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ABSTRACT
This paper presents a novel optimal location selection prob-
lem, which can be applied to a wide range of applications.
After providing a formal definition of the novel query type,
we explore an intuitive approach that sequentially scans all
possible object combinations in the search space. Then,
we propose an Overlapping Voronoi Diagram (OVD) model
that defines OVDs and Minimum OVDs, and construct an
algebraic structure under an OVD overlap operation. Based
on the OVD model, we design an advanced approach to
answer the query. Due to the high complexity of Voronoi
diagram overlap computation, we improve the overlap oper-
ation by replacing the real boundaries of Voronoi diagrams
with their Minimum Bounding Rectangles (MBR). We also
propose a cost-bound iterative approach that efficiently pro-
cesses a large number of Fermat-Weber problems. Our ex-
perimental results show that the proposed algorithms can
evaluate the novel query type effectively and efficiently.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
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ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Numerous spatial queries, including nearest neighbor and
reverse nearest neighbor queries, have been extensively stud-
ied; however, there are still spatial queries applied in real ap-
plications, such as location decision making, that cannot be
efficiently addressed by existing spatial query types. During
the location selection process, multiple factors (e.g., distance
and reputation) are taken into account. A typical exam-
ple is making residential location decisions, such as finding
home locations that would maximize residential satisfaction,
which is a critical part of community planning and develop-
ment [15]. In order to attract more customers, an optimal
location would be selected based on a comprehensive con-
sideration of a number of factors, such as transportation
accessibility (the ease of reaching a bus or subway station),
the distance to an elementary school, or the distance to a
supermarket.

Fig. 1 displays a simple example of residential location se-
lection in a city. We assume that there are two schools, two
bus stops, and two supermarkets in the city. Their locations
are indicated by symbols. The figure also shows three po-
tential community locations. Lines connect communities to
their closest bus stop, school, and supermarket, respectively.
The numbers on the lines indicate the distance between two
locations. If we assume that the optimal location for a new
community is the place that minimizes the total distance to
its closest school, bus stop, and supermarket, the best place
is Community 1, the total distance (16) of which is shorter
than that of Community 2 (19) or Community 3 (18).

Tradeoffs of multiple factors are actually considered in
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Figure 1: An example of residential location selec-
tion. The object weights are indicated as <wt, wo>.
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real residential location selection [23]. The importance of
schools, bus stops, and supermarkets varies greatly among
different people. For example, some people may prefer living
near a school because it is convenient to drive their children
to school. In addition, objects of a particular type are con-
sidered differently. When selecting a school, the ones that
provide higher quality programs are more attractive. In or-
der to take these differences into consideration, a type weight
wt and object weight wo are associated with each object.
Providing objects with weights in the location selection al-
lows users to prioritize objects based on their preference. If
the weights <wt, wo> customized by users are as indicated
in Fig. 1, the best choice is Community 3 (33), which has
the smallest sum of weighted distance to the nearest school
(15), bus stop (8), and supermarket (10). We assume that
the weighted distance of a community and an object is cal-
culated as the product of the distance and the two weights.
The more important object types and the more preferred
objects have smaller weights. Instead of associating a sin-
gle weight with an object, type weight and object weight are
set individually in the example because various weight func-
tions are allowed to be applied to the query. This will be
described in Section 2. In the example, a multiplicatively-
based weight function is applied to both type weight and
object weight. Appropriately selecting the factors and their
weight values is another interesting problem. More discus-
sions can be found in [15, 23]. However, we focus mainly on
the novel query type in this paper.

In order to efficiently answer the query, we propose an
advanced solution that utilizes the Overlapped Voronoi Di-
agram (OVD) model and Fermat-Weber techniques. The
OVD model integrates location information and object weights
wo of spatial objects by overlapping the diagrams generated
from the objects. With the OVD model, the closest objects
of different types to a particular location can be efficiently
retrieved. Fermat-Weber techniques are used for finding the
optimal location of given objects.

In addition, due to a surprisingly large number of Fermat-
Weber problems generated in our solution, we propose a
cost-bound iterative solution that is able to significantly re-
duce the computation complexity of the original iterative
solution [24]. The contributions of this study are summa-
rized below:

1. We identify a novel query type that is able to find opti-
mal locations comprehensively by considering multiple
criteria.

2. We build an OVD model, analyze its properties sys-
tematically, and create an algebraic structure of its
overlap operations.

3. Based on the OVD model, we propose a Real Region
as Boundary (RRB) solution that is able to efficiently
evaluate the novel query type.

4. In the proposed Minimum Bounding Rectangle as Bound-
ary (MBRB) solution, we optimize the overlap opera-
tion by avoiding overlapping region calculations.

5. Facing a large amount of Fermat-Weber problems, we
propose a cost-bound iterative solution that is able to
significantly reduce the computation complexity of the
original iterative solution.

Table 1: Symbolic notations.
Symbol Meaning

Pi An object set
G An object group
pui A spatial object in Pi
wt Type weight
wo Object weight
ςt A type weight function
ςo An object weight function
|S| The number of elements in the set S
ε An error bound
η A distance bound
γ A stopping rule used in iterative ap-

proaches [22, 24]
d(., .) Euclidean distance between two objects
E A set of object sets or groups
V A set of Voronoi diagrams
R The search space

V D(Pi) Voronoi diagram of Pi
Dom(pj) Dominance region of pj in a Voronoi diagram
OVD An overlapped Voronoi diagram
OV R An overlapped Voronoi region
MOVD A minimum overlapped Voronoi diagram

6. We evaluate the performance of the proposed solu-
tions through extensive experiments with real-world
data sets.

The rest of this paper is organized as follows. The pro-
posed query and relevant techniques utilized in our solutions
are formally defined in Section 2. In Section 3, a basic ap-
proach is described. The OVD model is illustrated in Sec-
tion 4. In Section 5, our solutions of the query are presented.
The experimental validation of our design is presented in
Section 6. Section 7 surveys related works. We conclude the
paper with a discussion of future work in Section 8.

2. PRELIMINARIES

2.1 Definitions
A spatial object is defined by the triple<l, wt, wo>, where

l is its location in the search space, and wt and wo are the
type weight and object weight associated with the object.
E = {P1, ..., Pn} denotes a universal set of object sets, where
Pi = {p1i , ..., pmi } denotes a set of objects of a particular
type. G = {pu1 , ..., pvn}, where pu1 ∈ P1, ..., p

v
n ∈ Pn, denotes

an object group, the objects of which are different types.
ςt and ςo are monotonic weight functions applied to type
weight and object weight. Notations used in this paper are
summarized in Table 1.

2.1.1 Weighted Distance of Two Points
Given a point q, a spatial object p, a type weight function

ςt, and an object weight function ςo, weighted distance con-
siders both the distance between two points d(., .) and the
weights of p. The formal definition is as follows:

WD(q, p, ςt, ςo) = ςt( ςo( d(q, p.l), p.wo ), p.wt) (1)

2.1.2 Weighted Distance from a Query Point to an
Object Group

Given a point q, an object group G = {pu1 , ..., pvn}, a
type weight function ςt, and object weight functions σ =
{ςo1 , ..., ςon}, we define the weighted distance from q to G as
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the sum of WD(q, psi , ς
t, ςoi ), where psi ∈ G, ςoi ∈ σ. The

formal definition is

WGD(q,G, ςt, σ) =
∑

psi∈G,ς
o
i ∈σ

WD(q, psi , ς
t, ςoi ) (2)

2.1.3 Minimum Weighted Distance from a Query Point
to Object Groups

Given a point q, a set of object sets E = {P1, ..., Pn}, a
type weight function ςt, and object weight functions σ =
{ςo1 , ..., ςon}, we define the minimum weighted distance from
q to object combinations of E as:

MWGD(q,E, ςt, σ) =

min({WGD(q,G, ςt, σ)|G ∈ P1 × ...× Pn})
(3)

2.1.4 Multi-criteria Optimal Location Query (MOLQ)
Given a set of object sets E = {P1, ..., Pn}, a type weight

function ςt, and object weight functions σ = {ςo1 , ..., ςon}
where ςoi is applied to an object pui ∈ Pi, the purpose of
the query is to find an optimal location l in the search space
R that minimizes MWGD(l,E, ςt, σ).

MOLQ(E, ςt, σ) = l, where

MWGD(l,E, ςt, σ) = min({MWGD(l′,E, ςt, σ) | l′ ∈ R})
(4)2.2 Voronoi Diagram

2.2.1 Ordinary Voronoi Diagram
Given a set of objects Pi = {p1i , ..., pmi }, the ordinary

Voronoi diagram V DO(Pi) is defined as a number of domi-
nance regions {DomO(pui )|pui ∈ Pi}, each of which is domi-
nated by an object pui . All locations in DomO(pui ) are closer
to pui than other objects.

DomO(pui ) = { l | d(l, pui .l) ≤ d(l, pvi .l),

u 6= v, pui , p
v
i ∈ Pi}

(5)

2.2.2 Weighted Voronoi Diagram
In a weighted Voronoi diagram, generators have different

weights reflecting their variable properties. Given a set of
objects Pi = {p1i , ..., pmi } and a weight function ς, the dom-
inance regions are measured by weighted distance.

V DW (Pi) = {DomW (pui ) | pui ∈ Pi} where

DomW (pui ) = { l | ς( d( l, pui .l), p
u
i .w

o ) ≤
ς( d( l, pvi .l), p

v
i .w

o ), u 6= v, pui , p
v
i ∈ Pi}

(6)

2.3 Fermat-Weber Point
Given a point group G = {pu1 , ..., pvn} in a d-dimensional

space Rd, the Fermat-Weber point is the point q which min-
imizes the cost function [2].

c(q,G) =
∑
psi∈G

psi .w
t × d(q, psi .l) (7)

The point exists for any point set and is unique except in
the event that all the points lie on a single line [8]. In the
non-collinear case, the cost function is strictly convex [22].

The solution to the three-point Fermat-Weber problem
had been proposed in [9]. In the collinear case of any point
set, an optimal point can be found in linear time [2]; how-
ever, to the best of our knowledge, if the number of points is
greater than three, no exact solution has been reported for

Algorithm 1 SSC(E, ςt, σ)

1. Ubound = ∞
2. l = < 0, 0 >
3. for < pu1 , ..., p

v
n >∈ P1 × ...× Pn do

4. Calculate the optimal location l1 of < pu1 , p
s
2 >

5. if WGD(l1, {pu1 , ps2}, ςt, σ) < Ubound then
6. /* use a Fermat-Weber method */
7. Calculate the optimal location l2 of < pu1 , ..., p

v
n >

8. Cost = WGD(l2, {pu1 , ..., pvn}, ςt, σ)
9. if Cost < Ubound then

10. Ubound = Cost
11. l = l2
12. end if
13. end if
14. end for
15. return l

non-collinear cases. Instead, an iterative approach is used as
an approximate solution proposed in [22, 24]. This approach
converges monotonically to the unique optimal location dur-
ing iterations.

The iterative approach starts with an arbitrary location
q0 (q0 /∈ G) in Rd. In each iteration, a new location qi =
f(qi−1, G) is produced based on a location qi−1 found be-
fore the iteration. According to the monotonic convergence
property, qi is closer to the Fermat-Weber point than qi−1;
hence, theoretically, the Fermat-Weber point is located at
limn→∞ f

n(q0, G), which indicates a location obtained after
infinite iterations. The function f is described below.

f(q,G) =

{ ∑
psi∈G

{gsi (q)× psi .l} if q /∈ G
q Otherwise

(8)

where

gsi (q) =
psi .w

t

d(q, psi .l)
× {

∑
ps

′
i′ ∈G

ps
′

i′ .w
t

d(q, ps
′
i′ .l)
}−1 (9)

Setting an acceptable deviation from the cost of the op-
timal location as the stopping rule is widely used in appli-
cations [17]. For example, given an error bound ε, the loca-
tion after the nth iterations ln, and the optimal location l∞,

the iteration procedure will stop when c(ln,G)−c(l∞,G)
c(l∞,G)

≤ ε,

where c(l∞, G) is approximated by a lower bound of the cost
at ln:

lb(ln) =
d∑
k=1

(min
x

(
∑
psi∈G

psi .w
t |ln.xk − psi .l.xk||x− psi .l.xk|

d(ln, psi .l)
))

(10)

3. SEQUENTIAL SCAN COMBINATIONS AL-
GORITHM

One basic algorithm to solve MOLQ is to sequentially
check optimal locations of all object combinations. In par-
ticular, given E = {P1, ..., Pn}, the optimal locations l’s of
all combinations {pu1 , ..., pvn}, where pu1 ∈ P1, ..., p

v
n ∈ Pn,

are calculated by the Fermat-Weber method, which consid-
ers both object locations and their type weights. The answer
to the query is the best location among these l’s. We call
this algorithm the Sequential Scan Combinations (SSC) al-
gorithm.
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Since the computation of SSC is expensive, we can set an
upper bound to reduce the complexity of the algorithm by
filtering out a portion of combinations whose optimal loca-
tions cannot be the answer. For example, two combinations
(object groups), G1 and G2, will be evaluated sequentially
in SSC. We assume the optimal location of G1 is at l1. The
weighted distance from l1 toG1 is denoted by d1. Before pro-
cessing G2 =< pu1 , ..., p

v
n >, we first set d1 as an upper bound

and calculate the optimal location l2 of < pu1 , p
s
2 >, which

costs much less than computing an optimal location of mul-
tiple points. If the weighted distance from l2 to < pu1 , p

s
2 > is

greater than d1, the weighted distance from any location to
G2 must be greater than d1. Thus, calculating the optimal
location of G2 can be avoided. During SSC processing, the
upper bound is initialized to infinity and will be reduced to
the total weighted distance of the best solution found so far.
The detailed steps of SSC are described in Algorithm 1.

4. OVD AND MOVD MODELS
Before describing our MOVD-based solutions, we will first

introduce the OVD and MOVD models. In this section, we
start with a simple OVD example which provides a basic
understanding of the model. Then, we formally define OVD
and Minimum OVD (MOVD) and systematically analyze
their properties, which not only highlight the difference from
and relationship with Voronoi diagrams, but also provide
correctness analyses of our MOVD-based solutions. Finally,
we build an algebraic structure of MOVD on an overlap op-
eration ⊕. We also discuss the properties of MOVD, which
are part of the proof of our proposed solution and will be
used in the next section.

4.1 An OVD Example
Fig. 2(a) and Fig. 2(b) display two ordinary Voronoi dia-

grams generated by schools and supermarkets, respectively.
The shaded areas in the figures are dominance regions of
generators p3 and q1. Fig. 2(c) shows an OVD that over-
laps the two ordinary Voronoi diagrams. Apparently, the
OVD is comprised of a number of overlapping regions, each
of which is generated by overlapping two ordinary Voronoi
polygons. For example, the doubly shaded area in Fig. 2(c)
is the overlapping region in both shaded regions of two or-
dinary Voronoi diagrams. According to the properties of
Voronoi diagrams, p3 and q1 are the closest school and su-
permarket to any locations in the doubly shaded region.

4.2 Overlapped Voronoi Diagram Definition

4.2.1 Overlapped Voronoi Diagram (OVD)
Given a set of object sets E = {P1, ..., Pn} and a set of

p1
p2

p3 p4

p5

p6

(a) Schools

q1 q2

q3

q4 q5

(b) Supermarkets

p1
p2

p3 p4
p5

p6

1111
q1 q2

q3

q4
q5

(c) An OVD

Figure 2: Ordinary Voronoi diagrams and OVDs.

Voronoi diagrams V = {V D(Pi)|Pi ∈ E}, where V D(Pi) can
be either an ordinary or a weighted Voronoi diagram gener-
ated by Pi in the search space R, Overlapped Voronoi Dia-
gram (OVD) is a set of Overlapped Voronoi Regions (OVR),

OVD(E) = {OV Rj | 1 ≤ j ≤ m} (11)

where OV Rj is

OV R(pu1 , ..., p
v
n) = {l|l ∈Dom(pu1 ), ..., l ∈ Dom(pvn),

pu1 ∈ P1, ..., p
v
n ∈ Pn}

(12)

Property 1. An OVD may have one or more empty set
OVRs (e.g., OV Rj = ∅).

Proof. By definition, an OV R is the intersection of dom-
inance regions from different Voronoi diagrams. These dom-
inance regions may not overlap each other (see the domi-
nance regions of p1 in Fig. 2(a) and q5 in Fig. 2(b)). If this
is the case, no locations fall into both dominance regions,
thus their overlapping region is an empty set.

4.2.2 Minimum OVD (MOVD)
A Minimum Overlapped Voronoi Diagram (MOVD) is an

OVD in which all empty OVRs have been removed. An
OVD is an MOVD if it does not have any empty OVRs.
The formal definition of MOVD is:

MOVD(E) = OVD(E)− {∅} (13)

In the extreme case that E is an empty set, no Voronoi
diagrams are overlapped, and the search space is not decom-
posed into subregions. We define this case as:

MOVD(∅) = OVD(∅) = {R} (14)

4.2.3 OVD/MOVD Properties
A number of properties and proofs can be derived from

OVD/MOVD definitions. These properties are the basis of
the OVD/MOVD model utilized in our MOVD-based solu-
tion.

Property 2. |MOVD(E)| ≤ |OVD(E)| =
∏
Pi∈E |Pi|.

Proof. By Equation 12, OVRs are generated by a com-
bination of selected Voronoi regions. The number of OVRs
in OVD(E) is the product of the number of Voroni regions
in these Voronoi diagrams. Because all the possible empty
sets have been removed, the size of MOVD(E) is less than
or equal to OVD(E).

Property 3. Any MOVD fully covers the entire search
space R.

OVRj∈MOVD(E)⋃
OV Rj = R (15)

Proof. According to the Voronoi diagram property that
a Voronoi diagram fully covers the entire search space, ∀l ∈
R, there must exist Voronoi regions {Dom(psi ) ∈ V D(Pi)|l ∈
Dom(psi ), p

s
i ∈ Pi, Pi ∈ E}. By Equation 12, the location

l is at the OV R(pu1 , ..., p
v
n), and an OVD fully covers the

entire search space. Moreover, because MOVD(E) only re-
moves empty sets from OVD(E), MOVD(E) covers the en-
tire search space as well.
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Property 4. The overlapping area of two different OVRs
is a subset of their common boundaries.

Proof. By Equation 12, an OVR is the overlapping re-
gion of {Dom(pu1 ),..., Dom(pvn)}. If we have two OVRs from
an OVD such that OV R =

⋂
psi∈{p

u
1 ,...,p

v
n}
Dom(psi ), and

OV R′ =
⋂
ps

′
i ∈{p

u′
1 ,...,pv

′
n }

Dom(ps
′
i ) , then the overlapping

area of OV R and OV R′ is

OV R
⋂
OV R′

= (
⋂

psi∈{p
u
1 ,...,p

v
n}

Dom(psi ))
⋂

(
⋂

ps
′

i ∈{p
u′
1 ,...,pv

′
n }

Dom(ps
′
i ))

=
n⋂
i=1

(Dom(psi )
⋂

Dom(ps
′
i ))

(16)
According to the properties of the Voronoi diagram, Dom(psi )

∩ Dom(ps
′
i ), where psi 6= ps

′
i , p

s
i , p

s′
i ∈ Pi, is either their com-

mon boundaries or an empty set. Moreover, if OV R and

OV R′ are different, there must exist a psi and ps
′
i that are

different. The boundaries of an OVR are comprised of the
boundaries of corresponding Voronoi regions. Hence, the
overlapping region of OV R and OV R′ is a subset of their
common boundaries.

Property 5. Given a type weight function ςt, and object
weight functions σ = {ςo1 , ..., ςon}, a point q in OV R(pu1 , ..., p

v
n),

the total weighted distance from q to the corresponding ob-
ject group G = {pu1 , ..., pvn} is the minimum weighted distance
from q to all object combinations G′, where G′ ∈ P1×...×Pn.

WGD(q,G, ςt, σ) = min(

{ WGD(q,G′, ςt, σ) | G′ ∈ P1 × ...× Pn } )
(17)

Proof. If V D(P1) is generated by P1 and the weight
function ςo1 ∈ σ, a point q in OV R(pu1 , ..., p

v
n) must fall in

Dom(pu1 ) of V D(P1) so that pu1 is the closest point in P1 to
q. WD(q, pu1 , ςt, ςo1 ) is the minimum weighted distance from
q to any points in P1. We can get the same result in other
sets Pi ∈ E. After summing them up, we obtain Property 5
that WGD(q,G, ςt, σ) has the minimum distance.

Property 6. |MOVD(E)| is bigger than or equal to |V D(Pi)|,
where Pi ∈ E.

|MOVD(E)| ≥ |V D(Pi)| (18)

Proof. Overlapping two Voronoi diagrams is a process
in which one Voronoi diagram is decomposed by another
Voronoi diagram. Each Voronoi region is divided into a
number of subregions, unless two Voronoi regions from dif-
ferent VDs are exactly the same, or one region contains the
other. In these extreme cases, the Voronoi region remains
unchanged. Thus, after overlapping Voronoi diagrams, the
number of overlapping regions in an MOVD is either greater
than or equal to the basic Voronoi diagrams.

Property 7. When E is made up of only one object set
E = {P}, thenMOVD(E) = OVD(E) = V D(P ) (19)

Proof. This property is straightforward. If E has only
one object set P , there is no other Voronoi diagram over-
lapped on V D(P ). Obviously V D(P ) does not have any
empty regions. Therefore, OVD(E) and MOVD(E) are

identical to V D(P ). This property not only states an ex-
treme case of definitions, but also highlights basic units in
the OVD/MOVD model. All OVDs are generated from
these building blocks.

4.3 Algebraic Structure of MOVD
After theoretically introducing the OVD/MOVD model,

we will mainly focus on the overlap operation. We create an
algebraic structure of MOVD by exploring MOVD space un-
der the overlap operation and discussing its properties. The
implementation details of the operation will be presented in
Section 5.

4.3.1 MOVD space
MOVD space is a universal set of MOVDs that are fed

into and produced by the overlap operation. Given a uni-
versal set of object sets E = {P1, ..., Pn}, the universal set
of MOVD(E) is defined as

U(MOVD(E)) = {MOVD(Ei) | Ei ⊆ E} (20)

Property 8. The number of MOVDs existing in the uni-
versal space is as follows:

|U(MOVD(E))| =
|E|∑
i=0

(
|E|
i

)
(21)

Proof. By definition, MOVD space consists of a number
of MOVDs, each of which is generated by a subset of E; thus
the number of MOVDs in the space equals the number of
subsets in E, which is presented as Equation 21. The case
that i equals 0 indicates a special subset, the empty set,
defined in Equation 14.

4.3.2 Overlap operation ⊕
We define a binary operation ⊕ that overlaps two given

MOVDs. The result of ⊕ is a new MOVD generated by
the union of generator sets of input MOVDs. The for-
mal definition is: given MOVD(Ei) and MOVD(Ej), where
Ei, Ej ⊆ E, then

MOVD(Ei)⊕MOVD(Ej) = MOVD(Ei ∪ Ej) (22)

A general implementation (RRB) of the operation will be
discussed in Section 5.2.

4.3.3 ⊕ Operation Properties
By properties of the union operation on sets, we can obtain

the following three laws.

Property 9. Idempotent Law

MOVD(Ei)⊕MOVD(Ei) = MOVD(Ei) (23)

Property 10. Commutative Law

MOVD(Ei)⊕MOVD(Ej)

= MOVD(Ej)⊕MOVD(Ei)
(24)

Property 11. Associate Law

(MOVD(Ei)⊕MOVD(Ej))⊕MOVD(Ek) =

MOVD(Ei)⊕ (MOVD(Ej)⊕MOVD(Ek))
(25)

Corollary 4.1. MOVD(Ei), where Ei ⊆ E, is unique.

395



Proof. According to the commutative and associate laws
of operation ⊕, the order of overlapping Voronoi diagrams
does not cause the result to change. Thus MOVD(Ei) is
unique.

Property 12. MOVD(∅) is an identity element.

Proof. MOVD(∅) equals {R} such that it leaves MOVDs
unchanged under operation ⊕. The following equation can
be easily proved by the definition of ⊕.

MOVD(Ei)⊕MOVD(∅) = MOVD(Ei) (26)

Property 13. Closure: the universal MOVD space of E
is closed under operation ⊕.

Proof. By definition, given any MOVD(Ei) and MOVD(Ej),
where Ei, Ej ⊆ E, the result of overlapping them is MOVD(Ei∪
Ej). Ei∪Ej is still a subset of E, so the result is an element
of U(MOVD(E)).

Definition Sequential Overlap Operations

n∑
i=1

MOVD(Ei) = MOVD(E1)⊕ ...⊕MOVD(En)

= MOVD(
n⋃
i=1

Ei)

(27)

Definition Partial Order
If MOVD(Ei) = MOVD(Ej)⊕MOVD(Ek) then,

MOVD(Ei) mMOVD(Ej)

MOVD(Ei) mMOVD(Ek)
(28)

The partial order definition formalizes a comparison model
for evaluating how much information MOVDs maintain. As
Equation 28 shows, MOVD(Ei) is generated byMOVD(Ej)
and MOVD(Ek). MOVD(Ei) has more information (i.e.,
objects) than either MOVD(Ej) or MOVD(Ek). We use
m to denote the relationship.

Property 14. MOVD(Ei) ⊕MOVD(Ej) = MOVD(Ei)
if MOVD(Ei) m MOVD(Ej).

Proof. The following equation proves Property 14 by ap-
plying the partial order definition that decomposesMOVD(Ei)
into MOVD(Ej) and MOVD(Ek), and the commutative
and idempotent laws of operation ⊕.

MOVD(Ei)⊕MOVD(Ej)

= MOVD(Ej)⊕MOVD(Ek)⊕MOVD(Ej)

= MOVD(Ej)⊕MOVD(Ej)⊕MOVD(Ek)

= MOVD(Ej)⊕MOVD(Ek)

= MOVD(Ei)

(29)

5. MOVD-BASED ALGORITHMS
After introducing the OVD model, we now illustrate our

MOVD-based algorithms for the query. In this research we
mainly focus on applying the properties of OVD and MOVD
models to solve the proposed novel query type. Therefore,
the proposed algorithms primarily rely on main memory for
data storage.

5.1 Framework of the MOVD-based Solution
Fig. 3 illustrates the framework of our solution. The in-

puts are Point of Interest (POI) data sets (Pi ∈ E), object
weight functions σ = {ςo1 , ..., ςon}, and a type weight function
ςt. The result is an optimal location of the query.

In the evaluation system, the query is sequentially pro-
cessed by three modules. In particular, based on POIs of
particular types and the object weight functions, VD Gener-
ator generates Voronoi diagrams that are the basic MOVDs
used in the next step (see Property 7). Then, a new MOVD
is produced by overlapping the basic MOVDs with MOVD
Overlapper (see Equation 27). A significant number of im-
possible object combinations are filtered out, which reduces
the cost of Fermat-Weber computation in the next step. Fi-
nally, Optimizer sequentially scans OVRs in the new MOVD,
finding a locally optimal location in each OVR, and returns
the best of these locations as the query result.

Essentially, two solutions are proposed in Fig. 3, illus-
trated by two paths from the VD Generator to the Opti-
mizer. The solutions apply either Real Region as Bound-
ary (RRB) or Minimum Bounding Rectangle as Boundary
(MBRB) approaches in the MOVD Overlapper. The RRB
approach provides real boundaries of OVRs in the new MOVD
by calculating the overlapping regions, which is expensive if
the regions are complex. The MBRB approach can avoid the
real region calculation, but it produces false positives that
would incur unnecessary calculation during overlapping the
next MOVD. Which approach performs better depends on
the number and the complexity of MOVDs generated by the
VD Generator. The two MOVD overlapping approaches will
be described in the following two subsections. A cost-bound
approach used in Optimizer will be presented in Section 5.4.
The Voronoi diagram generation approaches used in the VD
Generator can be found in [14].

5.2 RRB Approach
In this subsection, we describe the RRB approach for

MOVD overlapping operations. Since basic MOVDs are
identical to Voronoi diagrams (see Property 7), the genera-
tion methods of which have been extensively studied, we will
mainly focus on the process of creating an MOVD from two
MOVDs. For a better explanation, overlapping two basic
MOVDs is illustrated by the simple example in Fig. 4.

A plane-sweep-based algorithm is designed in the RRB ap-
proach. As the typical plane sweep approach [4], the RRB
approach maintains an event queue and two sweeping sta-
tuses. The event queue consists of a number of event points
that are the maximum and minimum values of projections of
OVRs on the y axis. These maximum and minimum points

{VD(P1),…, VD(Pn)}

2. MOVD Overlapper

3. Optimizer (Algorithm 6)

1. VD Generator

MOVD ({P1,…, Pn})

Evaluation SystemQuery Inputs

{P1, …, Pn}

POI Datasets

RRB
(Algorithms 3 & 4)

MBRB
(Algorithms 3 & 5)

An Optimal 

Location

Result

Type Weight 

Function

V
t

Object Weight 

Functions

Figure 3: Framework of the MOVD-based solution.
The paths of RRB and MBRB solution are indicated
by solid and dashed arrows, respectively.
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Figure 4: Overlapping two MOVDs.

are called start and end points, which indicate that when
the sweeping line arrives at these points, the correspond-
ing OVR starts or ends its intersection with the sweeping
line. The event points of both MOVDs are sorted by their
y-coordinates in descending order. The sweeping line verti-
cally scans the plane from top to bottom, so that the start
point of an OVR will be reached before its end point. The
status structures are set up to record OVRs that intersect
with the sweeping line. Two status structures are main-
tained individually and respectively for MOVDs. OVRs also
have a range (minimum and maximum values) of projections
on the x axis. The event points are pre-determined before
the overlap calculation.

During the sweeping process, when an end point is ar-
rived at, the corresponding OVR is removed from the sta-
tus structure. When the sweeping line reaches a start point,
the corresponding OVR is inserted into the status structure.
Moreover, overlapping regions of the new OVR and OVRs in
the other status structures are required to be detected. The
detection process first identifies potential OVRs, the range
of which overlaps with the new OVR on the x axis. Then,
the overlapped region of the two OVRs is calculated. The
details are described in Algorithms 2 and 3.

The essential idea of the algorithms is that the minimum
and maximum values on the x and y axes are an outer
boundary of OVR. Two OVRs cannot overlap each other if
the area inside their outer boundaries do not overlap. Over-
lapped outer boundary detection significantly reduces over-
lapping region calculations by avoiding the overlapping of
two OVRs (e.g., regions of p1 and q5 in Fig. 4), which are
actually far away from each other.

As shown in Algorithm 2, the overlap operation receives
two MOVDs as input parameters and produces a new MOVD.
From lines 1-4, Result, EventQueue, Status and Status′

are initialized to be empty sets. Status keeps the status for
MOVD(E), and Status′ for MOVD(E′). Then, in lines
5-6, events are inserted into EventQueue and sorted. Fi-
nally, from lines 7-14, all events are iteratively handled by
Algorithm 3.

Algorithm 3 describes the event handler that receives the
following four parameters. e is an event object. Current
is the status structure of MOVD from which the event oc-
curs. Other refers to the other status structure. Result is
the MOVD produced by the overlap operation. As shown
in Fig. 6, an MOVD manages a list of OVRs, each of which
is represented as <region, pois>, where region maintains
the shape of the OVR and pois is a list of objects associated
with the OVR. If a start event occurs, the corresponding
OVR is first inserted into the Current status. Then, poten-
tially overlapped OVRs in Other are detected by comparing
their RangeX with the current OVR. RangeX denotes the

range of possible x-coordinates of OVRs. If their RangeX
overlap, the overlapped region is calculated in line 5. If
the newly generated overlapped region is not empty, a pair
of the region and its associated pois will be appended to
Result. In the second branch, an end event takes place and
the corresponding OVR is removed from Current.

It is worth noting that due to the space limitation of this
paper, a general overlapping approach is not presented; how-
ever, the RRB approach can be modified to be a general
approach used for the OVD model if line 7 is removed and
only region is appended to Result in line 8. pois contains
the additional information for our specific query type. Algo-
rithm 3 does not specify any methods for overlapping region
calculation in line 5. The reason is that the shape of OVRs
in a general model is difficult to predict. The case is worse
after overlapping because the OVRs become more complex.
Furthermore, overlap methods for regions vary greatly as
well. The overlap methods for polygons are different from
the ones for circles. The overlap methods applied in the
model cannot be determined until the shapes of regions have
been decided. We will discuss this issue in Section 5.3.

The RRB approach is an output-sensitive algorithm, the
complexity of which depends on the size of the results, or
more exactly the number of OVRs existing in the new MOVD.
We denote the average size of input MOVDs by n. There
are 4 × n events in total, and sorting them in order takes
O(n lgn) time. There are 2 × n start and end events han-
dled by Algorithm 3. If status structures are organized as
a balanced search tree that sorts OVRs in order by their
start x-coordinates, inserting or deleting an OVR from the
status can be completed in O(lgn) time. The total cost of
maintaining the status is O(n lgn) as well. If status struc-
tures record the start and end x-coordinates of OVRs, a
range specified by the points that are either immediately
smaller than the minimum or greater than the maximum x-
coordinate of the current OVR can be figured out in O(lgn)
time. The OVRs, whose event points are located at the
range, are potentially required to overlap the current OVR.
Moreover, we denote the number of OVRs in the result by
I and the cost of overlapping region computation by θ. The
cost of calculating the overlap regions is θ× I. In the worst
case, I becomes n2, so that the total cost of operation ⊕ is
O(θ × n2).

Algorithm 2 Overlap(MOVD(E), MOVD(E′))

1. Result = ∅
2. EventQueue = ∅
3. Status = ∅
4. Status′ = ∅
5. Push events of MOVD(E) and MOVD(E′) into
EventQueue

6. Sort(EventQueue)
7. while ( EventQueue 6= ∅ ) do
8. e = EventQueue.pop()
9. if ( e is from MOVD(E) ) then

10. EventHandler(e, Status, Status′, Result)
11. else
12. EventHandler(e, Status′, Status, Result)
13. end if
14. end while
15. return Result
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Algorithm 3 EventHandler(e, Current, Other, Result)

1. if e is a start event then
2. Insert e.ovr into Current
3. for ovr ∈ Other do
4. if RangeX(e.ovr) ∩ RangeX(ovr) 6= ∅ then
5. region = e.ovr.region ∩ ovr.region
6. if region 6= ∅ then
7. pois = e.ovr.pois ∪ ovr.pois
8. Result.append(< region, pois >)
9. end if

10. end if
11. end for
12. else
13. Remove e.ovr from Current
14. end if
15. return

5.3 MBRB Approach
According to the variety of weight functions specified in

the query inputs, various Voronoi diagrams are generated
by the VD Generator. In addition to the ordinary Voronoi
diagrams, two typical weighted Voronoi diagrams are dis-
played in Fig. 5. The generation methods of additively and
multiplicatively Voronoi diagrams have been presented in [1,
10, 5, 13]. More practical Voronoi diagrams can be found
in [14].

Although the generation methods of weighted Voronoi dia-
grams have been extensively studied, efficiently maintaining
the shape of OVRs is extremely difficult since they are not in
regular shapes. In general, their boundaries have to be mod-
elled by a number of curves. More importantly, overheads
of overlapping region calculations would be highly expensive
due to the complexity of boundary representation.

To overcome this difficulty, we propose the MBRB ap-
proach that combines Algorithm 2 with an alternative event
handler, MBRBHandler, for the overlap operation. The
MBRB approach is motivated by an observation that the
shapes of OVRs are not used in Optimizer. Instead, the
POI locations and their weights are the criteria for optimal
location selection; therefore, we set the Minimum Bounding
Rectangles (MBR) of OVRs as their shapes in this approach.
Two OVRs will be treated as overlapped if their MBRs are
overlapped. This approach is able to significantly reduce the
cost of the overlap operation by simplifying boundary main-
tenance and avoiding real region overlapping calculations
(line 5 in Algorithm 3 is replaced by line 5 in Algorithm 4);
however, the approach suffers from the issue that unneces-
sary OVRs (false positives which are not really overlapped)
would be appended to the new MOVD.

The data structure used in MBRBHandler is shown in
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Figure 5: Weighted Voronoi diagrams (the numbers
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Fig. 6. An OVR is indicated as <MBR, pois>, where an
MBR is comprised of minimum and maximum points on the
x and y axes, and pois is a list of objects associated with
the OVR.

The MBRBHandler is described in Algorithm 4. In the
branch that handles start event processing, the handler only
detects whether two MBRs are overlapped. If this is the
case, the MBRs are overlapped and the objects associated
with the two OVRs are merged. The new OVR is appended
to the result. The final branch remains unchanged.

Compared to the RRB approach, the complexity of re-
gion overlapping θ decreases in constant time, but the size
of output I increases, the performance impact of which is
difficult to evaluate. The upper bound of I is n2; therefore,
the complexity of the MBRB approach becomes O(n2) in
the worst case.

It is worth noting that the basic principle of our solutions
is that the search space is decomposed into a number of
OVRs, in which a locally optimal location is found by Opti-
mizer; however, the shapes of OVRs are not calculated in the
MBRB approach. How does the MBRB solution determine
an optimal location in an OVR?

The MBRB solution does not limit the locally optimal
location in a particular OVR. Instead, we look for it in the
entire search space. As shown in Fig. 7 (next to Fig. 6), if an
optimal location Lk is found in OV Rk, Lk will undoubtedly
be appended to the candidate list. If the optimal location
Li is outside of OV Ri, according to Property 3, Li must
be located in another OVR, for example OV Rj , which must
have an optimal location Lj . Lj must be identical or better
than Li. Appending them to the candidate list does not
change the global optimum since only the best one will be
returned as the query result. Thus, appending Li to the
candidate list does not change the global optimum.

5.4 A Cost-Bound approach in Optimizer

Algorithm 4 MBRBHandler(e, Current, Other, Results)

1. if e is a start event then
2. Insert e.ovr into Current
3. for ovr ∈ Other do
4. if RangeX(e.ovr)

⋂
RangeX(ovr) 6= ∅ then

5. mbr = e.ovr.MBR
⋂

ovr.MBR
6. pois = e.ovr.pois

⋃
ovr.pois

7. Results.append(<mbr, pois>)
8. end if
9. end for

10. else
11. Remove e.ovr from Current
12. end if
13. return
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An optimal location q that minimizes MWGD(q,E, ςt, σ)
is found in the third step of the proposed framework. The
framework does not specify a weight function for type weight
calculations; however, we mainly focus on a multiplicatively-
based weight function, which is one of the practical methods
used in real applications. Other weight functions can be
applied in the framework as well.

If applying a multiplicatively-based weight function to
type weights, the problem of finding an optimal location in
each OVR is converted into a typical Fermat-Weber prob-
lem in two-dimensional space. The objects associated with
OVRs are the points in the Fermat-Weber problems. The
weights of the points are specified by the type weight func-
tion ςt. The object weights are integrated into the distance
from a location to points. As mentioned in Section 2.3, the
problem has been solved theoretically. The optimal loca-
tion in three-point cases and multiple-collinear-point cases
can be found in constant and linear time, respectively. An
approximate iterative approach has been proposed for other
cases [24].

In the RRB and MBRB approaches, we observe that a
large number of OVRs will be created by MOVD Overlap-
per (see Property 2). In addition, the number of the Fermat-
Weber problems increases rapidly when the number of ob-
jects grows. A basic approach is to sequentially calculate
the optimal locations of these Fermat-Weber problems and
select the best one as the query result; however, applying
the iterative method to the Fermat-Weber problems is very
expensive. Therefore, we propose a cost-bound approach in
which an optimal cost is set as a global lower bound. Dur-
ing the processing of a Fermat-Weber problem, a local lower
bound of the cost in each iteration will be calculated. If the
local lower bound is greater than the global lower bound,
no matter how many iterations will be processed, its local
optimal cost cannot be better than the global lower bound.
Thus the following iterations can be avoided, even though
the stopping condition has not been satisfied. The definition
and the cost-bound approach of the problem are formally
described as below.

5.4.1 Optimum Location of Multiple Fermat-Weber
Problems

Given a set of object groups E = {G1, ..., Gn}, where Gi
(|Gi| ≥ 3) contains points of a Fermat-Weber problem, a
type weight functions ςt and object weight functions σ, let lj
denote the optimal location of Gj under a stopping condition
γ. The optimal location of E is a location l ∈ {lj |1 ≤ j ≤ n}
that minimizes WGD(lj , Gj , ς

t, σ).

5.4.2 A Cost-Bound Approach
The cost-bound approach receives a set of object groups

E, a type weight function ςt, object weight functions σ, and
a stopping condition γ. Setting an error bound ε is one of the
typical stopping conditions (see Section 2.3). The weights
of the objects are indicated by ςt. The distance from a
location to points is calculated by their Euclidean distance
and σ. The number of points in the Fermat-Weber problems
(|Gi|) is unnecessarily fixed.

In Algorithm 5, the global lower bound, Cbound, is ini-
tialized to infinity and reduced to the minimum cost of the
optimal location found so far. The algorithm sequentially
checks the Fermat-Weber problems, each of which have a
local optimal location found in lines 4-17. In the branch of

Algorithm 5 CostBoundApproach(E, ςt, σ, γ)

1. Cbound = ∞
2. l = < 0, 0 >
3. for Gi ∈ E do
4. Initialize li to the center of Gi
5. if |Gi| = 3 or Gi is a collinear case then
6. Calculate the optimal location li of Gi
7. else
8. Let Gi =< pu1 , ..., p

v
n >

9. Calculate the optimal location l′ of < pu1 , p
s
2 >

10. if WGD(l′, {pu1 , ps2}, ςt, σ) > Cbound then
11. Continue
12. end if
13. repeat
14. li = f (li, Gi) /* Iterating, see Equation 8 */
15. Lbound = lb(li) /* see Equation 10 */
16. until γ is satisfied or Lbound ≥ Cbound
17. end if
18. Cost = WGD(li, Gi, ς

t, σ)
19. if Cbound > Cost then
20. Cbound = Cost
21. l = li
22. end if
23. end for
24. return l

the iterative method inside the loop, an optimal location of
the first two points in Gi is first detected in lines 8-12, as
SSC solution does. If a better result of Gi potentially exists,
a local lower bound is calculated in each iteration in line 15.
If the local lower bound is greater than Cbound, the itera-
tion will stop in line 16. The complexity of Algorithm 5 is
O(µ × |E|), where µ denotes average number of iterations
processed for Fermat-Weber problems. The Cost-bound ap-
proach can be used in the SSC solution as well.

6. EXPERIMENTAL VALIDATION
In this section, we evaluate the performance of the OVD

model and proposed query solutions with real-world data
sets. We implemented the proposed algorithms in C++. All
data was loaded into the main memory during the execution
of the simulations. All the experiments were conducted on
a Red Hat Enterprise Linux server equipped with four Intel
Xeon X5550 2.67 GHz processors and 24 GB of memory.
All results were recorded after the system model reached a
steady state.

In our experiments, the data sets were downloaded from
GeoNames1. We retrieved the largest five object types,
230,762 streams (STM), 225,553 churches (CH), 200,996
schools (SCH), 166,788 populated places (PPL), and 110,289
buildings (BLDG), in the United States. By default, we
set the type weight wt and object weight wo to 1. The
multiplicatively-based weight functions are used as ςt and
σ. GPC library2 is used for polygon overlapping calcula-
tions.

6.1 MOLQ Evaluation
We evaluate the solutions for MOLQ queries with three

and four object types that are popular applications in the

1http://www.geonames.org/
2http://www.cs.man.ac.uk/∼toby/gpc/
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real world. The type weights are randomly generated from
0 to 10. We use the largest object types, E={STM , CH,
SCH} for the three-type case and E={STM , CH, SCH,
PPL} for the four-type case. The objects are randomly
selected from the data sets.

Fig. 8 displays the performance of SSC, the proposed RRB
and MBRB solutions. The cost-bound approach is used in
all the three solutions. As Fig. 8 shows, RRB and MBRB
run 4-28 times and 13-81 times faster than SSC, respectively,
because they avoid a significant number of object combina-
tions. Overlapping Voronoi diagrams is a process of filtering
out combinations that cannot be the closest objects of any
location. Another observation is that MBRB takes only 1/3
of the execution time of query processing in RRB. The evi-
dence has been shown in Fig. 11 and 14; the benefit obtained
by MOVD Overlapper in MBRB is greater than the overhead
paid in Optimizer.

In the query with four object types, only approximate
results can be provided by the three approaches. The error
bound ε is set to be 0.001. Fig. 9 shows the execution time
of the three solutions, in which the RRB solution has the
best performance (2.8 times faster than SSC and 50% faster
than MBRB, on average). Although the execution time of
overlapping processing in the MBRB approach is slightly
shorter than RRB as shown in Fig. 14(b), a large number
of OVRs (21 times more than that in RRB) makes MBRB
expensive in Fermat-Weber calculation, finding an optimal
location in each OVRs. In the general cases, the overlapping
processing takes nearly 90% of execution time in the query
evaluation.

6.2 Cost-Bound Approach Evaluation
We evaluate the basic (Original) and cost-bound (CB) ap-

proaches by varying the number of Fermat-Weber problems
and the error bound ε. The basic approach sequentially
calculates the optimum locations of all Fermat-Weber prob-
lems, and selects the best location for the result. The num-
ber of points in each Fermat-Weber problem is fixed to 5.
The coordinates and type weights (from 0 to 10) of points
are randomly generated. The iterative method for a Fermat-
Weber problem will stop when the deviation from the opti-
mal cost is less than the error bound ε (see Section 2.3) [17].
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Fig. 10 displays the execution time of the two approaches.
As either the problem size increases or ε decreases, the exe-
cution time of both approaches rises. Obviously, the growth
rate of the original approach is higher than the cost-bound
approach because a significant number of unnecessary iter-
ations can be avoided by setting a cost bound, which makes
the cost-bound approach more efficient (4 to 34 times faster
than the original approach), even though it has to pay extra
overhead on lower bound calculations in each iteration.

6.3 Overlapping Two Voronoi Diagrams
Two overlap approaches, RRB and MBRB, on two reg-

ular Voronoi diagrams are evaluated with various data set
sizes. The Voronoi diagrams are generated by two object
sets, which are randomly selected from STM and CH. Their
sizes are indicated by the x and y axes in Fig. 11-13.

From Fig. 11, we observe that the execution time of the
overlapping processing in MBRB is shorter than that of
RRB. In particular, the speedup of MBRB ranges from 16.3
times in two 10K data sets to 100.3 times in two 160K data
sets. The reason is that the regions of OVRs generated by
RRB are determined by real region overlapping calculation
(polygon overlapping calculation in this experiment). The
complexity of overlapping two polygons is proportional to
the number of vertices in the polygons, which is more ex-
pensive than the MBR detection (rectangle overlapping cal-
culation) that can be completed in constant time in MBRB.
Also, Fig. 12 shows the evidence that due to replacing real
regions of OVRs with their MBRs, MBRB generates around
150% more OVRs, on average, than RRB. Two OVRs that
are not really overlapped with each other may be determined
to be overlapped by the MBR detection. However, Fig. 13
shows that MBRB consumes 26%-29% less memory than
RRB. Although MBRB generates more OVRs, the regions
(MBRs) of which can be represented by just two points, all
vertices of polygons have to be recorded in RRB. Accord-
ing to Fig. 13, the total number of points managed by the
MBRB approach is smaller than RRB.

6.4 Overlapping Multiple Voronoi Diagrams
In this experiment, we examine the overlap operation by

varying the number of Voronoi diagrams. These Voronoi
diagrams are generated by objects randomly selected from
E = {STM,CH, SCH,PPL,BLDG}. For object type se-
lection, we follow the sequence in E (i.e., E = {STM,CH}
for the two-type case, E = {STM,CH, SCH} for the three-
type case, and so on). In addition to performance evalu-
ation, we explore the availability of the overlap operation,
which is described by the maximum size of objects in a par-
ticular number of object types that can be processed on the
test bed. All data is assumed to be loaded into the main
memory.

Fig. 14(a) demonstrates the availability of the overlap
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Figure 14: Varying number of object types.

operation by varying the number of object types. When
the number of object types increases, the maximum num-
bers of objects in both RRB and MBRB approaches drop
rapidly, from 105 objects in two types to 103 objects in four
types. The more Voronoi diagrams overlap, the more OVRs
are generated which requires more memory. Moreover, the
dropping rate of the MBRB approach is higher than RRB
because the MBRB approach consumes more memory when
the number of object types is greater than three, as shown
in Fig. 14(d).

Fig. 14(b), 14(c), and 14(d) display corresponding execu-
tion time, the number of OVRs, and memory consumption
of both approaches with parameters that lie on the avail-
ability lines (in Fig. 14(a)). Due to different data sizes and
the number of object types configured in the two groups of
evaluation, we conduct another group of experiments that
evaluate the RRB approach with the parameters used in
MBRB evaluation for fair comparison. The experimental
results are highlighted by RRB*.

As we expect, the MBRB approach always produces rela-
tively larger set of OVRs than RRB*, as shown in Fig. 14(c).
The more OVRs generated by MBRB than RRB* increase
from 1.5 times in two object types, 21 times in four object
types, to 74 times in five object types, since the false pos-
itives in the overlapping processing will be fed in the next
overlapping processing, which generates more false positives.
Moreover, in Fig. 14(b), when the number of object types is
greater than 4, RRB* runs faster than the MBRB approach
because the computation complexity induced by a surpris-
ingly large number of OVRs dominates the entire process in
the MBRB approach, which has a greater impact than the
benefits obtained from the region overlapping calculation. In
addition, a turning point in terms of memory consumption
is observed between 2 and 3 in Fig. 14(d). When overlap-
ping three or more Voronoi diagrams, the MBRB approach
consumes more memory due to the large number of OVRs,
in which the total number of points is more than the vertices
managed by RRB*.

7. RELATED WORK
In this section, we review previous works related to reverse

nearest neighbor queries and optimal location queries.

7.1 Reverse Nearest Neighbor Query

Korn and Muthukrishnan [11] proposed the influence set
notion based on reverse nearest neighbor (RNN) queries.
They presented a precomputation-based approach for solv-
ing RNN queries and an R-tree based method (RNN-tree)
for large data sets. In order to decrease index maintenance
costs in [11], Yang and Lin [27] presented the Rdnn-tree
which combines the R-tree with the RNN-tree and leads
to significant savings in dynamically maintaining the in-
dex structure. The solutions in [11, 27] can be employed
to evaluate both the monochromatic RNN query and the
bichromatic RNN query; however, these precomputation-
based techniques incur extra maintenance costs for data up-
dates. Therefore, several solutions without precomputation
were proposed. For discovering influence sets in dynamic
environments, Stanoi et al. [18] presented techniques to pro-
cess bichromatic RNN queries without precomputation. The
design is to dynamically construct the influence region of a
given query point q where the influence region is defined
as a polygon in space which encloses all RNNs of q. For
the monochromatic RNN query, Tao et al. [19] developed
algorithms for evaluating RkNN with arbitrary values of k
on dynamic multidimensional data sets by utilizing a data-
partitioning index. The algorithms were later extended to
support continuous RkNN searches [20], which return the
RkNN results for every point on a line segment.

There are some other works related to RNN query eval-
uation. Retrieving RNN aggregations (such as COUNT
or MAX DISTANCE) over data streams was introduced
in [12]. Yiu et al. [28] proposed pruning-based methods to
find RNNs in large graphs. The algorithms for efficient RNN
search in generic metric spaces were presented in [21]. The
techniques require no detailed representations of objects and
can be applied as long as the similarity between two objects
can be computed and the similarity metric satisfies the tri-
angle inequality. Cheema et al. [3] studied the problem of
continuous monitoring of reverse k nearest neighbors queries
in Euclidean space as well as in spatial networks. While the
aforementioned approaches work well for R(k)NN queries,
they cannot be utilized directly to evaluate the unique query
type studied in this paper due to the fundamental differences
between query definitions.

7.2 Optimal Location Query
One group of optimal location queries (OLQ) is defined

with an optimization function which maximizes the influence
of a facility. Given a set of sites, a set of weighted objects,
and a spatial region Q, the optimal-location query defined
in [6] returns a location in Q with a maximum influence
based on the L1 distance, where the influence of a location
is the total weight of its RNNs. Xia et al. [25] proposed prun-
ing techniques based on a metric named minExistDNN to
retrieve the top-t most influential sites according to the total
weights of their RNNs inside a given spatial region Q. The
Optimal Location Selection (OLS) search was introduced
in [7], which retrieves target objects in a target object set
DB that are outside a spatial region R but have maximal
optimality with a given data object set DA and a critical
distance dc. Here, the optimality of a target object b ∈ DB
located outside R is defined as the number of the data ob-
jects from DA that are inside R and have their distances to
b not exceeding dc.

Another group of location optimization queries is defined
with a different optimization function which minimizes the
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average distance between a client and the nearest facility.
Zhang et al. [29] proposed the Min-Dist Optimal Location
Query (MDOLQ). Given a set S of sites, a set O of weighted
objects, and a spatial region Q, MDOLQ returns a location
for building a new site in Q, which minimizes the average
distance from each object to its closest site according to
the L1 distance. They provide a progressive algorithm that
quickly suggests a location, tells the maximum error the out-
come may have, and continuously refines the result. When
the algorithm finishes, the exact answer can be found. Be-
cause user movements are usually confined to underlying
spatial networks in practice, Xiao et al. [26] extended OLQ
to support queries on road networks. They designed a uni-
fied framework that addresses three variants of optimal loca-
tion queries. By observing that users can only choose from
some candidate locations to build a new facility in many
real applications, Qi et al. [16] introduced the Min-dist Lo-
cation Selection Query (MLSQ) based on the studies in [29,
26]. Given a set of clients and a set of existing facilities,
MLSQ finds a location from a given set of potential loca-
tions for establishing a new facility where the average dis-
tance between a client and her nearest facility is minimized.
MND, a method for efficiently solving MLSQ, employs a
single value to describe a region that encloses the nearest
existing facilities of a group of clients. The MND method is
presented in [16]. However, these studies differ from the pro-
posed query type in definition and optimization functions.
Consequently, we cannot use them for answering our novel
query type.

8. CONCLUSION
In this research, we formulated a novel optimal location se-

lection problem. In addition to designing a straightforward
approach that sequentially scans all object combinations, we
propose an MOVD-based approach (RRB) that efficiently
answers the query. Moreover, in order to minimize the costs
induced by region overlapping, we propose the MBRB ap-
proach, in which MBRs are used as the boundaries of OVRs,
since overlapping two rectangles is much cheaper than over-
lapping two arbitrary regions. In addition, a cost-bound
iterative approach is proposed to efficiently process a large
number of Fermat-Weber problems. We demonstrate the
excellent performance of the proposed approaches through
extensive simulations.

For the future work, we plan to optimize the proposed
solutions by either using disk-based techniques that load a
portion of data into the main memory, or pruning the search
space by filtering out the impossible POI combinations dur-
ing the MOVD overlapping.
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