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ABSTRACT

For decades forgetting has been treated as an abnormality,
a malfunction of the brain that leads humans to lose stored
information. Recent results, however, suggest that forget-
ting is not only a malfunction of the human storage system,
but also a useful feature. In order to guarantee a quick re-
sponse in the face of the limited processing power of the
brain, acting quickly on less or reduced information is key.

With storage becoming ever cheaper and continually grow-
ing it has become standard practice today to store each and
every single data item. However, even increasingly powerful
processors cannot deal with this data deluge. In this paper
we consequently argue that forgetting and its mechanisms
should be a part of today’s data management, particularly
for techniques requiring fast and/or approximate query an-
swers. While forgetting or shedding information may have
far-reaching implications for current methods in data man-
agement, in this paper we focus on discussing forgetting (and
learning) in the context of data synopses.

1. INTRODUCTION

Experimental evidence in neuroscience research recently
revealed that human forgetting [25] is not only a side effect
of disease or of age, nor do we forget because the capac-
ity of the brain is limited. Rather, we forget because the
brain has limited computational power, yet we live in an
environment where we need to make rapid judgments [1, 3].
The brain has consequently evolved to forget so that we can
react quickly. In a world where we constantly absorb and
learn information, we need to forget in order to enable split
second decisions: we would rather react quickly based on
imprecise or approximate information rather than too late.
In an approximate world, who needs precision anyway?

One might argue, that forgetting is important in an en-
vironment with limited computational power and where ap-
proximate answers are sufficient, but that it has no place in
a world with almost unlimited computational power. There
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are, however, many scenarios where computational power is
limited or where response time is restricted. Forgetting can
therefore also work to our advantage and in this paper we
argue that forgetting or shedding information can also be
beneficial in data management.

Forgetting may have broad implications and may trigger
interesting discussions. Recent work, for example, intro-
duces the notion of data rotting [18], i.e., a mechanism to
periodically reduce data in a database to avoid it growing
boundless (while ideally also adding the removed data in
condensed and curated form back to the database). In this
paper, however, we focus on the exact mechanisms of for-
getting or, put in simple terms, fading memories (as well
as learning) and use them to develop reconsolidating data
structures, i.e., data structures that manage information
through "forgetting” but also ”learning”. While we initially
discuss the idea of reconsolidation structures broadly, we
also elaborate on its application to data synopses in more
detail. Surely, the case for data synopses [10] for quick and
approximated answers has long been made, but what we
discuss here is how to use some of the brains mechanisms
to efficiently manage data synopses along with the resulting
data management research challenges.

The remainder of this paper is structured as follows. We
first discuss the neuroscience background of forgetting and
learning in Section 2 and discuss where these mechanisms
can fit into data management in Section 3. In Section 4 we
elaborate on how the mechanisms of forgetting, i.e., recon-
solidation, can be a powerful design principle when manag-
ing data synopses and discuss the resulting research chal-
lenges in Section 5. We discuss other potential applications
in Section 6 and conclude in Section 7.

2. NEUROSCIENCE BACKGROUND

Several theories have been developed in recent decades to
explain forgetting (as well as learning). For decades, the cog-
nitive neuroscience theories of memory decay [4] (memory
traces fade over time) and memory interference [16] (mem-
ory traces encoded with similar stimulus replace each other
- similar to collisions in a hash map) were popular expla-
nations for forgetting. More recent theories of consolida-
tion [19] and reconsolidation [2], however, have gained much
support lately, primarily due to their sound explanation of
underlying cellular and molecular mechanisms [24]. They
are today the most widely accepted explanations for forget-
ting (and learning).

In the following we discuss and summarise the consolida-
tion/reconsolidation theories and discuss their implications.

665 10.5441/002/edbt .2015.66


http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.66

2.1 Learning

The basic premise of learning is that memory traces [23]
are not immediately stable or permanently stored when they
are learned (encoded). Instead, memory traces are made
permanent in the consolidation phase through strengthening
(or weakening) the connections (synapses) between the neu-
rons involved in a memory trace. By strengthening connec-
tions (or a synapses) between them, signals can be relayed
quicker between two neurons and the firing patterns corre-
sponding to memory traces can consequently be adapted.

The underlying biochemical process to strengthen synapses
is very slow and can take several hours, during which mem-
ories are not stable. During this consolidation phase, the
synapses need to be repeatedly stimulated. The hippocam-
pus therefore repeatedly replays the firing patterns corre-
sponding to the traces.

Any stress on the brain in general can interrupt the con-
solidation phase and memory traces may never become per-
manent in the brain or may only become weak. Anecdotal
evidence for this interruption, for example, is that learned
facts cannot easily be recalled after an all-nighter of learning
(and implied lack of sleep). Similarly, interrupting consol-
idation with heavy drinking tends to erase whatever was
recently experienced leading to a mental blackout.

2.2 Forgetting & Updating Memory

Although for a considerable time forgetting was assumed
to be governed by completely different mechanisms, it is
surprisingly similar to learning [2]. When retrieving mem-
ory traces (remembering), the traces become unstable or
labile. The same synapses that were strengthened during
the consolidation phase are rendered unstable and need to
be reconsolidated in a process lasting for several hours sim-
ilar to consolidation (despite built on different biochemical
mechanisms).

Whilst retrieving information as a memory, the associ-
ated trace is therefore temporarily unstable and can be al-
tered. Similar to interference during the consolidation pro-
cess, also interference during reconsolidation alters the trace.
Depending on the interference, whether it is positive or neg-
ative, memory can become stronger or weaker than it ini-
tially was. Reconsolidation has been extensively studied in
fear memory, for example, in the experimental treatment
of post-traumatic stress disorder, memories are recalled to
make them unstable and interference in the form of electric
stimulation is used to erase them. Similarly, positive feed-
back can be used to reinforce memory or to alter it [11].
Using positive feedback repeatedly can make memory traces
more precise or can alter them substantially.

Experiments further show that the temporal dynamics of
memory reconsolidation depend on the strength and age of
the memory [20], such that younger and weaker memories
are more easily reconsolidated than older and stronger mem-
ories. Similarly, the question whether old memory traces are
updated or stored as new primarily depends on the age of the
memory and also on the similarity of the event when recall-
ing the trace: the similarity needs to be greater for updating
an old memory, whereas for only recently encoded memory,
the similarity threshold can be considerably smaller [9].

2.3 Reconsolidation in the Context of Data Man-

agement

To summarise from a computer science (or data manage-
ment) perspective, forgetting is not simply a linear function

of time. Instead, it is either a consequence of stress/disease
or, surprisingly and crucially, from remembering it. Recall-
ing memory makes the information unstable and requires re-
consolidation. The reconsolidation process can lead to both,
improvement (through updating) or to degradation (wither-
ing) if the reconsolidation process is interrupted. If and how
much the memory is improved or degraded also depends on
cognitive cues, i.e., feedback, during reconsolidation: posi-
tive feedback leads to improved memory whereas negative
feedback generally leads to forgetting [11].

A key aspect of forgetting or learning memory is that
traces are not completely erased (or completely accurately
stored), i.e., they are not erased or learned as one, but are
instead gradually degraded or improved. Thus, the mech-
anism of reconsolidation is a powerful means to reduce the
amount of information that needs to be taken into account
to answer a question (compute a query result) while still
ensuring that relevant information is retained.

Today’s ever-cheaper storage hardware allows storing nearly
everything and eliminates the need of deleting old data. Sim-
ilar to the brain, however, our ability to store data far ex-
ceeds today’s data processing capacity and so, to keep an-
swering queries quickly, we need to radically reduce the data
taken into consideration. Using a mechanism similar to for-
getting (and reconsolidation) in today’s data management
could be very powerful to gradually delete data permanently.

A more cautious approach to use the powerful mechanism
of forgetting (and learning) in data management, however,
does not permanently delete information/data. Instead it
can be used to manage summaries of data by removing (for-
getting) from summaries and adding data (from the full
dataset) to them. The key aspect of forgetting (and learn-
ing) is how memory fades away (or is strengthened) gradu-
ally. This mechanism enables reducing the space needed to
store a data structure by reducing its precision or expand-
ing its size by increasing the precision. Consequently, its
size and therewith query time cannot only be controlled by
dropping or adding single items as a whole, but by reducing
their size individually; similar to fading memories.

Using reconsolidation on proxy data structures has simi-
larities to using caches in data management (and computer
science in general) but also differs substantially.

First, caches are primarily small because they are expen-
sive as opposed to the brain where the size is limited to
guarantee response time. In the brain, forgetting is pri-
marily driven by the need to reduce the time to process
information. In the cache, however, the idea is rather to
reduce communication time and the data is therefore moved
to faster storage hardware (and also closer to processing).
Essentially, it is not the processing time that is reduced,
but rather the communication time, which helps in turn to
reduce the overall processing time.

Second, in the case of reconsolidation, recently used data
items are labile or prone to change whereas in caches, items
that have not been accessed in a while are evicted and re-
placed by frequently and recently accessed data items (de-
pending on the caching policy).

Third and crucially, items in a cache are typically either
completely loaded or completely evicted (if room is needed
for more items) and cache management is completely obliv-
ious of the content of the items cached. Reconsolidation, on
the other hand, is aware of the items’ contents and reduces
or improves their precision or resolution gradually.

With its ability to fade and strengthen data/information,
reconsolidation is consequently particularly relevant for ap-
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plications (or data structures) that allow for imprecision.
This process is similar to data synopses [7], which can give
quick approximate answers instead of accessing all data to
give an excruciatingly slow (but precise) answer. Data syn-
opses are pivotal today because the same technological ad-
vances that enable large-scale analysis of data also enable
the generation of data on a similar scale. Yet the growing
data generation capacity combined with cheap storage tech-
nology is likely to keep on outpacing the analysis capacity.

3. RECONSOLIDATING DATA STRUCTURES

What we contemplate here are reconsolidation data struc-
tures that, similar to caches or data synopses, act as a sur-
rogate for the full dataset. Similar to the brain, they are
limited by a time constraint to answer a query (and by giv-
ing a time constraint, they are also constrained by the space
that they can use because of limited processing power avail-
able) and manage the precision of the data summary. The
reconsolidation data structure, an approximated data sum-
mary, is used to quickly answer the query approximately.

At the core of reconsolidating data structure is the idea
of treating data items as not oblivious to their content,
but rather as aware of it. The major difference to existing
caching strategies (and data synopses) is that data items are
not dropped based on a binary decision, but their precision
is decreased or increased, depending on how much the user
is interested in them. Gradually improving or degrading the
precision of data can of course only be tolerated in applica-
tions where precision is not crucial but where time matters.
This is mostly true for applications where, similar to the
brain, an approximate but quick answer is more important
than an exact and slow one like, for example, in applications
where humans consume the result.

To design reconsolidating data structures, we map the
neuroscience mechanisms of forgetting and learning on the
idea of data synopses and caches. This essentially means
that we focus on a reconsolidating data structure (RD.S)
that acts as a surrogate for a complete (and potentially mas-
sive) dataset and is used to answer user queries. We further
interpret queries to an RDS as a memory retrieval, i.e., re-
call of a memory trace. We then define accurate and com-
plete queries to the underlying data structure dataset as new
learning (or as interference with existing memory traces),
i.e., improving precision of the information. Absence of a
query to a dataset, on the other hand, is interpreted as if
the answer from an RDS (and with it the RDS) is precise
enough or, more precisely, too accurate and therefore uses
more space than needed and its accuracy can thus be de-
graded. The age of memories in RDS is used to decide how
fast the information is degraded: similar to the brain, old
memories are degraded slower than new memories.

Put more simply: a query to the reconsolidation data
structure answers the query and makes the data items touched
labile/unstable. A subsequent query to the full data set
means that the approximate query result was not precise
enough and consequently learning starts, i.e., the precision
of the data items touched is increased. Absence of a query
to the data means that the approximate result was precise
enough or, more importantly, too precise and the precision
of the data items touched is reduced.

Of course application specific cues on the quality of the
result can also be used to decide whether to improve or de-
grade precision, similar to Google’s result ranking applica-
tion where a click on a result is fed back to Google and is

used to rank the results for the same keywords in future
searches. Any such cue, however, is particular to an appli-
cation and cannot be used in general.

Using a reconsolidation strategy for managing data syn-
opses or caches, however, bears the risk that items are loaded
into the surrogate dataset that are retrieved once but never
again. Their precision may therefore never degrade and they
may never be entirely dropped from the dataset. They will
remain in the dataset indefinitely taking up space. However,
we primarily propose reconsolidation data structures so that
the response time in which approximate query answers are
given is limited (and not to strictly adhere to a space bud-
get). Still, if space is also a key concern, then additional
mechanisms (like memory decay [4] where memory degrades
as a function of time) can be used.

Clearly, for this idea to work in practice, the difficulty is
to define the process of reducing or improving precision and
to define how to query the resulting data structures. The
latter, however, will in most cases remain the same. We will
discuss this in the following for a number of applications
where reconsolidation can prove useful.

4. EXAMPLE APPLICATION: DATA SYN-
OPSIS

The reconsolidation data structures we propose and dis-
cuss here are a rather abstract concept/mechanism that can
be applied to different types of data structures. In the fol-
lowing we discuss how they can be used in the context of
data synopses to make them a powerful tool in the face of
a mass of ever growing data. We first provide background
information on data synopses and then discuss the potential
of reconsolidation for synopses.

4.1 Synopses Background

Research in data synopses has in the past primarily been
driven by applications like data streams and cardinality es-
timation for query processing [7]. Their very nature, how-
ever, presents a great opportunity to accelerate approximate
query execution in the context of big data.

4.1.1 Overview

The basic idea of data synopses is that the full data set is
summarised, typically by using compression [7]. The synop-
sis acts as a surrogate of the data and is queried instead of
the full dataset. Through compression or summarisation the
synopsis is usually considerably smaller than the full dataset
itself and, consequently, queries are executed substantially
faster on the synopsis. The execution time of a query on
the synopsis depends primarily on the size of the synopsis
(unless additional auxiliary data structures like indexes are
used). The size of the synopsis in turn depends on dataset
characteristics, i.e., how easily compressible the data is, and
is further controlled by the compression used.

Because of its substantial compression ratio, lossy com-
pression is often used but doing so also leads to imprecise
representations of the data. Data synopses based on lossy
compression can consequently only approximately answer
queries. Clearly there is a trade-off between size of the data
synopsis (and thus query execution time) as well as the qual-
ity of the approximation, i.e., the smaller the approximation,
the less accurate it is and thus the bigger the error becomes.
Irregardless of the quality of approximation used, the key
of data synopses is that they provide a user with tight error
bounds expressing how accurate the received query result is.
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Data synopses have in the past primarily been studied
and used in the context of data streams and to estimate
the cardinality of database tables (for query planning) [7].
With data growing beyond what can be today handled effi-
ciently and reasonably, data synopses are again being con-
sidered as an interesting and competitive approach: instead
of analysing the potential terabytes and petabytes of data
in big data applications in a time consuming process, sub-
stantially smaller synopses can be queried almost instantly.

4.1.2 Types of Synopses

Considerable effort in the past has primarily developed
four types of synopses. First, random sampling [21] takes
samples at random out of the dataset (or the relation) and
is very well suited for aggregate queries. Samples can be
taken online, at query time from the full dataset, or offline,
i.e., prior to querying to store them in a synopsis data struc-
ture. Online sampling is particularly interesting to improve
the quality of the query result continuously: as long as the
user is willing to wait, samples can be taken to improve
the accuracy of the approximate query answer. For massive
data that are primarily stored on disk, however, taking the
samples online from the full dataset, as the query is being
executed, is unlikely to be feasible due to the high cost of
random access to the disk. Instead, big data sampling has
to take samples offline, i.e., once from the full dataset and
store the samples separately. Clearly, in the case of offline
sampling, the more samples that are taken, the more precise
the approximation, but the bigger the synopsis will also be.

A second well-researched type of synopsis is histograms [14].

In the context of databases, histograms play a crucial role in
query optimisers and are often used for the purpose of data
visualisation. Histograms summarise the data into bins each
with its own value range, e.g., each bin stores the count of
values/tuples in its range. Doing so makes them particu-
larly useful for range-count queries, but they also have the
potential to be used for general analysis queries [7].

Synopses based on wavelets summarise and approximate
the data through wavelets [5]. Essentially, wavelet trans-
formation is applied to relations or to time series resulting
in a collection of wavelet coefficients. The size of the syn-
opsis depends on how many coefficients are stored, which
in turn defines the accuracy with which queries can be an-
swered. The size of the synopsis alone, however, does not
define the query execution time: at runtime, query execu-
tion can choose to ignore coefficients, thereby reducing query
execution time, but also the degree of precision.

Relatively new are synopses based on sketches [6]. The
basic rationale is to summarise the data per query type.
As opposed to sampling, all data is considered, but only a
small summary is retained (e.g., for a sum query all values
are added up and only the sum is stored). As each query
can be supported by a sketch, this approach is very powerful
and applicable to all types of queries. Defining a new sketch
per query type, however, requires considerable effort.

Artificial neural networks are also used to learn or approx-
imate datasets [22] (for example time series [8]). Inspired by
neuroscience, they use a graph with neurons as vertices and
synapses as edges to answer queries approximately. Origi-
nating from machine learning neural networks are, however,
rarely used as synopses in the management of data.

4.2 Reconsolidating Data Synopses

The basic idea of using reconsolidation data structures
as a data synopsis [7] (or put more simply, using a synopsis

featuring reconsolidation) is to improve or degrade the preci-
sion of the synopsis depending on the queries. The precision
of regions frequently queried (in both, the synopsis and the
dataset) is increased and the precision of those regions that
are only queried in the synopsis is reduced.

A straightforward target to apply the idea of forgetting
(or reconsolidation in general in order to support improv-
ing memory) is to use it on data synopses based on neural
networks. They are modelled very similarly to the brain by
using a graph with neurons as vertices and the connections
(edges) between vertices represent the synapses. Synapse
strength (and thus ultimately the encoding of information)
can be modelled as weight of the edges. Degrading the syn-
opsis is accomplished by reducing the weight of the edges
(or by removing them altogether) and increasing the preci-
sion by increasing the weights. Changing the weight of the
edges, however, will not effectively reduce the size of the
synopsis. Hence, although neural networks lend themselves
perfectly to the idea of forgetting, forgetting does not have
a significant impact on the size of synopses based on neural
networks or the time to execute queries.

There is, however, no need to restrict the idea of data syn-
opsis or models based on neural networks. Much more inter-
esting to apply reconsolidation to are data synopses based
on, for example, wavelets [5]. Wavelets are used to approx-
imately interpolate and therefore compress the underlying
data set. Clearly the data synopsis is only an approxima-
tion of the real data set, but by using reconsolidation, areas
or ranges of interest, i.e., queried over in the synopsis and
in the complete dataset, can be stored with more precision.
Others, retrieved only from the synopsis, can gradually be
degraded by using less precise wavelets for interpolation.

Similarly, in data synopses based on histograms [10], pre-
cision can also be increased locally for interesting regions
and can be decreased for uninteresting ones. In either case,
the queries can be executed as usual on the reconsolidating
synopsis. In any scenario where data synopses provide ap-
proximate answers, error bounds or guarantees are crucial.

S. DATA MANAGEMENT RESEARCH CHAL-

LENGES

Applying the idea of reconsolidation to data synopses in-
troduces several interesting data management challenges and
thus research opportunities.

5.1 Adapting Data Synopsis Resolution

Key to the idea of reconsolidation data structures is to
change the precision in given areas of it. Queries to the
synopsis and the full datasets are used to infer what ranges
(e.g., areas in a spatial model) the user is interested in ex-
ploring and analysing. The precision is increased in areas
where the scientist is interested in and decreased elsewhere
as a result of users’ queries.

For sampling, assuming the samples are stored in a syn-
opsis and are not taken online (in which case there is no
data structure other than the full dataset needed), this can
be achieved by taking and storing more samples from areas
that users are interested in and deleting samples from areas
where the interest is low.

In the case of histograms, improving precision is accom-
plished by adding bins and, thus, making the intervals (or
value range of the bins) smaller and consequently more pre-
cise. Conversely, reducing the precision is similarly straight-
forward: neighbouring bins can be combined efficiently to
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make the resolution coarser (by increasing the value range)
in areas with little interest. Figure 1 illustrates with the ini-
tial histogram (top) and the reconsolidated histogram (bot-
tom) where in ranges of little interest (e.g., 1-30 & 70-100)
bins are collapsed and in areas of a lot of interest bins are
split.
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Figure 1: Initial histogram (top) and reconsolidated
hisogram with adjusted precision (bottom).

For both, histograms as well as sampling, improving or
reducing the precision is not very challenging. For wavelets
and sketches, the two types of synopses that enable answers
to more general classes of queries, however, changing the
precision is not straightforward.

Wavelets are an interesting type of synopsis for reconsoli-
dation. By definition, querying a wavelet based synopsis can
be accelerated by ignoring coefficients that provide more pre-
cise query answers, thereby reducing the precision on the fly.
Doing so, however, does not reduce the size of the synopsis
itself and to apply the principle of reconsolidation, we can
drop coefficients, in case there is little or no interest in an
area, or learn and add coefficients (albeit in a computation-
ally intense process from the full dataset) to the synopsis.

In the case of sketches, the precision is difficult to adjust.
The challenge for sketches is that they are very application
specific and it is thus difficult to find a generic way to de-
fine/implement their reconsolidation.

Adapting the resolution is consequently particularly chal-
lenging for wavelets and sketches where research has yet
to develop efficient (for wavelets) and generic (for sketches)
means to adapt to the precision. Research not only has to
develop mechanisms to adapt the precision but also deter-
mine the methods to decide the exact area as well as the
new level of precision.

5.2 Error Bounds for Variable Resolution

A key aspect of synopses is the idea to answer queries only
approximately, but with tight error bounds. Providing the
error bounds for query answers that only touch areas with
the same precision is straightforward.

Given a synopsis with variable resolution, however, makes
it challenging to compute the error bounds. Assume, for ex-
ample, a synopsis based on histograms where the intervals
in certain value ranges are smaller than in others, i.e., the

interval length is variable. Clearly, ranges with smaller inter-
vals have higher precision and thus smaller errors (and vice
versa). The question, however, is how do we combine the
different errors into a meaningful and intuitive error bound
for a query that touches intervals of variable length?

A crucial research question, thus, is how to compute the
error bounds based on a synopsis with variable precision,
i.e., how to make the variable precision quantifiable or how
to turn it into error bounds. Novel methods have to be
developed to quantify the error bounds in case the ranges
with varying precision are used.

5.3 Feedback Mechanisms

The feedback mechanisms described for data synopsis so
far work by monitoring access to the full dataset. If the full
dataset needs to be accessed, then the result (or the error
bound) provided was not precise enough and consequently
we have to learn, i.e., increase the resolution of the synop-
sis by taking more samples from the full dataset. If we do
not have to access the full dataset, we can forget, i.e., the
precision is decreased.

One research challenge consequently is whether better feed-
back mechanisms can be found. Clearly, for many applica-
tions better solutions can be used, e.g., using user input.
Any such approach, however, is application specific and the
research question is if generic mechanisms can be found to
decide whether to learn or forget.

5.4 Answering Queries

The basic idea is for the user to gain as precise an answer
as required from the data synopsis. If the answer, how-
ever, is not precise enough, then the full dataset is queried
to provide a sufficiently precise answer (and also the data
synopsis is improved through learning). The challenge to
be addressed thus is how we can manage to only read the
information additionally needed from the full dataset. This
may be rather straightforward for wavelets, since in their
case only additional coefficients can be read from disk (if
they are stored on disk along with the full data) to make
the result more precise.

For all other types of synopses the question of how to ef-
ficiently complement synopsis data with results, i.e., how
to retrieve the minimal amount of information needed from
disk and combine the results efficiently, is a challenging re-
search question.

5.5 Data Organization

Changing the precision of the synopsis means either adding
or removing data from it. A crucial research question di-
rectly affecting the performance of querying the synopsis
is how to organise the data (presumably, given its size) on
disk. Simply appending data when learning will lead to a
data structure that requires excessive random disk access
while only removing information (without reorganising the
structure) means that considerable unnecessary data will be
read and so the question becomes how can we design an
updated efficient data structure for synopses?

6. OTHER APPLICATIONS

Reconsolidation has applications beyond data synopses
and can be used in applications where imprecision can be
tolerated or where data is imprecise/uncertain by nature.

6.1 Reconsolidating Caches
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Clearly reconsolidation makes little sense if the data items
in a cache are very small. In the case of hardware caches [13]
(e.g., CPU caches) it is therefore unlikely to be used. Still
for other types of caches in applications that can tolerate
imprecision, reconsolidating can be used.

6.2 Content Distribution Networks

An interesting application for reconsolidation is caches in
the context of content distribution networks [15, 17]. Ob-
jects in these caches are typically big and are consumed by
users. A straightforward application is the degradation or
improvement of image quality (or other multimedia content
like videos or music) whether it is to return the image di-
rectly to the user or to query over it.

Degrading the image quality can be achieved by reducing
the resolution, the size or by restricting the colour palette.
Any of these approaches will reduce the effective size of
the objects and thus query execution on the reconsolidation
structure is accelerated. Imaging formats based on bitmaps
or rasters may be difficult to degrade or improve precision
easily and quickly, but there also exist layered formats where
layers can be added or dropped individually.

7. CONCLUSIONS

What we present here is the need for forgetting and its
mechanisms in the brain. We argue that forgetting should
also have its place in data management. The brain, however,
deals with imprecise information while many data manage-
ment applications require precision and it is therefore not
obvious where and how forgetting fits into data manage-
ment. Given that storage is becoming ever cheaper, there
seems to be little need to delete at all.

What we argue here, however, is that there is still a need
to delete (or forget) to ensure timely query answers. This
is particularly important as the quantity of data is grow-
ing quicker than the CPUs are becoming faster. Given the
comparatively slow CPUs, we have to shed information to
guarantee answers within a given time [12].

What we propose here is the mechanism or the design
principle of reconsolidation that should be used in the design
of applications and data structures. As we show with its
application to data synopses, forgetting can be a powerful
mechanism for managing data and yet entails considerable
research challenges.

By discussing the example of data synopses we also demon-
strate how the compelling mechanism of reconsolidation can
be applied to applications where imprecision is acceptable.

Maybe the power of this approach is not so much in map-
ping the principle of reconsolidation strictly onto data man-
agement. However, we believe that reconsolidation (increas-
ing or degrading precision) is a powerful mechanism, particu-
larly for the management of data synopses and caches, which
are becoming increasingly important to guarantee quick an-
swers in face of today’s (and tomorrow’s) data deluge.
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