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ABSTRACT
Web-based applications face unprecedented workloads demanding
the processing of a large number of events reaching to the millions
per second. That is why developers are increasingly relying on
scalable cloud platforms to implement cloud applications. Chariots
exposes a shared log to be used by cloud applications. The log is es-
sential for many tasks like bookkeeping, recovery, and debugging.
Logs offer linearizability and simple append and read operations
of immutable records to facilitate building complex systems like
stream processors and transaction managers. As a cloud platform,
Chariots offers fault-tolerance, persistence, and high-availability,
transparently.

Current shared log infrastructures suffer from the bottleneck of
serializing log records through a centralized server which limits
the throughput to that of a single machine. We propose a novel
distributed log store, called the Fractal Log Store (FLStore), that
overcomes the bottleneck of a single-point of contention. FLStore
maintains the log within the datacenter. We also propose Chariots,
which provides multi-datacenter replication for shared logs. In it,
FLStore is leveraged as the log store. Chariots maintains causal
ordering of records in the log and has a scalable design that allows
elastic expansion of resources.

1. INTRODUCTION
The explosive growth of web applications and the need to sup-

port millions of users make the process of developing web appli-
cations difficult. These applications need to support this increasing
demand and in the same time they need to satisfy many require-
ments. Fault-tolerance, availability, and a low response time are
some of these requirements. It is overwhelming for the developer
to be responsible for ensuring all these requirements while scaling
the application to millions of users. The process is error-prone and
wastes a lot of efforts by reinventing the wheel for every applica-
tion.

The cloud model of computing encourages the existence of uni-
fied platforms to provide an infrastructure that provides the guaran-
tees needed by applications. Nowadays, such an infrastructure for
compute and storage services is commonplace. For example, an
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application can request a key-value store service in the cloud. The
store exposes an interface to the client and hides all the complexi-
ties required for its scalability and fault-tolerance. We envision that
a variety of programming platforms will coexist in the cloud for the
developer to utilize. A developer can use multiple platforms simul-
taneously according to the application’s needs. A micro-blogging
application for example might use a key-value store platform to
persist the blogs and in the same time use a distributed process-
ing platform to analyze the stream of blogs. The shared log, as we
argue next, is an essential cloud platform in the developer’s arsenal.

Manipulation of shared state by distributed applications is an
error-prone process. It has been identified that using immutable
state rather than directly modifying shared data can help allevi-
ate some of the problems of distributed programming [1–3]. The
shared log offers a way to share immutable state and accumulate
changes to data, making it a suitable framework for cloud appli-
cation development. Additionally, the shared log abstraction is fa-
miliar to developers. A simple interface of append and read op-
erations can be utilized to build complex solutions. These char-
acteristics allow the development of a wide-range of applications.
Solutions that provide transactions, analytics, and stream process-
ing can be easily built over a shared log. Implementing these tasks
on a shared log makes reasoning about their correctness and be-
havior easier and rid the developer from thinking about scalability
and fault-tolerance. Also, the log provides a trace of all applica-
tion events providing a natural framework for tasks like debugging,
auditing, checkpointing, and time travel. This inspired a lot of
work in the literature to utilize shared logs for building systems
such as transaction managers, geo-replicated key-value stores, and
others [6, 11, 13, 27, 28, 30, 33].

Although appealing as a platform for diverse programming ap-
plications, shared log systems suffer from a single-point of con-
tention problem. Assigning a log position to a record in the shared
log must satisfy the uniqueness and order of each log position and
consequent records should have no gaps in between. Many shared
log solutions tackle this problem and try to increase the append
throughput of the log by minimizing the amount of work done to
append a record. The most notable work in this area is the CORFU
protocol [7] built on flash chips that is used by Tango [8]. The
CORFU protocol is driven by the clients and uses a centralized se-
quencer that assigns offsets to clients to be filled later. This takes
the sequencer out of the data path and allows the append through-
put to be more than a single machine’s I/O bandwidth. However, it
is still limited by the bandwidth of the sequencer. This bandwidth
is suitable for small clusters but cannot be used to handle larger
demands encountered by large-scale web applications.

We propose FLStore, a distributed deterministic shared log sys-
tem that scales beyond the limitations of a single machine. FL-
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Store consists of a group of log maintainers that mutually handle
exclusive ranges of the log. Disjoint ranges of the log are han-
dled independently by different log maintainers. FLStore ensures
that all these tasks are independent by using a deterministic ap-
proach that assigns log positions to records as they are received by
log maintainers. It removes the need for a centralized sequencer
by avoiding log position pre-assignment. Rather, FLStore adopts a
post-assignment approach where records are assigned log positions
after they are received by the Log maintainers. FLStore handles
the challenges that arise from this scheme. The first challenge is
the existence of gaps in the log that occur when a log maintainer
has advanced farther compared to other log maintainers. Another
challenge is maintaining explicit order dependencies requested by
the application developer.

Cloud applications are increasingly employing geo-replication to
achieve higher availability and fault-tolerance. Records are gener-
ated at multiple datacenters and are potentially processed at mul-
tiple locations. This is true for applications that operate on shared
data and need communication to other datacenters to make deci-
sions. In addition, some applications process streams coming from
different locations. An example is Google’s Photon [4] which joins
streams of clicks from different datacenters. Performing analytics
also requires access to the data generated at multiple datacenters.
Geo-replication poses additional challenges such as maintaining
exactly-once semantics (ensure that an event is not processed more
than once), automatic datacenter-level fault-tolerance, and handling
un-ordered streams.

Chariots supports multiple datacenters by providing a global
replicated shared log that contains all the records generated by
all datacenters. The order of records in the log must be consis-
tent. The ideal case is to have an identical order at all datacen-
ters. However, it is shown by the CAP theorem [12, 16] that such
a consistency guarantee cannot be achieved if we are to preserve
availability and partition-tolerance. In this work we favor avail-
ability and partition-tolerance, as did many other works in differ-
ent contexts [14, 15, 20, 23]. Here, we relax the guarantees on
the order of records in the log. In relaxing the consistency guar-
antee, we seek the strongest guarantee that will allow us to pre-
serve availability and partition-tolerance. We find, as other systems
have [5, 10, 19, 23, 31], that causality [21] is a sufficiently strong
guarantee fitting our criterion [24].

In this paper we propose a cloud platform that exposes a shared
log to applications. This shared log is replicated to multiple dat-
acenters for availability and fault tolerance. The objective of the
platform’s design is to achieve high performance and scalability by
allowing seamless elasticity. Challenges in building such a plat-
form are tackled, including handling component and whole data-
center failures, garbage collection, and gaps in the logs. We moti-
vate the log as a framework for building cloud applications by de-
signing three applications on top of the shared log platform. These
applications are: (1) a key-value store that preserves causality across
datacenters, (2) a stream processing applications that handles streams
coming from multiple datacenters, and (3) a replicated data store
that provides strongly consistent transactions [27].

The contributions of the paper are the following:

• A design of a scalable distributed log storage, FLStore, that
overcomes the bottleneck of a single machine. This is done
by adopting a post-assignment approach to assigning log po-
sitions.

• Chariots tackles the problem of scaling causally-ordered geo-
replicated shared logs by incorporating a distributed log stor-
age solution for each replica. An elastic design is built to

Consistency Partitioned Replicated systems

Strong 3 7

CORFU/Tango [7, 8]
LogBase [33]

RAMCloud [29]
Blizzard [25]

Ivy [26]
Zebra [18]
Hyder [11]

Strong 7 3
Megastore [6]
Paxos-CP [30]

Causal 7 3

Message Futures [27]
PRACTI [10]
Bayou [32]

Lazy
Replication [19]

Replicated
Dictionary [36]

Causal 3 3 Chariots

Table 1: Comparison of different shared log services based
on consistency guarantees, support of per-replica partitioning,
and replication.

allow scaling to datacenter-scale computation. This is the
first work we are aware of that tackles the problem of scaling
geo-replicated shared logs through partitioning.

The paper proceeds as the following. We first present related
work in Section 2. The system model and log interface follows
in Section 3. We then present a set of use cases of Chariots in
Section 4. These are data management and analytics applications.
The detailed design of the log is then proposed in Sections 5 and 6.
Results of the evaluations are provided in Section 7. We conclude
in Section 8.

2. RELATED WORK
In this paper we propose a geo-replicated shared log service for

data management called Chariots. Here we briefly survey related
work. We focus on systems that manage shared logs. There exist an
enormous amount of work on general distributed (partitioned) stor-
age and geo-replication. Our focus on work tackling shared logs
stems from the unique challenges that shared logs pose compared
to general distributed storage and geo-replication. We provide a
summary of shared log services for data management application
in Table 1. In the remainder of this section we provide more details
about these systems in addition to other related work that do not
necessarily provide log interfaces. We conclude with a discussion
of the comparison provided in Table 1.

2.1 Partitioned shared logs
Several systems explored extending shared logs as a distributed

storage spanning multiple machines. Hyder [11] builds a multi-
version log-structured database on a distributed shared log storage.
A transaction executes optimistically on a snapshot of the database
and broadcasts the record of changes to all servers and appends a
record of changes to the distributed shared log. The servers then
commit the transaction by looking for conflicts in the shared log in
an intelligible manner. LogBase [33], which is similar to network
filesystems like BlueSky [34], and RAMCloud [29] are also multi-
version log-structured databases.
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Corfu [7], used by Tango [8], attempts to increase the throughput
of shared log storage by employing a sequencer. The sequencer’s
main function is to pre-assign log position ids for clients wishing
to append to the log. This increases throughput by allowing more
concurrency. However, the sequencer is still a bottleneck limiting
the scalability of the system.

Distributed and networked filesystems also employ logs to share
their state. Blizzard [25] proposes a shared log to expose a cloud
block storage. Blizzard decouples ordering and durability require-
ments, which improves its performance. Ivy [26] is a distributed
file system. A log is dedicated to each participant and is placed in a
distributed hash table. Finding data requires consulting all logs but
appending is done to the participant’s log only. The Zebra file sys-
tem [18] employs log striping across machines to increase through-
put.

2.2 Replicated shared logs
Causal replication. Causal consistency for availability is uti-

lized by various systems [10, 19, 19, 23, 31, 32]. Recently, COPS [23]
proposes causal+ consistency that adds convergence as a require-
ment in addition to causal consistency. COPS design aims to in-
crease the throughput of the system for geo-replicated environ-
ments. At each datacenter, data is partitioned among many ma-
chines to increase throughput. Chariots targets achieving high through-
put similarly by scaling out. Chariots differs in that it exposes a log
rather than a key-value store, which brings new design challenges.
Logs have been utilized by various replication systems for data stor-
age and communication. PRACTI [10] is a replication manager that
provides partial replication, arbitrary consistency, and topology in-
dependence. Logs are used to exchange updates and invalidation
information to ensure the storage maintains a causally consistent
snapshot. Bayou [32] is similar to PRACTI. In Bayou, batches of
updates are propagated between replicas. These batches have a start
and end times. When a batch is received, the state rolls back to the
start time, incorporate the batch, and then roll forward the existing
batches that follows. Replicated Dictionary [36] replicates a log
and maintains causal relations. It allows transitive log shipping and
maintains information about the knowledge of other replicas. Lazy
Replication [19] also maintains a log of updates ordered by their
causal relations. The extent of knowledge of other replicas is also
maintained.

Geo-replicated logs. Geo-replication of a shared log has been
explored by few data management solutions. Google megastore [6]
is a multi-datacenter transaction manager. Megastore commit trans-
actions by contending for log positions using Paxos [22]. Paxos-
CP [30] use the log in a similar way to megastore with some re-
finements to allow better performance. These two systems how-
ever, operate on a serial log. All clients contend to write to the
head of the log, making it a single point of contention, which limits
throughput. Message Futures [27] and Helios [28] are commit pro-
tocols for strongly consistent transactions on geo-replicated data.
They build their transaction managers on top of a causally-ordered
replicated log that is inspired from Replicated Dictionary [36].

2.3 Summary and comparison
The related works above that build shared logs for data manage-

ment applications are summarized in Table 1. We display whether
the system support partitioning and replication in addition to the
guaranteed ordering consistency. Consistency is either strong, mean-
ing that the order is either identical or serializable for replicated
logs or totally ordered for non-replicated logs. A system is par-
titioned if the shared log spans more than one machine for each
replica. Thus, if a system of five replicas consists of five machines,

<A,1>
1

<B,1>
2

<B,2>
3

<C,1>
4

<A,2>
5

<A,3>
6

<C,2>
7

LId

Datacenter

TOId

Figure 1: Records in a shared log showing their TOId inside
the records alongside the datacenters that created them and the
records LIds under the log

they are not partitioned. A system is replicated if the shared log
has more than one independent copy.

Other than Chariots, the table lists four systems that support par-
titioning. It is possible for these systems to employ replication in
the storage level. However, a blind augmentation of a replication
solution will be inefficient. This is because a general-purpose repli-
cation method will have guarantees stronger than what is needed to
replicate a log. The other solutions, that support replication, do not
support partitioning. Handling a replica with a single node limits
the achievable throughput. The processing power, I/O, and com-
munication of a single machine can not handle the requirements of
todays web applications. This is specially true for geo-replication
that handles datacenter-scale demand.

Chariots attempts to fill this void of shared logs that have both
a native support of replication and per-replica partitioning. This
need for both replication and partitioning has been explored for
different applications and guarantees, including causal consistency,
i.e., COPS [23]. However, geo-replication of a distributed shared
log and immutable updating pose unique challenges that are not
faced by geo-replication of key-value stores and block-based stor-
age. The paper studies these challenges and design Chariots as
a causally-ordered shared log that supports per-replica partitioned
log storage and geo-replication.

3. SYSTEM AND PROGRAMMING MODEL
Chariots is a shared log system for cloud applications. The inner

workings of Chariots are not exposed to the application developer.
Rather, the developer interacts with Chariots via a set of APIs. In
this section, we will show the interface used by developers to write
applications using Chariots.

System model. Chariots exposes a log of records to applica-
tions. The log is maintained by a group of machines called the
log maintainers. Collectively, these log maintainers persist a single
shared log. Each log maintainer is responsible for a disjoint range
of the shared log. The shared log is accessed by cloud applications,
called application clients, through a linked library that manages the
exchange of information between the application and the log main-
tainers. Application clients are distributed and independent from
one another. And they share a single view of the shared log. The
shared log is fully replicated to a number of datacenters. In our
model, we adopt a view of the datacenter as a computer [9], an
increasingly popular view of computing that reflects the demand of
datacenter-scale applications.

Meta information about log maintainers, other datacenters, and
the shared log are managed by meta servers. Meta servers are a
highly-available collection of stateless servers acting as an oracle
for application clients to report about the state and locations of
the Log maintainers and other datacenters. This model of scale-
out distributed computing and centralized stateless highly-available
control servers has been shown to perform the best for large-scale
systems [17].
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Data model. The state of the shared log consists of the records it
contains. These records are either local copies, meaning that they
were generated by application clients residing in the same datacen-
ter, or external copies, meaning that they were generated at other
datacenters. Each record has an identical copy at each datacen-
ter, one of which is considered a local copy and the other copies
are considered external copies. The record consists of the contents
appended by the Application client, called the record’s body, and
other meta-information that are used by Application clients to fa-
cilitate future access to it. The following are the meta-information
maintained for each record:

• Log Id (LId): This id reflects the position of the record in
the datacenter where the copy resides. A record has multiple
copies, one at each datacenter. Each copy has a different LId
that reflects its position in the datacenter’s shared log.

• Total order Id (TOId): This id reflects the total order of the
record with respect to its host datacenter, where the Applica-
tion client that created it resides. Thus, copies of the same
record have an identical TOId.

• Tags: The Application client might choose to attach tags to
the record. A tag consists of a key and a value. These tags
are accessible by Chariots, unlike the record’s body which is
opaque to the system. Records will be indexed using these
tags.

To highlight the difference between LId and TOId, observe the
sample shared log in Figure 1. It displays seven records with their
LIds in the bottom of each record at datacenter A. The TOId is
shown inside the record via the representation < X , i >, where X
is the host datacenter of the Application client that appended the
record and i is the TOId. Each record has a LId that reflects its
position in the shared log of datacenter A. Additionally, each record
has a TOId that reflects its order compared to records coming from
the same datacenter only.

Programming interface and model. Application clients can
observe and change the state of the shared log through a simple
interface of two basic operations: reading and appending records.
These operations are performed via an API provided by a linked
software library at the Application client. The library needs the
information of the meta servers only to initiate the session. Once
the session is ready, the application client may use the following
library calls:

1. Append(in: record, tags): Insert record to the shared log
with the desired tags. The assigned TOId and LId will be
sent back to the Application client. Appended records are
automatically replicated to other replicas.

2. Read(in: rules, out: records): Return the records that
matches the input rules. A rule might involve TOIds, LIds,
and tags information.

Log records are immutable, meaning that once a record is added,
it cannot be modified. If an application client desire to alter the
effect of a record it can do so by appending another record that
exemplifies the desired change. This principle of accumulation
of changes, represented by immutable data, is identified to reduce
the problems arising from distributed programming [1–3]. Taking
this principled approach and combining it with the simple interface
of appends and reads allows the construction of complex software
while reducing the risks of distributed programming. We showcase

the potential of this simple programming model by constructing
data management systems in the next section.

Causality and log order. The shared log at each datacenter con-
sists of a collection of records added by application clients at dif-
ferent datacenters. Ordering the records by causality relations al-
lows sufficient consistency while preserving availability and fault-
tolerance [12, 16]. Causality enforces two types of order rela-
tions [21] between read and append operations, where oi ! o j de-
notes that oi has a causal relation to o j. A causal relation, oi ! o j ,
exists in the following cases:

• Total order for records generated from the same datacenter.
If two appended records, oi and o j, were generated by appli-
cation clients residing in the same datacenter A, then if oi is
ordered before o j in A, then this order must be honored at all
other datacenters.

• Happened-before relations between read and append oper-
ations. A happened-before relation exists between an append
operation, oi, and a read operation, o j, if o j reads the record
appended by oi.

• Transitivity: causal relations are transitive. If a record ok
exists such that oi ! ok and ok ! o j then oi ! o j .

4. CASE STUDIES
The simple log interface was shown to enable building complex

data management systems [6, 11, 13, 27, 30, 33]. These systems,
however, operate on a serial log with pre-assigned log positions.
These two characteristics, as we argued earlier, limits the log’s
availability and scalability. In this section, we demonstrate data
management systems that are built on top of Chariots, a causally
ordered log with post-assigned log positions. The first system,
Hyksos, is a replicated key-value store that provides causal consis-
tency with a facility to perform get transactions. The second sys-
tem is a stream processor that operates on streams originating from
multiple datacenters. We also refer to our earlier work, Message
Futures [27] and Helios [28], which provide strongly consistent
transactions on top of a causally ordered replicated log. Although
they were introduced with a single machine per replica implemen-
tation, their design can be extended to be deployed on the scalable
Chariots.

4.1 Hyksos: causally consistent key-value store
Hyksos is a key-value store built using Chariots to provide causal

consistency [21]. Put and Get operations1 are provided by Hyksos
in addition to a facility to perform get transactions (GET_TXN) of
multiple keys. Get transactions return a consistent state snapshot of
the read keys.

4.1.1 Design and algorithms
Chariots manages the shared log and exposes a read and append

interface to application clients, which are the drivers of the key-
value store operations. Each datacenter runs an instance of Chari-
ots. An instance of Chariots is comprised of a number of machines.
Some of the machines are dedicated to store the shared log and
others are used to deploy Chariots.

The value of keys reside in the shared log. A record holds one,
or more put operation information. The order in the log reflects the
causal order of put operations. Thus, the current value of a key,
k, is in the record with the highest log position containing a put

operation. The get and put operations are performed as follows:
1The terms "read" and "append" are used for operations on the log
and "put" and "get" are used for operations on the key-value store.
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Algorithm 1 Performing Get_transactions in Hyksos
1: // Request the head of the log position id
2: i = get_head_of_log()
3: // Read each item in the read set
4: for each k in read-set
5: t = Read ({tag: k, LId<i}, most-recent)
6: Output.add (t)

x=10 z=40

x=10 z=40

A

B

y=20 x=30

y=20 x=30

x=10 z=40

x=10 z=40

A

B

y=20 x=30 y=50

y=20 x=30 z=60

x=10 z=40

x=10 z=40

A

B

y=20 x=30 y=50

y=20 x=30 z=60 y=50

z=60

Time = 1

Time = 2

Time = 3

Figure 2: An example of Hyksos, the key-value store built using
Chariots.

• Get(x): Perform a Read operation on the log. The read re-
turns a recent record containing a put operation to x.

• Put(x, value): Putting a value is done by performing an Ap-

pend operation with the new value of x. The record must
be tagged with the key and value information to enable an
efficient get operation.

Get transactions. Hyksos provides a facility to perform get
transactions. The get_transaction operation returns a consistent
view of the key-value store. The application client performs the
Get operations as shown in Algorithm 1. First, Chariots is polled
to get the head of the log’s position id, i, to act as the log position
when the consistent view will be taken (Line 2). There must be no
gaps at any records prior to the log id. Afterwards, the application
client begins reading each key k (Lines 4-6). A request to read the
version of k at a log position j that satisfies the following: Record
j contains the most recent write to k that is at a position less than i.

4.1.2 Example scenario
To demonstrate how Hyksos works, consider the scenario shown

in Figure 2. It displays the shared logs of two datacenters, A and B.
The shared log contains records of put operations. The put oper-
ation is in the form "x = v", where x is the key and v is the value.
Records that are created by Application clients at A are shaded.
Other records are created by application clients at B.

The scenario starts with four records, where each record has two
copies, one at each datacenter. Two of these records are put oper-
ations to key x. The other two operations are a put to y and a put

to z. The two puts to x were created at different datacenters. Note
that the order of writes to x is different at A and B. This is permis-
sible if no causal dependencies exist between them. At time 1, a
Get of x at A will return 30, while 10 will be returned if the Get is
performed at B.

At time 2, two Application clients, one at each datacenter, per-
form put operations. At A, Put(y,50) is appended to the log. At B,
Put(z,60) is appended to the log. Now consider a get transaction
that requests to get the value of x, y and z. First, a non-empty log
position is chosen. Assume that the log position 4 is chosen. If the
get transaction ran at A, it will return a snapshot of the view of the
log up to log position 4. This will yield x = 30, y = 20, and z = 40.
Note that although a more recent y value is available, it was not
returned by the get transactions because it is not part of the view
of records up to position 4. If the get transaction ran at B, it will
return x = 10, y = 20, and z = 40.

Time 3 in the figure shows the result of the propagation of records
between A and B. Put(y,50) has a copy now at B, and Put(z,60)
has a copy at A.

4.2 Event processing
Another application targeted by Chariots is multi-datacenter event

processing. Many applications generate a large footprint that they
would like to process. The users’ interactions and actions in a
web application can be analyzed to generate business knowledge.
These events range from click events to the duration spent in each
page. Additionally, social networks exhibit more complex analyt-
ics of events related to user-generated contents (e.g., micro-blogs)
and user-user relationships to these events. Frequently, such an-
alytics are carried in multiple datacenters for fault-tolerance and
locality [4, 17].

Chariots enables a simple interface for these applications to man-
age the replication and persistence of these analytics while preserv-
ing the required exactly-once semantics. Event processing applica-
tions consist of publishers and readers. Publishing an events is as
easy as performing an append to the log. Readers then read the
events from the log maintainers. An important feature of Chariots
is that readers can read from different log maintainers. This will al-
low distributing the analysis work without the need of a centralized
dispatcher that can be a single-point of contention.

4.3 Message Futures and Helios
Message Futures [27] and Helios [28] are commit protocols that

provide strongly consistent transactions on geo-replicated data stores.
They leverage a replicated log that guarantees causal order [36].
A single node at each datacenter, call it replica, is responsible for
committing transactions and replication. Transactions consist of
read and write operations and are committed optimistically. Appli-
cation clients read from the data store and buffer writes. After all
operations are ready, a commit request is sent to the closest replica.
A record is appended to the log to declare the transaction t as ready
to begin the commit protocol. Message Futures and Helios imple-
ment different conflict detection protocols to commit transactions.
Message Futures [27] waits for other datacenters to send their his-
tories up to the point of t’s position in the log. Conflicts are detected
between t and received transactions, and t commits if no conflicts
are detected. Helios [28] builds on a lower-bound proof that deter-
mines the lowest possible commit latency that a strongly consistent
transaction can achieve. Helios commits a transaction t by detect-
ing conflicts with transactions in a conflict zone in the shared log.
The conflict zone is calculated by Helios using the lower-bound
numbers. If no conflicts were detected, t commits. A full descrip-
tion of Message Futures and Helios are available in previous publi-
cations [27, 28].

Message Futures and Helios demonstrate how a causally ordered
log can be utilized to provide strongly consistent transactions on
replicated data. However, the used replicated log solution [36] is
rudimentary and is not suitable for today’s applications. It only
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Log maintainers

Indexers Control

Figure 3: The architecture of FLStore

utilizes a single node per datacenter. This limits the throughput that
can be achieved to that of a single node. Chariots can be leveraged
to scale Message Futures and Helios to larger throughputs. Rather
than a replica with a single node at each datacenter, Chariots would
be used to distribute storage and computation.

4.4 Conclusion
The simple interface of Chariots enabled the design of web and

analytics applications. The developer can focus on the logic of the
data manager or stream processor without having to worry about
the details of replication, fault-tolerance, and availability. In addi-
tion, the design of Chariots allows scalable designs of these solu-
tions by having multiple sinks for reading and appending.

5. FLSTORE: DISTRIBUTED SHARED LOG
In this section we describe the distributed implementation of the

shared log, called the Fractal Log Store (FLStore). FLStore is re-
sponsible of maintaining the log within the datacenter. We begin
by describing the design of the distributed log storage. Then, we
introduce the scalable indexing component used for accessing the
shared log.

5.1 Architecture
In designing FLStore, we follow the principle of distributing

computation and highly-available stateless control. This approach
has been identified as the most suitable to scale out in cloud envi-
ronments [17]. The architecture of FLStore consists of three types
of machines, shown in Figure 3. Log maintainers are responsible
for persisting the log’s records and serving read requests. Indexers
are responsible of access to log maintainers. Finally, control and
meta-data management is the responsibility of a highly-available
cluster called the Controller.

Application clients start their sessions by polling the Controller
for information about the indexers and log maintainers. This infor-
mation includes the addresses of the machines and the log ranges
falling under their responsibility in addition to approximate infor-
mation about the number of records in the shared log. Appends and
reads are served by Log maintainers. The Application client com-
municates with the Controller only at the beginning of the session
or if communication problems occur. And Application clients will
communicate with Indexers only if read operation did not specify
LIds in the rules.

5.2 Log maintainers
Scalability by post-assignment. The Log maintainers are ac-
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3001 4000 4001 5000 5001 6000Round 2

6001 7000 7001 8000 8001 9000Round 3
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Maintainer
B

Maintainer
C

stripe start stripe end

Figure 4: An example of three deterministic log maintainers
with a batch size of 1000 record. Three rounds of records are
shown.

cessed via a simple interface for adding to and reading from the
shared log. They are designed to be fully distributed to overcome
the I/O bandwidth constraints that are exhibited by current shared
log protocols. A recent protocol is CORFU [7] that is limited by the
I/O bandwidth of a sequencer. The sequencer is needed for CORFU
to pre-assign log positions to application clients wishing to append
records to the log. In FLStore, we abandon this requirement of pre-
assigning log positions and settle for a post-assignment approach.
The thesis of a post-assignment approach is to let the application
client construct the record and send it to a randomly (or intelligi-
bly) selected Log maintainer. The Log maintainer will assign the
record the next available log position from log positions under its
control.

Design. The shared log is distributed among the participating
Log maintainers. This means that each machine holds a partial log
and is responsible for its persistence and for answering requests to
read its records. This distribution poses two challenges. The first is
the way to append to the log while guaranteeing uniqueness and the
non-existence of gaps in the log. This includes the access to these
records and the way to index the records. The other challenge is
maintaining explicit order guarantees requested by the application
client. We employ a deterministic approach to make each machine
responsible for specific ranges of the log. These ranges round-robin
across machines where each round consists of a number of records.
we will call this number the batch size. Figure 4 depicts an example
of three log maintainers, A, B, and C. The figure shows the partial
logs of the first three rounds if the batch size was set to a 1000
records.

If an application wants to read a record it directs the request to
the Log maintainer responsible for it. The Log maintainer can only
answer requests of records if their LIds are provided. Otherwise,
the reader must collect the LIds first from the Indexers as we show
in the next section. Appending to the log is done by simply send-
ing a record or group of records to one of the Log maintainers. The
Log maintainer appends the record to the next available log posi-
tion. It is possible that a log maintainer will receive more record
appends than others. This creates a load-balancing problem that
can be solved by giving the application feedback about the rate of
incoming requests at the maintainers. This feedback can be col-
lected by the Controller and be delivered to the application clients
as a part of the session initiation process. Nonetheless, this is an
orthogonal problem that can be solved by existing solutions in the
literature of load balancing.

5.3 Distributed indexing
Records in Log maintainers are arranged according to their LIds.

However, Application clients often desire to access records accord-
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ing to other information. When an Application client appends a
record it also tags it with access information. These tags depend
on the application. For example, a key-value store might wish to
tag a record that has Put information with the key that is written.
For this reason, we utilize distributed Indexers that provide access
to the Log maintainers by tag information. Distributed indexing for
distributed shared logs is tackled by several systems [11, 33, 35]

Tag and lookup model. The tag is a string that describes a fea-
ture of the record. It is possible that the tag also has a value. Each
record might have more than one tag. The application client can
lookup a tag by its name and specify the amount of records to be
returned. For example, the Application client might lookup records
that has a certain tag and request returning the most recent 100
record LIds to be returned with that tag. If the tag has a value at-
tached to it, then the Application client might lookup records with
that tag and rules on the value, e.g., look up records with a certain
tag with values greater than i and return the most recent x records.

5.4 Challenges
Log gaps. A Log maintainer receiving more records advances

in the log ahead of others. For example, Log maintainer A can
have 1000 records ready while Log maintainer B has 900 records.
This causes temporary gaps in the logs that can be observed by
Application clients reading the log. The requirement that needs to
be enforced is that Application clients must not be allowed to read a
record at log position i if there exist at least one gap at log position
j less than i.

To overcome the problem of these temporary gaps, minimal gos-
sip is propagated between maintainers. The goal of this gossip is
to identify the record LId that will guarantee that any record with
a smaller LId can be read from the Log maintainers. We call this
LId the Head of the Log (HL). Each Log maintainer has a vector
with a size equal to the number of maintainers. Each element in
the vector corresponds to the maximum LId at that maintainer. Ini-
tially the vector is initialized to all zeros. Each maintainer updates
its value in the local vector. Occasionally, a maintainer propagates
its maximum LId to other maintainers. When the gossip message is
received by a maintainer it updates the corresponding entry in the
vector. A maintainer can decide that the HL value is equal to the
vector entry with the smallest value. When an application wants to
read or know the HL, it asks one of the maintainers for this value.
This technique does not pose a significant bottleneck for through-
put. This is because it is a fixed-sized gossip that is not dependent
on the actual throughput of the shared log. It might, however, cause
the latency to be higher as the the throughput increases. This is
because of the time required to receive gossip messages and deter-
mine whether a LId has no prior gaps.

Explicit order requests. Appends translate to a total order at the
datacenter after they are added by the Log maintainers. Concurrent
appends therefore do not have precedence relative to each other. It
is, however, possible to enforce order for concurrent appends if they
were requested by the Application client. One way is to send the
appends to the same maintainer in the order wanted. Maintainers
ensure that a latter append will have a LId higher than ones received
earlier. Otherwise, it is possible to enforce order for concurrent
appends across maintainers. The Application client waits for the
earlier append to be assigned a LId and then attach this LId as a
minimum bound. The maintainer that receives the record with the
minimum bound ensures that the record is buffered until it can be
added to a partial log with LIds larger than the minimum bound.
This solution however must be pursued with care to avoid a large
backlog of partial logs.

6. CHARIOTS: GEO-REPLICATED LOG
In this section we show the design of Chariots that supports

multi-datacenter replication of the shared log. The design is a
multi-stage pipeline that includes FLStore as one of the stages. We
begin the discussion by outlining an abstract design of log replica-
tion. This abstract design specifies the requirements, guarantees,
and interface desired to be provided by Chariots. The abstract so-
lution will act as a guideline in building Chariots, that will be pro-
posed after the abstract design. Chariots is a distributed scale-out
platform to manage log replication with the same guarantees and
requirements of the abstract solution.

6.1 Abstract solution
Before getting to the distributed solution, it is necessary to start

with an efficient abstract solution. This abstract solution will be
provided here in the form of algorithms running on a totally or-
dered thread of control at the datacenter. This is similar to saying
that the datacenter is the machine and it is manipulating the log ac-
cording to incoming events. Using this abstract solution, we will
design the distributed implementation next (Section 6.2) that will
result in a behavior identical to the abstract solution with a higher
performance.

The data structures used are a log and a n⇥n table, where n is
the number of datacenters, called the Awareness Table (ATable) in-
spired by Replicated Dictionary [36]. The table represents the dat-
acenter’s (DC’s) extent of knowledge about other DCs. Each row
or column represents one DC. Consider DC A and its ATable TA.
The entry TA[B,C] contains a TOId, t , that represents B’s knowl-
edge about C’s records according to A. This means that A is certain
that B knows about all records generated at host DC C up to record
t . When a record is added to the log, it is tagged by the follow-
ing information: (1) TOId, (2) Host datacenter Id, and (3) causality
information.

The body of the record, which is supplied by the application is
opaque to Chariots . To do the actual replication, the local log and
ATable are continuously being propagated to other DCs. When the
log and ATable are received by another DC, the new records are
incorporated at the receiving log and the ATable is updated accord-
ingly.

The algorithms to handle operations and propagation are pre-
sented with the assumption that only one node manipulates Chariots,
containing the log of records and ATable. In Section 6.2 we will
build the distributed system that will be manipulating Chariots while
achieving the correct behavior of the abstract solution’s algorithms
presented here. The following are the events that need to be han-
dled by Chariots:

1. Initialization: The log is initialized and the ATable entries
are set to zero. Note that the first record of each node has a
TOId of 1.

2. Append: Construct the record by adding the following infor-
mation: host identifier, TOId, LId, causality, and tags. Up-
date the entry TI [I, I], where I is the host datacenter’s id, to
be equal to the record’s TOId. Finally, add the record to the
log.

3. Read: Get the record with the specified LId.

4. Propagate: A snapshot of Chariots is sent to another DC j.
The snapshot includes a subset of the records in the log that
are not already known by j. Whether a record, r, is known to
j can be verified using Ti[ j, i] and comparing it to TOId(r).
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Figure 5: The components involved in adding records in the
abstract solution.

5. Reception: When a log is received, incorporate all the records
that were not seen before to the local log if its causal depen-
dencies are satisfied. Otherwise, add the record with unsat-
isfied dependencies to a priority queue ordered according to
causal relations. This is depicted in Figure 5. The incom-
ing records are all put in a staging buffer (step 1) and are
taken and added to the log or priority queue according to
their causal dependencies (step 2). Chariots checks the pri-
ority queue frequently to transfer any records that have their
dependencies satisfied to the log (step 3). Also, the ATable is
updated to reflect the newly incorporated records.

Garbage collection. The user has the choice to either garbage
collect log records or maintain them indefinitely. Depending on
the applications, keeping the log can have great value. If the user
choses not to garbage collect the records then they may employ a
cold storage solution to archive older records. On the other hand,
the user can choose to enable garbage collection of records. It
is typical to have a temporal or spatial rule for garbage collect-
ing the log. However, in addition to any rule set by the system
designer, garbage collection is performed for records only after
they are known by all other replicas. This is equivalent to say-
ing that a record, r, can be garbage collected at i if and only if
8 j2nodes(Ti[ j,host(r)]� ts(r)), where host(r) is the host node of r.

6.2 Chariots distributed design
In the previous section we showed an efficient abstract design for

a shared log that supports multi-datacenter replication. Chariots is
a distributed system that mimics that abstract design. Each data-
center runs an instance of Chariots. The shared logs at different
datacenters are replicas. All records exist in all datacenters. The
system consists of a multi-stage pipeline. Each stage is responsible
of performing certain tasks to incoming records and pushing them
along the pipeline where they eventually persist in the shared log.
Each stage in Chariots is designed to be elastic. An important de-
sign principle is that Chariots is designed to identify bottlenecks in
the pipeline and allow overcoming them by adding more resources
to the stages that are overwhelmed. For this to be successful, elas-
ticity of each stage is key. Minimum to no dependencies exist be-

App clients

Receiver

Batcher Filter Queue      Log 
maintainer

Sender

Figure 6: The components of the multi-data center shared log.
Arrows denote communication pathways in the pipeline.

tween the machines belonging to one stage.
Pipeline design. Chariots pipeline consists of six stages de-

picted in Figure 6. The first stage contains nodes that are generating
records. These are Application clients and machines receiving the
records sent from other datacenters. These records are sent to the
next stage in the pipeline, Batchers, to batch records to be sent col-
lectively to the next stage. Filters receive the batches and ensure
the uniqueness of records. Records are then forwarded to Queues
where they are assigned LId. After assigning a LId to a record it
is forwarded to FLStore that constitutes the Log maintainers stage.
The local records in the log are read from FLStore and sent to other
datacenters via the Senders.

The arrows in Figure 6 represent the flow of records. Generally,
records are passed from one stage to the next. However, there is an
exception. Application clients can request to read records from the
Log maintainers. Chariots support elastic expansion of each stage
to accommodate increasing demand. Thus, each stage can consist
of more than one machine, e.g., five machines acting as Queues
and four acting as Batchers. The following is a description of each
stage:

Application clients. The Application client hosts the applica-
tion modules. These modules uses the interface to the log that was
presented in Section 3. Some of the commands are served by only
reading the log. These include Read and control commands. These
requests are sent directly to the Log maintainers. The Append op-
eration creates a record that encapsulates the user’s data and send it
to any Batcher machine.

Batchers. The Batchers buffer records that are received locally
or from external sources. Batchers are completely independent
from each other, meaning that no communication is needed from
one Batcher to another and that scaling to more batchers will have
no overhead. Each Batcher has a number of buffers equal to the
number of Filters. Each record is mapped to a specific Filter to
be sent to it eventually. Once a buffer size exceeds a threshold,
the records are sent to the designated Filter. The way records are
mapped to Filters is shown next.

Filters. The Filters ensures uniqueness of records. To perform
this task, each Filter becomes a champion for a subset of the records.
One natural way to do so is to make each Filter a champion for
records with the same host Id, i.e. the records that were created at
the same datacenter. If the number of Filters needed is less that the
number of datacenters, then a single Filter can be responsible for
more than one datacenter. Otherwise, if the number of needed Fil-
ters is in fact larger than the number of datacenters, then more than
one Filter need to be responsible for a single datacenter’s records.
For example, consider that two Filters, x and y, responsible for
records coming from datacenter A. Each one can be responsible
for a subset of the records coming from A. This can be achieved by
leveraging the unique, monotonically increasing, TOIds. Thus, x
can be responsible for ensuring uniqueness of A’s records with odd
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TOIds and y can ensure the uniqueness of records with even TOIds.
Of course, any suitable mapping can be used for this purpose. To
ensure uniqueness, the processing agent maintains a counter of the
next expected TOId. When the next expected record arrives it is
added to the batch to be sent to the one of the Queues. Note also
that this stage does not require any communication between filters,
thus allowing seamless scalability.

Queues. Queues are responsible for assigning LIds to the records.
This assignment must preserve the ordering guarantees of records.
To append records to the shared log they need to have all their
causal dependencies satisfied in addition to the total order of records
coming from the same datacenter. Once a group of records have
their causal dependencies satisfied, they are assigned LIds and sent
to the appropriate log maintainer for persistence. For multi-datacenter
records with causal dependencies, it is not possible to append to
the FLStore directly and make it assign LIds in the same manner
as the single-datacenter deployment shown in section 5.2. This is
because it is not guaranteed that any record can be added to the
log at any point in time, rather, its dependencies must be satisfied
first. The queues ensure that these dependencies are preserved and
assign LIds for the records before they are sent to the log maintain-
ers. The queues are aware of the deterministic assignment of LIds
in the log maintainers and forward the records to the appropriate
maintainer accordingly.

Queues ensure causality of LId assignments by the use of a to-
ken. The token consists of the current maximum TOId of each
datacenter in the local log, the LId of the most recent record, and
the deferred records with unsatisfied dependencies. The token is
initially placed at one of the Queues. The Queue holding the to-
ken append all the records that can be added to the log. The Queue
can verify whether a record can be added to the shared log by ex-
amining the maximum TOIds in the token. The records that can
be added are assigned LIds and sent to the Maintainers designated
for them. The token is updated to reflect the records appended in
the log. Then, the token is sent to the next maintainer in a round-
robin fashion. The token might include all, some, or none of the
records that were not successfully added to the log. Including more
deferred records with the token consumes more network I/O. On
the other hand, not forwarding the deferred records with the token
might increase the latency of appends. It is a design decision that
depends on the nature of Chariots deployment.

Log maintainers. These Log maintainers are identical to the
distributed shared log maintainers of FLStore presented in Sec-
tion 5.2. Maintainers ensure the persistence of records in the shared
log. The record is available to be read by senders and application
clients when they are persisted in the maintainers.

Log propagation. Senders propagate the local records of the log
to other datacenters. Each sender is limited by the I/O bandwidth of
its network interface. To enable higher throughputs, more Senders
are needed at each datacenter. Likewise, more Receivers are needed
to receive the amount of records sent. Each Sender machine is
responsible to send parts of the log from some of the maintainers
to a number of Receivers at other datacenters.

6.3 Live elasticity
The demand on web and cloud applications vary from time to

time. The ability of the infrastructure to scale to the demand seam-
lessly is a key feature for its success. Here, we show how adding
compute resources to Chariots in the fly is possible without disrup-
tions to the Application clients. The elasticity model of Chariots
is to treat each stage as an independent unit. This means that it is
possible to add resources to a single stage to increase its capacity
without affecting the operation of other stages.

Completely independent stages. Increasing the capacity of com-
pletely independent stages merely involves adding the new resources
and sending the information of the new machine to the higher layer.
The completely independent stages are the receivers, batchers, and
senders. For adding a receiver, the administrator needs to inform
senders of other datacenters so that it can be utilized. Similarly, a
new batcher need to inform local receivers of its existence. A new
sender is different in that it is the one reading from log maintain-
ers, thus, the log maintainers need not be explicitly told about the
introduction of a new sender.

Filters. In Chariots, each filter is championing a specific subset
of the log records. Increasing the number of filters results in the
need of reassigning championing roles. For example, a filter that
was originally championing records from another datacenter could
turn out to be responsible for only a subset of these records while
handing off the responsibility of the rest of them to the new filter.
This reassignment need to be orchestrated with batchers. There
need to be a way for batchers to figure out when the hand-over took
place so that they can direct their records accordingly. A future
reassignment technique will be followed for filters as well as log
maintainers as we show next. A future reassignment for filters be-
gin by marking future TOIds that are championed by the original
filter. These future TOIds mark transition of championing a subset
of the records to the new filter. Consider a filter that champions
records from datacenter A in a reassignment scenario of adding a
new filter that will champion the subset of these records with even
TOIds. Marking a future TOId, t, will result in records with even
TOIds greater than t to be championed by the new filter. This future
reassignment should allow enough time to propagate this informa-
tion to batchers.

Queues. Adding a new queue involves two tasks: making the
new queue part of the token exchange loop and propagating the
information of its addition to filters. The first task is performed
by informing one of the queues that it should forward the token
to the new queue rather than the original neighbor. The latter task
(informing filters) can be performed without coordination because
a queue can receive any record.

Log maintainers. Expanding log maintainers is similar to ex-
panding filters in that each maintainer champions a specific set of
records. In this case, each log maintainer champions a subset of
records with specific LIds. The future reassignment technique is
used in a similar way to expanding filters. In this case, not only
do the queues need to know about the reassignment, but the readers
need to know about it too. Another issue is that log maintainers per-
sist old records. Rather than migrating the old records to the new
champion, it is possible to maintain an epoch journal that denotes
the changes in log maintainer assignments. These can be used by
readers to figure out which log maintainer to ask for an old record.

7. EVALUATION
In this section we present some experiments to evaluate our im-

plementation of FLStore and Chariots. The experiments were con-
ducted on a cluster with nodes with the following specifications.
Intel Xeon E5620 CPUs that are running 64-bit CentOS Linux with
OpenJDK 1.7 were used. The nodes in a single rack are connected
by a 10GB switch with an average RTT of 0.15 ms. We also per-
form the baseline experiments on Amazon AWS. There, we used
compute optimized machines (c3.large) in the datacenter in Vir-
ginia. Each machine has 2 virtual CPUs and a 3.75 GiB memory.
We refer to the earlier setup as the private cloud and the latter setup
as the public cloud. Unless it is mentioned otherwise, the size of
each record is 512 Bytes.
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Figure 7: The throughput or one maintainer while increasing
the load in a public cloud
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Figure 8: The append throughput of the shared log in a single-
datacenter deployment while increasing the number of Log
Maintainers.

7.1 FLStore scalability
The first set of experiments that we will present is of the FL-

Store implementation which operates within the datacenter. Each
one of the experiments consists of two types of machines, namely
Log maintainers and clients. The clients generate records and send
them to the Log Maintainers to be appended. We are interested
in measuring the scaling behavior of FLStore while increasing the
number of maintainers. We begin by getting a sense of the capacity
of the machines. Figure 8 shows the throughput of one maintainer
in the public cloud while increasing the load on it. Records are
generated with a specific rate at each experiment point from other
machines. The rate is called the target throughput. Note how as the
target throughput increases, the achieved throughput increases up
to a point and then plateaus. The maximum throughput is achieved
when the target throughput is 150K and then drops to be around
120K appends per second. These numbers will help us decide what
target throughputs to choose for our next experiments.

To verify the scalability of FLStore, Figure 8 shows the cumula-
tive throughput of different scenarios each with a different number
of maintainers. For each experiment an identical number of client
machines were used to generate records to be appended. Ideally,
we would like the throughput to increase linearly with the addition
of new maintainers. Three plots are shown, two from the public
cloud and one from the private cloud. The ones from the public
cloud differ in the target throughput to each maintainer. One targets
125K appends per second for each maintainer while the other tar-
gets 250K appends per second. Note how one is below the plateau
point and one is above. The figure shows that FLStore scales with
the addition of resources. A single maintainer has a throughput
of 131K for the private cloud, 96.7K for the public cloud with a
target of 125K, and 119K for the public cloud with the target of
250K. As we are increasing the number of Log Maintainers a near-
linear scaling is observed. For ten Log Maintainers, the achieved

Machine Throughput (Kappends/s)
Client 129
Batcher 129
Filter 129
Maintainer 124
Store 132

Table 2: The throughput of machines in a basic deployment of
Chariots with one machine per stage.

Machine Throughput (Kappends/s)
Client 1 120
Client 2 122
Batcher 126
Filter 125
Maintainer 123
Store 132

Table 3: The throughput of machines in a deployment of
Chariots with two clients and one machine per stage for the
remaining stages.

append throughput was 1308034 record appends per second for the
private cloud. This append throughput is 99.3% when compared to
a perfect scaling case. The public cloud case with a target of 125K
achieves a throughput that is slightly larger than the perfect scal-
ing case. This is due to the variation in machines’ performances.
The other public cloud case achieve a scaling of 99.9%. This near-
perfect scaling of FLStore is encouraging and demonstrates the ef-
fect of removing any dependencies between maintainers.

7.2 Chariots scalability
The full deployment of Chariots that is necessary to operate in a

multi-datacenter environment consists of five stages. These stages
are described in Section 6.2. Here, we will start from a basic de-
ployment of one machine per stage in the private cloud. We ob-
serve the throughput of each stage to try to identify the bottleneck.
Afterward, we observe how this bottleneck can be overcome by
increasing resources. The simple deployment of one machine per
stage of Chariots pipeline achieves the throughputs shown in Ta-
ble 2. The table lists the throughput in Kilo records per second
for each machine in the pipeline. Note how all machines achieve a
similar throughput of records per second. It is possible for the store
to achieve a throughput higher than the client because of the effect
of buffering. Close throughput numbers for all machines indicates
that the bottleneck is possibly due to the clients. The clients might
be generating less records per second than what can be handled by
the pipeline.

To test this hypothesis we increase the number of machines gen-
erating records to two client machines. The results are shown in
Table 3. If the clients were indeed not generating enough records
to saturate the pipeline, then we should observe an increase in the
throughput of the Batcher. However, this was not the case. The in-
creased load actually resulted in a lower throughput for the batcher.
This means that the batcher is possibly the bottleneck. So, we in-
crease the number of batchers to observe the throughput of latter
stages in the pipeline. Table 4 shows the throughput of machines
with two client machines, two batchers, and a single machine for
each of the remaining stages. Both batchers achieve a throughput
that is higher than the one achieved by a single batcher in the pre-
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Machine Throughput (Kappends/s)
Client 1 126
Client 2 129
Batcher 1 149
Batcher 2 129
Filter 120
Maintainer 118
Store 121

Table 4: The throughput of machines in a deployment of
Chariots with two client machines, two Batchers, and a single
machine for the remaining stages.

 0

 50000

 100000

 150000

 200000

 250000

41:50 42:00 42:10 42:20 42:30 42:40 42:50 43:00 43:10 43:20

T
h
ro

u
g
h
p
u
t 
(R

e
co

rd
s/

s)

time

Queue
Batcher 1
Clients 1

Figure 9: The throughput of machines in a deployment of
Chariots with two client machines, two Batchers, and a single
machine for the remaining stages

vious experiments. This means that the throughput of the Batcher
stage more than doubled. However, now the bottleneck is pushed to
the filter stage that is not able to handle more than 130000 records
per second. Because the throughput of latter stages is almost half
the throughput of the Batcher, they take twice the time to finish
the amount of records generated by the clients (10000000 records).
The throughput timeseries for one client, one batcher, and the queue
are shown in Figure 9. We did not show all the machines’ through-
puts to avoid cluttering the figure. The Batchers are done with
the records at time 42:30, whereas, the latter stages lasted till time
43:10. Note that by the end of the experiment, the throughput of
the queue increases abruptly. The reason for this increase is that
the although the Batchers had already processed the records they
are still transmitting them to the Filter until time 43:08, right be-
fore the abrupt increase. The network interface’s I/O of the Filter
was limiting its throughput. After it is no longer receiving from the
two Batchers it can send with a higher capacity to the latter stages,
thus causing an increase in the observed throughput. This is also the
reason of why in the beginning of the experiment, a higher through-
put is observed for some of the stages (e.g., the high throughput in
the beginning for the queue). The reason is that they still had ca-
pacity in their network’s interface I/O before it was also used to
propagate records to latter stages. Another interesting observation
is the performance variation of the batcher. This turned out to be
a characteristic of machines at a stage generating more throughput
than what can be handled by the next stage.

Increasing the number of machines further should yield a better
throughput. We experiment with the previous setting, but this time
with two machines for all stages. The throughput values records
are presented in Table 5. Note how all stages are scaling. The
throughput of each stage has doubled. Each machine achieves a
close throughput to the basic case of a pipeline with one machine
per stage.

Machine Throughput (Kappends/s)
Client 1 130
Client 2 130
Batcher 1 127
Batcher 2 127
Filter 1 127
Filter 2 126
Maintainer 1 125
Maintainer 2 126
Store 1 137
Store 2 137

Table 5: The throughput of machines in a deployment of
Chariots with two machines per stage.

Our main objective is to allow scaling of shared log systems to
support today’s applications. We showed in this evaluation how a
FLStore deployment is able to scale while increasing the number
of maintainers within the datacenter (Figure 8). Also, we evalu-
ated the full Chariots pipeline that is designed to be used for multi-
datacenter environments. The bottleneck of a basic deployment
was identified and Chariots overcome it by adding more resources
to the pipeline.

8. CONCLUSION
In this paper we presented a shared log system called Chariots.

The main contribution of Chariots is the design of a distributed
shared log system that is able to scale beyond the limit of a single
node. This is enabled by a deterministic post-assignment approach
of assigning ranges of records to Log maintainers. Chariots also
increases the level of availability and fault-tolerance by supporting
geo-replication. A novel design to support a shared log across dat-
acenters is presented. Causal order is maintained across records
from different datacenters. To allow scaling such a shared log,
a multi-stage pipeline is proposed. Each stage of the pipeline is
designed to be scalable by minimizing the dependencies between
different machines. An experimental evaluation demonstrated that
Chariots is able to scale with increasing demand by adding more
resources.
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