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ABSTRACT
In this paper, we present a method for the e�cient eval-
uation of threshold queries of derived fields for large nu-
merical simulation datasets stored in a cluster of relational
databases. The datasets produced by these simulations are
in the TB and even PB ranges. Data-intensive computa-
tions that examine entire time-steps of the simulation data
are impractical to perform locally by the user, taking days
or months to iterate over the entire dataset. The inte-
grated method for the evaluation of threshold queries that
we have developed achieves scalability through data-parallel
execution of the computations on the nodes of an analysis
database cluster. We extend the scientific analysis environ-
ment with the introduction of an application-aware cache for
query results, building on the concept of semantic caching.
The cache has little overhead and improves query perfor-
mance by over an order of magnitude for queries that hit
the cache. Caching the results of threshold queries preserves
both the I/O and computation e↵ort used to obtain them. In
the case of computational turbulence, this allows scientists
to quickly focus on the most intense events and interesting
regions in any time-step or the dataset as a whole, which
greatly speeds up the rate of scientific exploration and dis-
covery.
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Systems – Distributed Databases; J.2 [Computer Appli-
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1. INTRODUCTION
Better instruments, faster and bigger supercomputers and

easier collaboration and sharing of data in the sciences have
introduced the need to manage increasingly large datasets.
Data-intensive systems and architectures have been devel-
oped with the goal of storing and providing fast access to
such datasets. Examples of such analysis environments in-
clude the GrayWulf and Data-Scope clusters [31, 10] at Johns
Hopkins, which have capacity of 1.1PB and 11PB respec-
tively. One of their missions is to provide persistent storage
and public access to world-class numerical simulation data.
These systems di↵er from the traditional HPC environments
in that they aim to achieve high aggregate throughput by
balancing computation capabilities with I/O and network
bandwidth. The computing systems and services developed
on top of these platforms are more than pure storage engines
and usually have complex analysis routines built-in, which
has largely been driven by the “move the computation to
the data” paradigm [14]. These built-in analysis routines
are most often not novel themselves. They implement core
scientific functionality for the study of the particular scien-
tific phenomena, which was observed or simulated in the first
place. The analysis routines however require novel evalua-
tion strategies and methods for their execution. They have
to operate on large array datasets distributed across multiple
nodes of a cluster of relational databases. In order to reduce
their running times, they have to make e�cient use of the
cluster resources and incorporate leading data management
techniques.

Finding the locations or regions of highest vorticity or
those with the largest norms of the velocity or other fields
of interest enables new insights in the study of fluid dynam-
ics. Analysis of this kind coupled with the ability to ana-
lyze time-series datasets both forward and backward in time
has transformed our understanding of turbulence [12]. Fur-
thermore, threshold, top-k queries and similarity search in
general are important in many di↵erent disciplines. We in-
troduce an e�cient evaluation strategy for threshold queries
over time-series datasets stored in a cluster of relational
databases. Our method evaluates not only threshold queries
of the vector or scalar field data stored in the database, but
also performs thresholding of derived fields.

The main challenge that our approach tackles is that the
data-intensive computation of derived fields has to be car-
ried out on-demand for extremely large array datasets stored
in an analysis cluster environment comprised of multiple
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database nodes. We focus on the evaluation of threshold
queries of fields derived from the data stored in the cluster
as these queries are the most interesting scientifically. How-
ever, our approach applies to the evaluation of top-k queries,
rollup queries and data-reducing queries in general. The es-
tablished data management techniques that our approach
combines make the approach easy to understand. It can
be applied to other scientific analysis environments, which
manage large datasets in a database management system.
Examples include the Sloan Digital Sky Survey [28], the Mil-
lennium Simulation [23] and the Open Connectome Project
[6].

Evaluating threshold queries within the database cluster
allows scientists with modest computational and network
capability to narrow down on and examine some of the most
interesting regions and features in the dataset and focus on
the subsequent analysis needed to understand these events.
It is impractical to materialize all possible derived fields and
store them alongside the raw data due to the large size of the
datasets and the limits of available storage. Obtaining the
derived field and thresholding locally by the user requires
not only the computation of the derived field over an entire
time-step server-side but also the transfer of a large amount
of data over the network, most of which are subsequently
discarded. One of our collaborators reported that such a
local evaluation of a threshold query over an entire time-step
took over 20 hours. It would take months to iterate over the
entire dataset. This highlighted the need for providing the
capability through an integrated approach, which performs
the evaluation server-side.

Database, operating and file system caches are e↵ective at
speeding up access to the large amounts of data stored on
disk. However, this might not be su�cient for some applica-
tions, because these application-independent caches cannot
exploit dataset-specific structure and application-level infor-
mation [20]. Moreover, even if the data are available in one
or more of these application-independent caches the com-
putation associated with the derived field still needs to be
performed for each point on the grid, because results of pre-
vious computations are not cached. We will demonstrate
that an integrated approach, which computes the derived
fields on-demand in a data-parallel manner, performs the
evaluation over an entire time-step in a few minutes. Stor-
ing the query results in an application-aware semantic cache
further reduces the running times to several seconds.

Thresholding allows scientists to obtain and examine the
regions containing the most intense events and features in
the dataset in the case of turbulence. These are often the
locations that have the largest vorticity norms and have in-
tense vortices or reconnection events. In magnetohydrody-
namics, the locations of largest electric current are of great
interest for similar reasons. It is important that threshold
queries are evaluated in an e�cient manner, because often
further subsequent examination and analysis is required to
understand the physics that drive these intense events.

There are several challenges that arise during the eval-
uation of threshold queries of derived fields in an analysis
database cluster. The field variables have to be evaluated
on-demand from the array data stored in the database clus-
ter. The evaluations are data-intensive as they perform ker-
nel computations on extremely large multidimensional ar-
ray datasets. A kernel computation computes the value at
a grid location using the data points at a set of neighbor-
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Figure 1: Architecture of the JHTDB.

ing locations. Kernel computations have to be performed
at each location on the grid as opposed to at a particular
number of target locations. The evaluation needs to be dis-
tributed across the nodes of the database cluster to avoid
the unnecessary movement of data over the network and to
achieve scalability. Techniques that target the traditional
supercomputing environments do not translate directly to
the distributed database setting of an analysis cluster envi-
ronment.

We present a method for the e�cient evaluation of thresh-
old queries over fields derived from the raw vector or scalar
fields of the numerical simulation stored in the database.
Our method makes e↵ective use of the cluster resources and
achieves high throughput and scalability. We exploit the
parallelism available in the cluster by means of data-parallel
execution of the computations. We extend the database
management system with an application-aware cache for
query results. We build on the idea of an application-aware
cache introduced by Lopez et al. [20] and more broadly on
the concept of semantic caching [9]. Rather than caching
just data as is the case in system caches and the tree-cache
described by Lopez et al., we cache query results along
with query metadata and subsequent queries are evaluated
against the cache. This leads to query performance improve-
ment of over an order of magnitude.

The contributions of this paper are the following:

• Computing derived fields of large simulation data on-
demand and evaluating threshold queries on them at
extreme scale. This provides large data analytics ca-
pabilities that examine entire time-steps of the simula-
tion transparently to the user in a production analysis
environment.

• Achieving this through the combination of existing
data management techniques such as data parallelism
and semantic caching as well as taking advantage of
heterogeneous scientific cluster architectures (sharded
relational DBMS with several SSDs per node).

• Evaluating the proposed method on data-intensive work-
loads in a live production environment and showing
scalability results on datasets hundreds of terabytes in
size.
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Figure 2: Probability density function of the norm
of the vorticity field for a representative time-step
for the MHD dataset.

2. JOHNS HOPKINS TURBULENCE
DATABASES

Data-intensive architectures and compute clusters built
from commodity hardware rely on parallel I/O to multiple
disks and high network bandwidth to achieve high through-
put. Such systems have only recently been deployed for the
storage of large numerical simulation datasets. The virtual
laboratories built on these systems make use of relational
database system technology to store and manage large ar-
ray datasets. Relational database systems however often do
not support all of the functionality that scientists are inter-
ested in out of the box. It is either up to the user to develop
more sophisticated analysis routines locally or such capabil-
ities have to be built into the database through user-defined
functions or stored procedures.

The method that we have developed for the evaluation
of threshold queries of derived fields was deployed and inte-
grated into the Johns Hopkins Turbulence Databases (JHTDB)
[19, 26]. It solves a pressing problem in a production scien-
tific analysis environment, which di↵ers from the traditional
supercomputing environments and provides large data ana-
lytics capabilities transparently to the public. The JHTDB,
built on top of the GrayWulf and Data-Scope clusters, serves
as a public virtual laboratory for the study of turbulent phe-
nomena. The JHTDB stores several datasets, which are the
output of high-resolution numerical simulations of turbu-
lence. The 3d time-series data are partitioned into small sub-
cubes and stored in relational databases distributed across
the nodes of the cluster. Access to the data is provided
by means of Web-services and a variety of analysis func-
tions have been implemented and can be executed through
Web-service calls (Fig. 1). At present the service hosts
four datasets, which are available publicly. The data are
the output of numerical simulations of forced isotropic tur-
bulence, magnetohydrodynamics (MHD), channel flow tur-
bulence and homogenous buoyancy driven turbulence. The
total amount of space occupied by the datasets is over 230
TB.

The database nodes are part of the GrayWulf [31] and
Data-Scope [10] clusters. Each node is running Windows
Server 2008 and SQL Server 2008 R2. The data for each
dataset reside on a regular three-dimensional spatial grid
with the exception of the channel flow data, which has an

irregular y dimension. The data are partitioned spatially
across 4 to 8 database nodes, and each database node hosts
one or more databases. We use the Morton z-order space-
filling curve to distribute the data across nodes and databases
[26]. Each time-step is spatially subdivided into database
atoms, which are of size 83. Each such atom is indexed
by the time-step, which it belongs to and by the Morton
code of it’s lower left corner. This combination of index and
data forms a record in the database. Queries to the data
and derived fields, such as derivatives and filtered quanti-
ties are evaluated through stored procedures or user-defined
functions implemented in the Common Language Runtime
(CLR) framework.

The Web-services are hosted on a front-end Web-server,
which handles user requests and hosts the main Web-page
portal. The Web-server acts as a mediator sending the
users’ requests to the database nodes and initiating their dis-
tributed evaluation. Each request is broken down into mul-
tiple parts based on the spatial layout of the data. Each part
is asynchronously submitted for evaluation to the database
which stores the data needed for the evaluation. The Web-
server assembles the results from the distributed computa-
tion and sends them back to the client.

The JHTDB provides a variety of data-intensive analysis
routines that are executed on the database nodes. These
include interpolation, di↵erentiation, particle tracking and
spatial filtering. These tasks are often data-intensive and
in order to leverage the capabilities of the cluster we have
developed data-driven batch processing techniques for their
evaluation [17, 16]. Most of these tasks usually operate on
subsets of the space or a collection of individual target loca-
tions within a time-step.

In contrast, threshold and top-k queries usually have to
examine the entire data volume of a time-step or a significa-
tion portion of it. Furthermore, the data product of thresh-
old queries is much smaller in relation to the amount of data
that need to be examined. This fact combined with the fact
that subsequent queries can reuse previously computed re-
sults makes the query results suitable to caching.

3. SCIENTIFIC USE CASES
One of the applications of thresholding in turbulence is

to find the locations of maximum vorticity in a particular
time-step or the dataset as a whole. The locations of maxi-
mum vorticity are usually associated with the most intense
vortices in the dataset and often have interesting and com-
plex reconnection events associated with them. Once ob-
tained from the service, these locations can be clustered in
both 3d and 4d. This allows scientists to examine their evo-
lution with the flow and make subsequent analysis queries
as needed in order to study these events. The relationship
between di↵erent “worms” (see Figure 3) that connect and
reconnect at those locations is of the most interest.

The vorticity is computed from the velocity field by taking
its curl:
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We use finite di↵erencing methods of di↵erent orders for the
evaluation of the curl. For example, with 4th-order centered
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Figure 3: 3D (single time-step) cut through the 4D cluster containing the most intense event.

finite di↵erencing each partial derivative is evaluated from
the 4 adjacent grid node values as follows:

df

dx

����
xn

=
2

3�x
[f(x

n+1)� f(x
n�1)]

� 1
12�x

[f(x
n+2)� f(x

n�2)], (2)

where f denotes any one of the three components of the
velocity and �x is the width of the grid in the x direction.
The partial derivatives along y and z are computed in the
same fashion. Figure 2 shows the distribution of the values
of the norm of the vorticity field in the MHD dataset for a
representative time-step. This is indicative of how the values
are distributed in the dataset as a whole. This coarse view
of the data can be used by scientists to guide the selection
of threshold values.

Figure 3 shows the most intense event observed in the
forced isotropic turbulence dataset. The locations of maxi-
mum vorticity in the dataset were clustered in this case in
4d using a friends-of-friends algorithm. It is interesting to
note that the cluster containing the most intense event in
the entire dataset develops from nothing (i.e. it does not
appear in the first few time-steps) and it takes less than the
timespan stored in the database for it to develop. Figure
3 also shows that most interactions between worms are not
simple. There are several worms interacting in a complex
way at the same time. Similar type of analysis and the fact
that the entire time history of the simulation is available
in a database cluster, which provides built-in sophisticated
analysis routines revealed flux-freezing breakdown in MHD
turbulence [12], showing why solar flares last minutes rather
than the millions of years that conventional theory would
predict.

In addition to obtaining the regions of largest vorticity,
there is substantial interest in studying the regions with
highest values for other fields, such as the second and third
velocity gradient invariants (Q and R). These invariants are
scalar quantities whose values contain information about the

topology of the flow and the rates of vortex stretching and
rotation. In MHD, finding the locations with largest val-
ues for the electric current can lead to new insights into
the development of the most intense reconnection events of
magnetic field sheets in the simulated plasma. Similarly to
the vorticity, the electric current is derived from the mag-
netic field by taking its curl. The list of fields of interest,
on which scientists would like to perform threshold queries
certainly does not stop here and is indicative of how valu-
able this functionality is in the study of turbulence and fluid
dynamics.

4. THRESHOLD QUERY EVALUATION
Threshold queries of derived fields submitted to the JHTDB

are evaluated using a data-parallel execution strategy and
the query results are cached in an application-aware seman-
tic cache. In addition to query results, the cache stores their
semantic descriptions and query metadata and parameters
used to obtain them. The evaluation strategy for queries
that do not hit the cache is driven by the spatial partition-
ing of the data across the nodes of the cluster.

Derived fields computation: The databases store only
the raw field data from the simulation (e.g. velocity, pres-
sure, magnetic field etc.). However, the threshold queries of
most interest to science users produce all locations where the
values of a derived field are above a given threshold. Thus,
the derived field in question has to be computed from the
raw data first. For most derived fields of interest, this com-
putation has local support. It has an associated localized
kernel of computation around each grid node. Therefore,
the value of the derived field at each grid node depends on
the value of the stored field at all of the grid locations, which
are part of the kernel of computation.

Distributed data-parallel execution: In most cases
threshold queries operate over an entire time-step. Each
such query is subdivided by the mediator into queries sub-
mitted to each of the database nodes. Each node evaluates
the query over the data that it has stored locally. Only a

304



Figure 4: Points with values above 7 times the root
mean square value of the vorticity for a single time-
step.

small amount of data along the boundary need to be re-
quested from adjacent nodes. The size of the band of data
that may not be available locally is equal to a kernel half-
width. Such a band is needed on each of the sides of the
box forming the domain of the computation. The data are
read into memory and the particular field requested is com-
puted at each of the locations on the grid. The same strat-
egy applies when utilizing multiple processes per node. The
norm or absolute value of the derived field at each location
is compared against the specified threshold and if the value
is higher, it is maintained along with the spatial coordinates
of the location in a list.

We impose a limit on the maximum number of locations
that can be returned as a result of a threshold query in
order to prevent having to return the entire time-step or a
significant fraction of it for queries with thresholds that are
set too low. Currently this limit is set conservatively to 106

locations, which is su�cient to examine a time-step in detail.
In the case of the vorticity, the values above 8 times the root
mean square value, which is about 25% of the maximum, are
contained within 2.6⇥105 points in each time-step. Figure 4
shows all the points in a single time-step with values above 7
times the root mean square value. There are 2.4⇥105 points
in the figure. Given that we are interested in extreme events,
obtaining the locations with values even within 50% of the
maximum would be su�cient. At the same time this also
limits the amount of data that have to be returned to the
user over the network as well as the amount of data that have
to be cached. Users receive an error message notifying them
if their request has a threshold that is set too low. If a user
is interested in obtaining more data he or she can request
the values of the derived field directly. Alternatively, if they
are interested in the density distribution of values they can
examine the probability density function (e.g. Fig. 2), which
is computed using a similar strategy to threshold queries.
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Figure 5: Distributed evaluation of threshold
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node.

Application-aware cache for query results: A cen-
tral part of the evaluation strategy for threshold queries that
we have developed is the introduction of an application-
aware cache for query results (Fig. 5). The results of these
queries are small compared to the amount of data that need
to be examined and the results can be used to answer subse-
quent queries as long as they are within the same region and
specify the same or higher threshold. Each database node
has a local cache. Cache entries are indexed by the field,
time-step, spatial region and the threshold requested. We
use a least recently used cache replacement policy. All mod-
ifications of and queries to the cache are executed within a
transaction with snapshot isolation level to avoid dirty-reads
or an inconsistent view of the cache.

Caching the query results preserves the computational ef-
fort in addition to substantially reducing I/O. The cached
data are for the particular derived field that was queried
and not the raw data of the simulation fields. Thus, we do
not have to derive the requested field from the raw data for
queries that hit the cache. This results in a substantial im-
provement in query performance as we only have to scan a
small set of data and do not need to perform any additional
computation.

Not all query results are suitable to caching. Most of
the queries submitted to the JHTDB other than thresh-
old queries request data at a collection of target locations.
Given that there are 10244 possible locations for three of the
datasets and 6⇤10244 locations for the channel-flow dataset
the chance of reuse for the results of these queries is ex-
tremely small. This is why the cache currently stores only
the results of threshold queries. Nevertheless, it can easily
be extended to cache the results of other query types as well
if that becomes advantageous.

The cached query results are stored in a table in the
database and the overall size of the cache is limited by the
amount of available SSD disk space, not memory. Given a
limit of ⇠106 points per time-step for a threshold query, the
space required to cache the maximum number of points in-
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cluding the index space and database overhead is ⇠40MB.
Therefore for a dataset containing 1024 time-steps, as is the
case for the isotropic turbulence and MHD datasets part of
the JHTDB, a cache size of 40GB is su�cient to cache the
query results for threshold queries of a derived field over
the entire dataset. The currently available SSD disk space
per node is ⇠200GB, which will be su�cient to maintain
the threshold results for nearly five derived fields over the
entire dataset. In contrast, computing and materializing
a scalar derived field for the entire dataset would require
⇠5TB (15TB for vector fields).

Algorithm 1 Get points above threshold using cache

Require: Dataset d, Field f , Timestep t, Threshold k,
Query box q = [x

l

, y
l

, z
l

, x
u

, y
u

, z
u

]
1: procedure GetThreshold

2: points List()
3: updateCache false
4: query  SELECT * FROM cachedb..cacheInfo

WHERE dataset = d AND field = f
AND timestep = t

5: command SqlCommand(query)
6: reader  command.ExecuteReader()
7: if reader.HasRows() then
8: k

s

 reader[“threshold”] . Stored threshold
9: start reader[“startIndex”]
10: end reader[“endIndex”]
11: ordinal reader[“ordinal”]
12: if k � k

s

& q 2 [start, end] then
13: query SELECT * FROM cachedb..cacheData

WHERE cacheInfoOrdinal = ordinal
14: command SqlCommand(query)
15: reader  command.ExecuteReader()
16: while reader.Read() do
17: location reader[“zindex”]
18: norm reader[“dataV alue”]
19: if norm � k & location 2 q then
20: points.Add(new Point(location, norm))
21: end if
22: end while
23: else
24: updateCache true
25: end if
26: else
27: updateCache true
28: end if
29: if updateCache then
30: Retrieve data covering q from DB.
31: for all p 2 q do
32: Compute f at p.
33: if kf(p)k � k then
34: points.Add(new Point(p, kf(p)k))
35: end if
36: end for
37: Update cacheInfo and cacheData tables.
38: end if
39: return points
40: end procedure

The entire cache is comprised of two database tables. The
cacheInfo table stores metadata for the cached entries. It
stores information about the dataset, field, time-step, start
and end coordinates of the spatial region examined and the

threshold value used. The cacheData table stores the loca-
tions of all of the grid points, for which the field queried
has a norm higher than the specified threshold. The cache-
Data table is foreign key constrained with the ordinal of the
cacheInfo table. This allows us to quickly find a record in the
cacheInfo table and retrieve all of the cached entries using
an index lookup.

Overall execution of threshold queries: Algorithm 1
illustrates the process of obtaining all points with norms
of the specified field above the given threshold from the
database in the presence of a cache. The mediator sub-
mits a query to each of the database nodes storing the raw
data asynchronously. Each node begins evaluation of the
query by executing Algorithm 1. First a cache lookup is
performed. If the data for the requested field, time-step
and spatial region are available in the cache and if the spec-
ified threshold is higher than the one stored in the cache
the query can be answered from there. The records are re-
trieved from the cache and the ones that have a higher value
are returned to the mediator and subsequently back to the
user. If the data stored in the cache have a higher thresh-
old than the one requested the cache needs to be updated.
Similarly, if the cache does not have an entry for the spec-
ified parameters the query needs to be evaluated from the
raw data. In those cases the raw data are read into mem-
ory with data along the boundary requested from adjacent
nodes as needed. The specified field is derived at each loca-
tion on the grid and the norm or absolute value of the field
is compared against the threshold. The locations where the
values are higher than the threshold need to then be stored
in the cache. If the cache does not have enough space for
the new records, space is freed up by removing the least
recently used data across all quantities. Reading from, up-
dating or modifying the cache is done within a transaction
with snapshot isolation level. Snapshot isolation allows us
to avoid locking the tables that serve as the cache for each
transaction. This provides for a higher degree of parallelism
and avoids any potential deadlocks from queries running in
parallel.

5. EXPERIMENTAL RESULTS
We evaluate the developed method for the execution of

threshold queries to large numerical simulation datasets with
the goal of analyzing the benefits and overhead from the
introduction of the application-aware cache. We also analyze
the scaling properties of the method. Finally, we show that
an integrated method that performs the evaluation on the
database nodes near the data is several orders of magnitude
faster than the user requesting the derived filed of interest
from the database and evaluating the threshold locally.

5.1 Experimental Setup
The experiments were run on the production database

nodes of the JHTDB through a development Web-server
hosting the Web-services. We used the MHD dataset (Sec.
2) for the experimental runs. This dataset is partitioned
across 4 database nodes according to spatial regions in the
Morton z-order. The database nodes are 2.66 GHz dual
quad-core Windows 2008 servers with SQL Server 2008 R2
and 24 GB of memory. Each node has 24 2TB SATA disks
arranged as a set of four RAID-5 arrays. The database files
are striped across the nodes and their associated disk arrays.
The tables storing the data are partitioned spatially along
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Figure 6: Execution time for threshold queries at
di↵erent threshold levels compared with the execu-
tion time of the same queries in the absence of a
cache.

contiguous ranges of the Morton z-curve and the data for
each partition reside in one database file.

For this evaluation we looked at the performance of thresh-
old queries to the vorticity field. The vorticity field is rep-
resentative of derived fields that have to be computed from
the stored data. It is defined as the curl of the velocity field.
As described in section 3 thresholding the vorticity field is
important in the study of fluid dynamics and obtaining the
locations of maximum vorticity can lead to new insights into
the development of the most intense vortices observed in the
dataset.

5.2 Evaluation of cache effectiveness
The central part of the strategy that we have developed

for the evaluation of threshold queries of derived fields is the
application-aware cache, which stores the results of these
queries. We first evaluate the overhead associated with the
introduction and maintenance of the cache. Figure 6 com-
pares the execution time of queries in the absence of a cache
with the execution time of the same queries, which interro-
gate the cache first (blue and red bars in the figure). The
execution times are also shown in Table 1. For these experi-
ments we requested the locations with norms of the vorticity
above thresholds at di↵erent levels. We refer the reader to
Figure 2, which shows the distribution of values of the norm
of the vorticity field in the MHD dataset to get an appre-
ciation of the di↵erent threshold values used in the exper-
iments. For the first set the threshold was set high (80.0)
and only ⇠4,300 points (or 0.0004% of all points) were above
the threshold. For the second set a medium threshold (60.0)
was chosen and ⇠87,000 points (or 0.0081% of all points)
were above the threshold. Finally, a low threshold (44.0)
was chosen for the last set and there were ⇠900,000 points
(or 0.0847% of all points) above the threshold. For each set
a random time-step was chosen and the queries were run
against that time-step. The measurements were taken from
the point of view of the end user.

As we can see from the results shown in Figure 6 the
overhead associated with querying the cache first is minimal,
less than 3% and within the margin of error. The cache was
initially populated by executing several hundred unrelated
queries and contained several million entries. During the

“cache-miss” runs cache entries for the particular time-step
queried were dropped before each run, making sure that
each query would produce a cache miss and would have to
be evaluated from the raw data. The execution times were
averaged over 10 runs. We utilized 4 processes per database
node for the evaluation of each query. The method shows
stable running time across di↵erent time-steps and threshold
levels in the absence of a cache and during cache misses. The
running time increases slightly only because of the larger
result set that has to be returned to the user.

Vorticity
threshold

Points
above
threshold

Average Running time (s.)
No cache With

cache
(miss)

With
cache
(hit)

80.0 4247 97.1 100.2 0.5
60.0 86580 113.7 115.9 1.2
44.0 909274 111.6 115.0 9.1

Table 1: E↵ectiveness of caching.

Cache hits reduce the running time of threshold queries
by over an order of magnitude as shown in Figure 6 and
Table 1. This is because we do not have to compute the
requested derived field from the raw data, which eliminates
the associated I/O. Only the cache entries need to be looked-
up, which is substantially less data than the raw vector or
scalar field data. For the queries with large result sets it is
actually the network time taken to transfer the results to
the user that dominates the overall execution as opposed to
the I/O or computation time as we show later. Cache hits
are evaluated by first warming up the cache by submitting
the same set of threshold queries of the vorticity field as
before. We then submit several more unrelated queries with
di↵erent time-steps and threshold values in order to pollute
the cache. Finally, we issue the original set of queries and
measure their running times. Let us focus on the query with
low threshold, which returns ⇠900,000 points. Given that
valid threshold values are limited to those that result in no
more than 1,000,000 points it is likely that all subsequent
queries to this time-step will result in a cache hit as their
threshold is likely to be equal or higher than the cached
one. Currently we observe fairly high cache-hit ratios as the
workload is very structured and queries tend to examine the
same regions in space and time.

5.3 Scaling and Distributed Evaluation
The evaluation of threshold queries of derived fields from

the raw data is both I/O and computationally bound. These
queries examine the entire data volume of a simulation time-
step and are, therefore, good candidates for a data-parallel
distributed evaluation. Our data-parallel implementation
exhibits good vertical and nearly ideal horizontal scaling as
shown in Figure 7. For the scale-up experiments (Fig. 7(a)),
we used the same queries and threshold values as for the runs
shown in Figure 6 and Table 1 but with varying number of
processes per node. Cache entries for the time-step queried
were again dropped before each run in order to evaluate the
scaling properties of the computation of the derived field
from the stored data. The computations for all of the de-
rived fields of interest (such as the vorticity) at each grid
point need data from adjacent grid points only. Therefore,
each node of the cluster is able to compute the derived field
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Figure 7: Execution time for threshold queries at di↵erent threshold levels – high, medium and low. The
scale-up evaluation was performed utilizing 1-8 processes per server on a 4-node cluster. The scale-out
evaluation was performed on 1 through 8 nodes.

from data available locally with only a small amount along
the boundary of each region having to be retrieved from
adjacent nodes. Each computation is independent and em-
barrassingly parallel. This allows us to make use of multiple
processes per node and scale out to multiple database nodes.

We observe nearly a two times speedup when going from
a single process per node to two processes per node (Fig.
7(a)). The speedup diminishes to 1.4 times when going to
4 processes and little speedup is observed with 8 processes
per node. While the computation time scales with increased
process count, the time to perform I/O does not as the data
on each node reside in the same database table and on the
same set of disks. Additionally, I/O redundancy increases
as the process count increases as data along the boundary
of each region are requested by multiple processes. SQL
Server already utilizes parallelism to perform the I/O even
when data are retrieved utilizing a single query. Finally, the
experiments were run on the live production database nodes,
which were also servicing other user queries in addition to
operating system and other SQL Server processes. Never-
theless, running with 4 processes per node is nearly 2.6 times
faster when compared to running with a single process.

The scale-out experiments show a nearly perfect linear
speedup as the evaluation is distributed to an increasing
number of database nodes (Fig. 7(b)). For these experi-
ments we issued queries with the same threshold levels as
before to a cold cache. We utilized a single process per
database node to evaluate the horizontal scaling of the com-
putation. The evaluation benefits not only from the addi-
tional computational resources with the addition of database
nodes to the cluster but also from the increased memory size.
The data needed for the computation of each derived field
are read into memory and the larger memory size means
that there is less contention with other system and applica-
tion processes and it is less likely that virtual memory needs
to be used. SQL Server also benefits from a larger bu↵er
pool, which reduces the I/O time.

As expected, we observe even weaker speedup when the
queries perform nothing but I/O and the number of pro-
cesses per node is increased. Figure 8 compares the running
time of the queries with a medium threshold and executed
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Figure 8: Execution time for threshold queries eval-
uated utilizing di↵erent number of processes per
server compared with the time taken to perform the
I/O only.

with varying number of processes per node with the time
taken to perform the I/O only. The I/O time is about half
of the total running time for these queries. SQL Server al-
ready makes use of parallelism internally and the data have
to be retrieved from the same set of disks. Nevertheless, the
I/O time does decrease with additional processes, this is be-
cause the data reside in a partitioned table and the data in
each partition are placed in a separate file on one of the disk
arrays. Depending on how the data requests are scheduled
in SQL Server this allows for the disks arrays to be driven
in parallel. Additionally, with more processes per node the
data can also be consumed faster. It is worth noting that
the total running time for the queries evaluated with 4 or 8
processes is about the same as the time it takes to perform
the I/O only with a single process.

So far we have presented the e↵ectiveness of evaluating
threshold queries of derived fields on the database cluster
storing the raw simulation data. The data-parallel compu-
tation of the derived fields allows us to evaluate a threshold
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Figure 9: Breakdown of the execution time for threshold queries requesting di↵erent fields and at di↵erent
threshold levels – high, medium and low.

query over an entire 10243 time-step part of a 20TB dataset
in less than two minutes. The introduction of an application-
aware cache for the query results of these queries reduces
this time to several seconds when there is a cache hit. In
contrast, one of our science collaborators reported that his
evaluation of this functionality performed locally would take
over 20 hours to complete. To perform the evaluation lo-
cally the user requests the derived field of interest from the
database by submitting multiple queries over subregions of
a time-step. This is necessary as requesting a derived field
over an entire time-step will overload the network. Derived
fields may have even more components than the scalar or
vector field stored in the database. For example, the veloc-
ity gradient (needed for the computation of the vorticity)
has 9 components compared with the 3 components of the
velocity. Given a single-precision floating-point representa-
tion, this makes the velocity gradient of an entire time-step
at least 36GB in size. A Web-service request will be much
larger due to the overhead of wrapping the data in an xml
format. After the field of interest is obtained locally the user
has to threshold it to get the final result, which is reasonably
fast, but discards most of the data that have been requested
to yield a small in size result.

5.4 Evaluation of Additional Fields
The data-parallel evaluation of threshold queries shows

stable execution time for di↵erent derived fields in addi-
tion to the di↵erent threshold levels and time-steps queried.
The execution times depend on the complexity of the com-
putation needed to evaluate the particular derived field re-
quested. Figures 9(a), 9(b) and 9(c) show a breakdown of
the execution time of threshold queries of di↵erent derived
fields, which are evaluated from the raw data and a cold
cache using 4 processes per node on a 4 node cluster. Almost
the entire time is spent performing the I/O and computation

associated with the derived field requested.
The vorticity field and the Q-criterion have similar I/O

requirements as they have the same kernels of computation
and are both derived from the velocity gradient. The vor-
ticity has 3 components and its computation only examines
6 of the 9 components of the velocity gradient, which are
also examined in pairs (see Eq. 1). On the other hand,
even though the Q-criterion is a scalar value, it is computed
through a non-linear combination of all 9 of the components
of the velocity gradient. This means that the velocity gra-
dient has to be computed at each grid location before the
Q-criterion is evaluated, which is reflected in the increased
computation time that we observe for the Q-criterion. The
magnetic field is one of the raw fields of the magnetohydro-
dynamics dataset that are stored in the database. Therefore,
there is no additional computation needed to derive it from
the data, every data point has to be simply compared with
the threshold level specified. This is why the computation
time is much smaller compared to the queries for the vortic-
ity and the Q-criterion. The I/O time for the magnetic field
is also smaller. This is because its kernel of computation
is a single point and therefore there are no additional data
along the boundary that have to be requested from adja-
cent nodes. In that case all of the data needed are available
locally for each database node.

In all of these cases, the time taken to interrogate the
cache is negligible. The mediator time to distribute the
queries and assemble the results as well as the time to trans-
fer them to the user are also substantially smaller than the
I/O and computation times. As expected they increase pro-
portionally to the number of points in the result set.

It is interesting to note that the time taken to perform a
cache lookup is relatively small even in the case of a cache
hit as can be seen in Figures 9(d), 9(e) and 9(f). This is
because the cache tables reside on SSDs attached to each
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database node (see Fig. 5) and retrieving the data is always
done through a clustered index lookup. In the cases of a
cache hit, the majority of the time is spent simply trans-
ferring the results from the database nodes to the mediator
and then back to the user. These times remain more or less
constant between the cases of cache misses and cache hits
(top row and bottom row of Fig. 9). Caching the results of
threshold queries e↵ectively preserves the I/O and computa-
tional e↵ort spent during their initial evaluation and results
in over an order of magnitude speedup for all the di↵erent
fields requested as we can see in Figure 9.

6. RELATED WORK
Only select few database systems o↵er support for arrays

as first-class citizens. Even fewer provide the fault-tolerance,
scalability and availability guarantees necessary for a system
managing multi-terabyte datasets in a production setting.
This is part of the reason why we have chosen to repre-
sent the array data in the JHTDB as a collection of binary
large objects in a relational DBMS and perform the array
manipulation tasks necessary at the application level. The
systems that provide support for arrays and aim to handle
large array data e�ciently are RasDaMan [5], SciDB [30]
and MonetDB/SciQL [34]. RasDaMan partitions raster ob-
jects into tiles, which are stored in a traditional relational
database system. This approach is similar to how the nu-
merical simulation data are handled in the JHTDB. Ras-
DaMan provides RasQL [4], which is a SQL-92 based query
language for the manipulation of raster images. SciDB is
an array database system build from the ground up. Array
attributes are partitioned vertically and each attribute ar-
ray is decomposed into overlapping chunks. SciDB provides
a declarative Array Query Language (AQL) and an Array
Functional Language (AFL). Users can create arrays with
named dimensions with AQL and make use of the functional
operators defined in AFL, such as SLICE, SUBSAMPLE,
SJOIN, FILTER and APPLY. SciQL’s focus is on language
design and integration with SQL:2003 syntax and semantics.
It is implemented within the MonetDB framework [24].

Database systems support rollup queries, including top-k
queries, but in most cases these queries apply only simple
linear score functions on the attribute values of individual
records. Additionally, many top-k query evaluation tech-
niques rely on the score functions being monotone in order to
perform early pruning (see [15] for a survey of top-k evalua-
tion strategies). This is an assumption that we cannot make
for the functions used to compute all the di↵erent possible
derived fields of interest in fluid mechanics. Even approaches
that aim to work with general score functions [11, 33] as-
sume that the function operates on the attributes of a single
record. In contrast, our approach performs a kernel com-
putation at each grid location in order to obtain the value
of a derived field at that location and examines the vector
or scalar array data at all neighboring locations, which are
within the kernel of the computation. The functions used
to derive the field may even be non-linear. Finally, a top-k
approach may not be suitable in the cases where scientists
are interested in performing threshold queries at di↵erent
time-steps as the same threshold level will produce di↵erent
number of points in the result set for di↵erent time-steps.

The processing of top-k queries has been studied exten-
sively in the context of distributed and relational database
systems. A survey of di↵erent techniques in the case of cen-

tralized processing is given in [15]. In the case of distributed
processing di↵erent approaches focus on horizontally [3, 32]
or vertically [7, 8, 13, 21, 22] distributed data. None of
these approaches deal with array data stored in a relational
database system. Zhao et al. propose an algorithm for the
processing of top-k queries in large-scale distributed envi-
ronments called BRANCA [35]. They build on the idea of
semantic caching [27] and make use of branch caches, which
store results of previous top-k queries with respect to the
data stored on each server. The caching mechanism that
we use is similar in that regard, but the queries that are
evaluated in our system operate on derived fields, which are
computed at each location by accessing data from a sur-
rounding region. The queries described in [35] operate over
the attributes of individual records only using simple linear
score functions.

Aßfalg et al. introduce the concept of threshold queries
in time-series databases [2]. Their definition of threshold
queries di↵ers from the threshold queries described in this
paper. They are concerned with determining the time-series,
which exceed a user-defined threshold at time frames similar
to the time-series specified in the query. Thus, their defi-
nition of threshold queries is concerned with the temporal
relationship between the time-series stored in the database
(usually one dimensional sequence of measurements) and the
time-series given in the query. In contrast, our approach fo-
cuses on reporting all of the spatial locations of a multidi-
mensional field where the norm or absolute value of the field
exceeds a user prescribed threshold.

In a system called the tree cache, Lopez et al. [20] make
use of a small application-aware cache to reduce access time
to large datasets stored on disk. The tree cache stores in-
dividual octants of octree datasets and exploits application-
specific information to determine which octants to cache and
to perform query reordering. This work has inspired the use
of an application-aware cache for the evaluation of threshold
queries. In contrast to the tree cache, we do not cache raw
data objects, but rather query results. Caching query results
preserves the computational e↵ort in addition to reducing
I/O, which has a much bigger impact on query performance
and substantially reduces the size of the cache. Additionally,
the cache that we introduce resides on disk rather than in
memory, which greatly increases its potential size. Lopez et
al. also explore approximate querying through aggregation,
which can be fairly easily supported by our system but is
of limited use as scientists performing threshold queries are
usually interested in obtaining the exact locations where a
field is at its highest values.

Sampling approaches [29, 25] o↵er an alternative to the
on-demand computation of derived fields and the evaluation
of threshold queries on them. The goal of both techniques
is to not return large data volumes, but focus on the most
intense events and interesting regions in the dataset. The
computation of derived fields is carried out on the nodes
of the database cluster and takes a look at the dataset as a
whole, while the user obtains only a small subset of the data,
where the derived field in question is above the prescribed
threshold. Sampling approaches can potentially omit some
locations and while useful for generating initial impressions
may not be suitable if the exact locations where a field is at
its highest values are desired.

Andrade et al. [1] describe a database system and an
optimization framework build on the concept of active se-
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mantic caching. An active semantic cache aims to fully or
partially reuse cached query results or aggregates through
automated transformations of these aggregates. Similarly
to our work they focus on real scientific data-analysis appli-
cations. The method that we have developed for the eval-
uation of threshold queries complements the active seman-
tic caching approach and could be used in that framework.
Our work has focused on extending a relational database
system (Microsoft’s SQL Server) as opposed to designing a
new database system from the ground up as described by
Andrade et al. [1].

7. CONCLUSIONS AND FUTURE WORK
We have presented an e�cient strategy for the evaluation

of threshold queries of derived fields in large numerical simu-
lation datasets. The thresholded fields are derived from the
stored simulation data in a distributed data-parallel man-
ner. The computations scale with the cluster resources and
are performed on the database nodes, where the data are
stored. This new capability allows researches to quickly ob-
tain and focus on regions of special interest even if they
lack the computing capabilities or data transfer rates neces-
sary to examine entire time-steps or large parts of the entire
dataset.

We have introduced an application-aware cache for the
query results of threshold queries. Cache hits reduce query
running times by over an order of magnitude. The cache
adds minimal overhead during the evaluation of queries even
if there is a cache miss and has modest storage requirements.
The cache is represented as a set of database tables and
resides on disk rather than in memory. Each database node
has local cache tables, which allows the cache to scale-out
as the cluster grows.

The introduction of an application-aware cache for query
results lays the groundwork for the creation of a landmark
database. Such a database can store the locations of the
highest vorticity regions in the dataset or more broadly re-
gions of interest and their associated statistics.

The Web-services approach to archived numerical simu-
lation datasets provides public access to high quality sim-
ulation data to anyone with an internet connection. The
Web-services methods can be called from any modern pro-
gramming language and we provide C, Fortran and Matlab
client libraries for the JHTDB. The evaluation of each query
submitted through a Web-service call is carried out on the
nodes of the database cluster by means of a stored proce-
dure or a user-defined function that has been implemented
and deployed to handle these requests. This allows us to
fine-tune the execution of these procedures and handle all
requests transparently to the user. However, this approach
also has drawbacks. Adding new functionality means adding
to a long list of Web-service calls and requires substantial
implementation e↵ort. In the case of threshold queries the
stored procedure performing the evaluation must have an
implementation for each derived field of interest even though
the execution is handled by the same Web-service call.

In the future, we plan to develop declarative and graph-
ical user interfaces that will allow users to combine exist-
ing building blocks and perform computations that have not
been explicitly implemented. Additionally, we plan on de-
ploying a server-side computing environment for users simi-
lar to the CasJobs service for the Sloan Digital Sky Survery
[18]. In such an environment users can run queries in batch

mode and save their results in a personal database called
MyDB, which resides on the servers near the data. This
will allow for much greater flexibility in the type of compu-
tations that can be performed in addition to substantially
decreasing the network overhead.
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