse of components and patterns
to streamline the design. Our tool can be used for incre-
mental, quantitative improvement of ETL process models,
promoting automation and reducing complexity. Through
the automatic generation of alternative ETL flows, it sim-
plifies the exploration of the problem space and it enables
further analysis and identification of correlations among de-
sign choices and quality characteristics of the ETL models.

The remainder of this paper is organized as follows: In
Section 2 we provide some background for ETL quality anal-
ysis and redesign; in Section 3 we provide an overview of the
system and finally, in Section 4 we showcase an outline of a
demonstration of our tool.

2. QUALITY-AWARE REDESIGN OF ETL

2.1 ETL Quality Characteristics
ETL processes need to be evaluated in a scope that brings

them closer to fitness to use for data scientists. Therefore,
apart from performance and cost, other quality characteris-
tics, as well as the trade-o↵s among them should be taken
under consideration during ETL analysis. In Fig. 6 we show
a subset of ETL process quality characteristics and measures
that we have extracted from existing literature, in our pre-
vious work [4]. There are two types of measures: ones that
derive directly from the static structure of the process model

545 10.5441/002/edbt.2015.54

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.54

and those that are obtained from analysis of historical traces
capturing the runtime behaviour of ETL components.

Characteristic Measure
performance • Process cycle time

• Average latency per tuple

data quality • Request time - Time of last update

• 1 / (1 - age * Frequency of updates)

manageability • Length of process workflow’s longest path

• Coupling of process workflow

• # of merge elements in the process model

Figure 1: Example quality measures for ETL processes

Based on such measures, it is possible to conduct a multi-
objective analysis and make design decisions according to
user preferences on di↵erent quality characteristics, which
can often be conflicting.

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������
���
��
���
��

FILTER
"purchase_line

_item_id= item_i
d" AND

"item_record_e
nd_date= null"

AND
"store_record_
end_date= null"

SPLIT
required

attributes

S_Purchases_3 S_Purchases_4

DERIVE
VALUES with
PARALLELISM

PERSIST
intermediary

data

Savepoint

EXTRACT from
Savepoint

S_Purchases_3

PERSIST
intermediary

data DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

error?

Savepoint

S_Purchases_4

noye
s

a) improved performance

b) improved reliability

(a) Improved performance

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������������

FILTER SPLIT

S_Purchases_3 S_Purchases_4

DERIVE
VALUES

DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

S_Purchases_4S_Purchases_3

��������	
������
���
��
���
��

FILTER
"purchase_line

_item_id= item_i
d" AND

"item_record_e
nd_date= null"

AND
"store_record_
end_date= null"

SPLIT
required

attributes

S_Purchases_3 S_Purchases_4

DERIVE
VALUES with
PARALLELISM

PERSIST
intermediary

data

Savepoint

EXTRACT from
Savepoint

S_Purchases_3

PERSIST
intermediary

data DERIVE
VALUES for

Group_B

DERIVE
VALUES for

Group_A
HORIZONTAL

PARTITION
MERGE

error?

Savepoint

S_Purchases_4

noye
s

a) improved performance

b) improved reliability
(b) Improved reliability

Figure 2: Generation of FCP on the ETL flow

2.2 Addition of Flow Component Patterns
An initial ETL flow can be modified with the addition of

predefined constructs that improve certain quality charac-
teristics, but do not alter its main functionality. We refer
to these constructs as Flow Component Patterns (FCP) and
their integration can take place on di↵erent parts of the ini-
tial flow, depending on the flow topology. For example, in
Fig. 2, we illustrate how di↵erent quality goals can cause
the generation of di↵erent FCP on the ETL flow. In the
first case, the goal of improving time performance of the
process, results in the generation of horizontal partitioning

�������	
��
ETL Flow 1

Flow
Measures

�������	
��
ETL Flow 2

Flow
Measures

Flow
Measures

FCPs

POIESIS

Pattern
 Generation

Pattern
 Application

Measures
 Estimation

�������	
��
Initial ETL Flow

configurations

�������	
��
ETL Flow n

vis
ua

liz
at

io
n

Flow
Measures

Figure 3: POIESIS architecture

and parallelism within a computational-intensive task and
in the second, the goal of improving reliability brings about
the addition of a recovery point to the sub-process. Another
example would be the goal of improved data quality that
would result in crosschecking with alternative data sources.

Central to our implementation is the notion of application
point of a FCP, which can be either a node (i.e., an ETL
flow operation), or an edge or the entire ETL flow graph. As
examples, a valid application point for the ParallelizeTask

pattern is a node that can be replaced by multiple copies of
itself and a valid application point for the FilterNullValues

pattern is an edge on which a filter operation can be added.
The entire ETL flow graph as application point serves for
the case of process-wide configuration and management op-
erations that are not directly related to the functionality
of specific flow components. Examples of the latter include
the application of security configurations (encryption, role-
based access etc.), management of the quality of Hw/Sw
resources, adjusting the frequency of process recurrence etc.

We model the ETL process as one graph G with graph
components (V,E), where each node (V) represents an ETL
flow operation, and each edge (E) represents a transition
from one operation to a successor one. We also assume that
there is a set P of available FCP, P = PE [PV [PG, each
of which can either be applied on a node, an edge of G, or
the entire graph, in order to improve one or more quality
characteristics of the ETL flow.

After the application of all the FCP, a number of nodes
and edges is added to the initial graph. This process can be
repeated an arbitrary number of times and a new Graph is
created every time.

It is apparent that the complexity of this analysis is fac-
torial to the size of the graph. Thus, manual configuration
of the ETL flow appears ine�cient and error-prone, being
dependent not only on the users’ cognitive abilities but also
on characteristics and dynamics of the flow that are hard
to predict. Therefore, the need for defining adequate au-
tomated mechanisms and heuristics to produce and explore
alternative designs and to optimize the ETL flow is evident.

3. SYSTEM OVERVIEW
In [5] we have presented an architecture for user-centered,

declarative ETL (re-)design. POIESIS is an implementa-
tion of the Planner component of that architecture. The
main functionality of this component is the automatic ap-
plication of Flow Component Patterns (FCP) on an existing
ETL process flow and the architecture of our approach can
be seen in Fig. 3. POIESIS takes as input an initial ETL

546

flow and user-defined configurations. Utilizing an existing
repository of FCP models, it generates patterns that are
specific to the ETL flow on which they are applied. Thus, it
produces alternative ETL designs with di↵erent FCPs and
varying distribution of them on the ETL flow, while keeping
the data sources schemata constant. It also estimates de-
fined measures for various quality attributes and illustrates
the alternative flows, as well as the corresponding measures
to the user through an intuitive visualization.

The internal representation of the FCPs is in the same for-
mat as the process flow on which they are deployed. Thus,
they can be considered as additional flow components which
are positioned at valid application points of the process flow.
For example, the FilterNullValues pattern is itself an ETL
flow consisting of only one operation — a filter that deletes
entries with null values from its input. When the Filter-

NullValues pattern is deployed on the initial ETL flow, it
is interposed between two consecutive operations. The Fil-

terNullValues ETL flow is then configured according to the
properties and characteristics of the initial ETL flow as well
as the exact application point, ensuring the consistency be-
tween data schemata, run-time parameters etc. The same
idea is generalized for more complex FCPs or for their more
elaborate implementations (e.g., data enrichment addition-
ally to data removal in the described example). In those
cases, more detailed configurations might be required to be
predefined, such as the access points and data models of
additional data sources and processing algorithms of opera-
tions.

Our main drivers throughout the development of this com-
ponent have been the objectives of extensibility and e�-
ciency. In this direction, we followed a modular design with
clear-cut interfaces and we employed well-known object-ori-
ented design patterns. The model that was used internally
to represent the ETL process flow and allow for its modifi-
cations was the ETL flow graph. Each node of this graph
represents an ETL flow operation and each directed edge
represents a transition from one operation to a successor
one.

As a consequence, one strong point of our implementa-
tion is that it allows for the definition of custom, additional
FCPs, tailored to specific use cases. The applicability of a
FCP on the complete ETL flow or some part of it, is decided
based upon specific conditions that form the applicability
prerequisites, such as the presence or not of specific data
types in the operation schemata (e.g., numeric fields in the
output schema of preceding operator). Each FCP is related
to a particular set of prerequisites that have to be satisfied
conjunctively to determine a valid application point. Apart
from these strict conditions, there are also heuristics to de-
termine the fitness of FCPs for di↵erent parts of the ETL
flow. For example, according to such heuristics, the addi-
tion of a checkpoint is encouraged after the execution of the
most complex operations of the ETL fow, in order to avoid
the repetition of process-intensive tasks in case of a recovery.
Similarly, the application of FCPs related to data cleaning is
encouraged as close as possible to the operations for inputing
data sources, to prevent cumulative side-e↵ects of reduced
data quality. Thus, as opposed to manual deployment, our
tool guarantees that all of the potential application points
on the ETL flow are checked for each FCP and it can be
customized to select the deployment of patterns based on
custom policies based on di↵erent heuristics.

Reliability
 (%)

Figure 4: Multidimensional scatter-plot of alternative ETL
flows

What is unique about POIESIS is that the redesign pro-
cess takes place in an iterative, incremental and intuitive
fashion. A large number of alternative process designs is
automatically generated and these can be instantly evalu-
ated based on quality criteria. Moreover, through a highly
interactive UI, the user at any point can interact with a vi-
sualization of the ETL process and the estimated measures
for each of the alternative designs.

Figure 5: Relative change of measures for an ETL flow,
compared with the initial flow as a baseline

The first step is to import an initial ETL model to the
system. This model can be a logical representation of the
ETL process and we currently support the loading of xLM
[7] and PDI1, but more options will be available in a fu-
ture version. Subsequently, the user can select the preferred
processing parameters, i.e., choose which FCP can be con-
sidered in the palette of patterns to be added to the flow,
and select the deployment policy for the patterns. It is im-
portant to notice at this point that the user can configure
the various patterns and even extend them to create cus-
tom patterns for future use. The same also stands for the
deployment policies, which can be configured according to
the user-defined prioritization of goals, as well as the set of
constraints based on estimated measures.

Next, after generating and applying relevant FCPs on the
ETL flow, the Planner presents to the user a set of potential
1
http://community.pentaho.com/projects/data-

integration/

547

designs in a multidimensional scatter-plot visualization (see
Fig. 4), together with quality measures (by clicking on any
point on the scatter-plot). The scatter-plot points presented
to the user are only the Pareto frontier (skyline) of the com-
plete set of alternative designs, based on their evaluation
according to the examined quality dimensions, where larger
values are preferred to smaller ones. For example, consider-
ing the quality dimensions shown in Fig. 4, for one design
ETL1, if there exists at least one alternative design ETL2

o↵ering the same or better performance and data quality,
and at the same time better reliability, then ETL1 will not
be presented to the user.

The presented measures (see Fig. 5) show on a bar-graph
the relative change on the metrics for each quality charac-
teristic, denoting the estimated e↵ect of selecting each of
the available flows, compared with the initial flow. Appar-
ently, the processing and analysis of the alternative process
designs is a process intensive task, mainly due to the large
number of alternative flows that have to be concurrently
evaluated. Therefore, we employ Amazon Cloud2 elastic in-
frastructures, by launching processing nodes that run in the
background and enable system responsiveness.

When the user selects (clicks on) any of the bars on the
measures graph, the corresponding composite measure ”ex-
pands” to more detailed measures, providing the user with
a more in-depth monitoring view. Based on measures and
design, the user makes a selection decision and the tool im-
plements this decision by integrating the corresponding pat-
terns to the existing process flow. These patterns are in
the form of process components and the Planner carefully
merges them to the existing process [2]. Subsequently, new
iteration cycles commence, until the user considers that the
flow adequately satisfies quality goals [4].

4. DEMO WALKTHROUGH
In the demonstration of POIESIS we will use two initial

ETL processes based on the TPC-DS3 and TPC-H4 bench-
marks. These processes contain tens of operators, extract-
ing data from multiple sources. Their logical representation
in xLM format will be loaded in the system and the au-
tomatic addition of Flow Component Patterns in di↵erent
positions and combinations on the initial flows, will result
in thousands of alternative ETL flows, with di↵erent quality
characteristics.

Using these processes as input data to our system, we
will show the capabilities of our tool in an interactive demo,
consisting of the following parts:

P1. In the first part of the demo, users will interact with
the visualizations of our tool’s GUI. In particular, they
will be able to scroll over/click on any point on the
scatterplot that depicts alternative ETL flows on a
multidimensional space of di↵erent quality character-
istics. By selecting one point — corresponding to one
ETL flow — the process representation and the mea-
sures for this flow will appear on the screen. Users
will then be able to view details about the ETL flow,
as well as click on any measure so that it expands to
more detailed composing metrics.

2
http://aws.amazon.com/ec2/

3
http://www.tpc.org/tpcds/

4
http://www.tpc.org/tpch/

P2. The second part aims at illustrating how the process-
ing parameters can be configured in order to produce
di↵erent collections of alternative flows. Thus, users
will be allowed to choose which of the available Flow
Component Patterns will be used and which policy will
be followed for their deployment.

P3. Finally, users will be guided through defining their own
Flow Component Patterns, quality metrics and deploy-
ment policies, by extending and pre-configuring the ex-
isting ones. They will be able to save their custom pro-
cessing preferences, adding them to the palette of avail-
able patterns for future execution. Examples of the
FCPs, which our palette currently includes, together
with the quality attribute that they are intended to
improve, are as follows:

FCP Related quality attribute
RemoveDuplicateEntries Data Quality
FilterNullValues Data Quality
CrosscheckSources Data Quality
ParallelizeTask Performance
AddCheckpoint Reliability

Figure 6: Available FCPs

Acknowledgements. This research has been funded by
the European Commission through the Erasmus Mundus
Joint Doctorate “Information Technologies for Business In-
telligence - Doctoral College” (IT4BI-DC).

References
[1] Castellanos, M., Simitsis, A., Wilkinson, K., Dayal, U.:

Automating the loading of business process data ware-
houses. In: EDBT. pp. 612–623 (2009)

[2] Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Inte-
grating ETL Processes from Information Requirements.
In: DaWaK. pp. 65–80 (2012)

[3] Russom, P.: TDWI best practices report: Big data an-
alytics. Tech. rep., The data Warehousing Institute (01
2011)

[4] Theodorou, V., Abelló, A., Lehner, W.: Quality Mea-
sures for ETL Processes. DaWaK (2014)

[5] Theodorou, V., Abelló, A., Thiele, M., Lehner, W.:
A Framework for User-Centered Declarative ETL. In:
DOLAP (2014)

[6] Vassiliadis, P., Simitsis, A., Baikousi, E.: A taxonomy of
ETL activities. In: DOLAP. pp. 25–32 (2009)

[7] Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.:
Leveraging business process models for ETL design. In:
ER, pp. 15–30 (2010)

548

