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ABSTRACT
Differential privacy has recently emerged in private statisti-
cal data release as one of the strongest privacy guarantees.
Most of the existing techniques that generate differentially
private histograms or synthetic data only work well for single
dimensional or low-dimensional histograms. They become
problematic for high dimensional and large domain data due
to increased perturbation error and computation complexity.
In this paper, we propose DPCopula, a differentially private
data synthesization technique using Copula functions for
multi-dimensional data. The core of our method is to
compute a differentially private copula function from which
we can sample synthetic data. Copula functions are used to
describe the dependence between multivariate random vec-
tors and allow us to build the multivariate joint distribution
using one-dimensional marginal distributions. We present
two methods for estimating the parameters of the copula
functions with differential privacy: maximum likelihood
estimation and Kendall’s τ estimation. We present formal
proofs for the privacy guarantee as well as the conver-
gence property of our methods. Extensive experiments
using both real datasets and synthetic datasets demonstrate
that DPCopula generates highly accurate synthetic multi-
dimensional data with significantly better utility than state-
of-the-art techniques.

1. INTRODUCTION
Privacy preserving data analysis and publishing [14, 15,

3] has received considerable attention in recent years as a
promising approach for sharing information while preserving
data privacy. Differential privacy [14, 15, 22] has recently
emerged as one of the strongest privacy guarantees for statis-
tical data release. A statistical aggregation or computation
is DP1 if the outcome is formally indistinguishable when run
with and without any particular record in the dataset. The
level of indistinguishability is quantified by a privacy budget

1we shorten differentially private as DP
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ε. A common mechanism to achieve differential privacy is
the Laplace mechanism [16] which injects calibrated noise
to a statistical measure determined by the privacy budget
ε, and the sensitivity of the statistical measure influenced
by the inclusion and exclusion of a record in the dataset. A
lower privacy parameter requires larger noise to be added
and provides a higher level of privacy.

Many mechanisms (e.g. [14, 18, 29]) have been proposed
for achieving differential privacy for a single computation
or a given analytical task and programming platforms have
been implemented for supporting interactive differentially
private queries or data analysis [28]. Due to the composibility
of differential privacy [28], given an overall privacy budget
constraint, it has to be allocated to subroutines in the
computation or each query in a query sequence to ensure the
overall privacy. After the budget is exhausted, the database
can not be used for further queries or computations. This is
especially challenging in the scenario where multiple users
need to pose a large number of queries for exploratory
analysis. Several works started addressing effective query
answering in the interactive setting with differential privacy
given a query workload or batch queries by considering the
correlations between queries or query history [38, 8, 43, 23,
42].
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(b) Marginal Histogram for Age

Figure 1: Dataset vs. histogram illustration

A growing number of works started addressing non-interactive
data release with differential privacy (e.g. [5, 27, 39, 19,
12, 41, 9, 10]). Given an original dataset, the goal is
to publish a DP statistical summary such as marginal or
multi-dimensional histograms that can be used to answer
predicate queries or to generate DP synthetic data that
mimic the original data. For example, Figure 1 shows an
example dataset and a one-dimensional marginal histogram
for the attribute age. The main approaches of existing work
can be illustrated by Figure 2(a) and classified into two
categories: 1) parametric methods that fit the original data
to a multivariate distribution and makes inferences about
the parameters of the distribution (e.g. [27]). 2) non-
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Figure 2: Synthetic data generation

parametric methods that learn empirical distributions from
the data through histograms (e.g. [19, 41, 9, 10]). Most
of these work well for single dimensional or low-order data,
but become problematic for data with high dimensions and
large attribute domains. This is due to the facts that:
1) The underlying distribution of the data may be unknown
in many cases or different from the assumed distribution,
especially for data with arbitrary margins and high dimen-
sions, leading the synthetic data generated by the paramet-
ric methods not useful;
2) The high dimensions and large attribute domains result
in a large number of histogram bins that may have skewed
distributions or extremely low counts, leading to significant
perturbation or estimation errors in the non-parametric
histogram methods;
3) The large domain space

∏m
i=1 |Ai|

2 (i.e. the number of
histogram bins) incurs a high computation complexity both
in time and space. For DP histogram methods that use
the original histogram as inputs, it is infeasible to read all
histogram bins into memory simultaneously due to memory
constraints, and external algorithms need to be considered.

Our contributions. In this paper, we present DPCopula,
a novel differentially private data synthesization method
for high dimensional and large domain data using copula
functions. Copula functions are a family of distribution
functions representing the dependence structure implicit
in a multivariate random vector. Intuitively, any high-
dimensional data can be modeled as two parts: 1) marginal
distributions of each individual dimension, and 2) the depen-
dence among the dimensions. Copula functions have been
shown to be effective for modeling high-dimensional joint
distributions based on continuous marginal distributions [31,
34, 4, 24]. They are particularly attractive due to several
reasons. First, when we have more margins’ (Marginal
distribution is shortened as margin in the paper) information
than the joint distribution of all dimensions, they can be
used to generate any joint distributions based on known
margins and correlations among all dimensions. Second,
they can be used to model non-parametric dependence for

2We define
∏m
i=1 |Ai| as the domain space of all dimensions,

where |Ai| is the domain size of the ith attribute and m is
the number of attributes

random variables. Further, we observe that existing DP
histogram methods are efficient and effective for generating
single dimensional marginal histograms, but not for high-
dimensional data; and that the marginal distributions for
discrete data in a large domain can be considered approx-
imately continuous. Motivated by the above facts, the
key idea of our proposed solution is to generate synthetic
data from DP copula functions based on DP margins. We
summarize our contributions below.

1) We propose a DPCopula framework to generate high
dimensional and large domain DP synthetic data. It com-
putes a DP copula function and samples synthetic data
from the function that effectively captures the dependence
implicit in the high-dimensional datasets. With the copula
functions, we can separately consider the margins and the
joint dependence structure of the original data instead of
modeling the joint distribution of all dimensions as shown
in Figure 2(b). The DPCopula framework allows direct
sampling for the synthetic data from the margins and the
copula function. Although existing histogram techniques
can be used to generate DP synthetic data, post-processing
is required to enforce non-negative histogram counts or con-
sistencies between counts which results in either degraded
accuracy or high computation complexity.

2) We present two methods, DPCopula-MLE (we short-
en maximum likelihood estimation as MLE in the paper)
and DPCopula-Kendall, for estimating parameters of the
Gaussian copula function, a commonly used elliptical class
of copula functions modeling the Gaussian dependence. We
focus on semi-parametric Gaussian copula as most real-
world high-dimensional data has been shown to follow the
Gaussian dependence structure [31]. It can be used not
only to model data with Gaussian joint distributions, but
also data with arbitrary marginal distributions or joint
distributions as long as they follow Gaussian dependence.
DPCopula-MLE computes correlation among dimension-
s using DP MLE while DPCopula-Kendall computes DP
correlation among dimensions using Kendall’s τ correlation
which is a general nonlinear rank-based correlation.

3) We present formal analysis of differential privacy guar-
antees and computation complexity for the two DPCopula
estimation methods. We also provide analysis of their con-
vergence properties. Extensive experiments using both real
datasets and synthetic datasets demonstrate that DPCopula
generates highly accurate synthetic multi-dimensional data
and significantly outperforms state-of-the-art techniques for
range count queries.

2. RELATED WORK

Privacy-preserving synthetic data generation. The
fundamental idea of data synthesization involves sampling
data from a pre-trained statistical model, then release the
sample data in place of the original data. Synthetic data
can be used in preserving privacy and confidentiality of
the original data. Numerous techniques have been pro-
posed for generating privacy-preserving synthetic data (e.g.
[21],[7]). But they do not provide formal privacy guarantees.
Machanavajjhala et al. [27] presented a probabilistic DP
Multinomial-Dirichlet (MD) synthesizer mechanism. They
model the original map data using multinominal distribution
with Dirichlet prior, and further enhance the utility via
relaxing differential privacy and shrinking the domain space.
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Since the data is sparse, the noise added in the reduced
domain still produce many outliers leading to limited utility
of the synthetic data. Moreover, it guarantees probabilistic
differential privacy instead of the strict differential privacy.
Finally, the method is not applicable for data that does not
follow multinomial distribution.

Differentially private histogram generation. Various
approaches have been proposed recently for publishing dif-
ferentially private histograms (e.g. [2, 40, 19, 41, 9, 10, 30, 1,
33]. Among them, the methods of [19] and [41] are designed
for single dimensional histograms. The technique of [33] is
proposed especially for two dimensional data. We discuss
and compare the methods for multi-dimensional histograms
below.

The method by Dwork et al. [13] publishes a DP his-
togram by adding independent Laplace random noise to
the count of each histogram bin. While the method works
well for low-dimensional data, it becomes problematic for
high dimensional and large domain data. Barak et al. [2]
uses Dwork’s method to obtain a DP frequency matix, then
transforms it to the Fourier domain and adds Laplace noise
in this domain. With the noisy Fourier coefficients, it em-
ploys linear programming to create a non-negative frequency
matrix. But it [2] did not provide any empirical results. We
do not include this method in our experimental comparison
due to its high computational complexity. Xiao et al. [39]
propose a Privelet method by applying a wavelet transform
on the original histogram, then adding polylogarithmic noise
to the transformed data. Cormode et al. [10] developed
a series of filtering and sampling techniques to obtain a
compact summary of DP histograms. The limitation is that
if a large number of small-count non-zero entries exists in
the histogram, it will give zero entries a higher probability
to be in the final summary, leading to less accurate summary
results. In addition, it needs carefully choosing appropriate
values for several parameters including sample size and filter
threshold. The paper did not provide a principled approach
to determine them. Both the DPCube [40] and PSD [9]
are based on KD-Tree partitioning. DPCube first uses
Dwork’s method to generate a DP cell histogram and then
applies partitioning on the noisy cell histogram to create the
final DP histogram. PSD computes KD-tree partitioning
using DP medians at each step. It has been shown in
[9] that these two methods are comparable. However, for
high-dimensional and large attribute domain data, either
the level of partitioning will be high which results in high
perturbation error or the distribution of each partition will
be skewed which results in high estimation error. Acs et
al. [1] study two sanitization algorithms for generating
DP histograms. The EFPA technique improves the fourier
perturbation scheme through tighter utility analysis while
P-HP is based on a hierarchical partitioning algorithm. But
there are limitations for high dimension data. When the
number of bins in original histograms is extremely large,
for EFPA, the parameter representing the histogram shape
would be selected with high error; for P-HP, the accuracy of
each partitioning step would have large perturbation error
and the computation complexity would be proportional to
the quadratic number of bins in the worst case.

The DiffGen method [30] releases differentially private
generalized data especially for classification by adding un-
certainty in the generalization procedure. Only predictor
attributes are generalized for maximizing the class homo-

geneity within each partition. For high-dimensional and
large-domain data, the method has similar issues as the KD-
partitioning methods. Because the method is designed for
categorical attributes and for classification purposes, we will
not include it in our experimental comparison.

Based on the discussion above, we will experimentally
compare the proposed DPCopula method with the Privelet+
[39], Filter Priority (FP) method [10], PSD method [9], and
P-HP method [1] as representatives of the general-purpose
histogram methods.

Copula functions. The idea of copula was shown dat-
ing back to 1940’s, and the term copula was provided by
the Sklar’s theorem [36] stating that copulas are functions
connecting multivariate distributions to their one-dimension
marginal distributions. An axiomatic definition of copulas
can be found in Joe [20] and Nelsen [31]. Copula functions
have been widely applied in statistics and finance in recent
years (e.g. [34]).

3. PRELIMINARIES
Consider an original dataset D that contains a data

vector (X1, X2, . . . , Xm) with m attributes. Our goal is to
release differentially private synthetic data of D. For ease
of reference, we summarize all frequently used notations in
Table 1. Their definitions will be introduced as appropriate
in the following (sub)sections.

Table 1: Frequently used notations
Notation Discription

D original dataset

D̃ DP synthetic data
n number of tuples in D
m number of dimensions in D

(X1, . . . , Xm) m-dimensional vector of D
H(x1, . . . , xm) m-dimensional joint distribution

F̂j(xj) empirical distribution of jth margin

F̃j(xj) DP empirical distribution of jth margin
ρτ (Xj , Xk) Kendall’s τ coefficient
ρ̂τ (Xj , Xk) sample estimate of Kendall’s τ
ρ̃τ (Xj , Xk) private estimate of Kendall’s τ
ρ(Xj , Xk) the general correlation

ε1 privacy budget for margins
ε2 privacy budget for all correlations
∆ sensitivity of Kendall’s τ
k the ratio of ε1 and ε2
P̃ DP correlation matrix

(Ũ1, . . . , Ũm) DP pseudo-copula data vector

3.1 Differential Privacy
Differential privacy has emerged as one of the strongest

privacy definitions for statistical data release. It guarantees
that if an adversary knows complete information of all the
tuples in D except one, the output of a differentially private
randomized algorithm should not give the adversary too
much additional information about the remaining tuples.
We say datasets D and D′ differing in only one tuple if we
can obtain D′ by removing or adding only one tuple from D.
A formal definition of differential privacy is given as follows:

Definition 3.1 (ε-differential privacy [13]). Let A
be a randomized algorithm over two datasets D and D′

differing in only one tuple, and let O be any arbitrary set
of possible outputs of A. Algorithm A satisfies ε-differential
privacy if and only if the following holds:

Pr[A(D) ∈ O] ≤ eεPr[A(D′) ∈ O]
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Intuitively, differential privacy ensures that the released
output distribution of A remains nearly the same whether
or not an individual tuple is in the dataset.

The most common mechanism to achieve differential pri-
vacy is the Laplace mechanism [13] that adds a small amount
of independent noise to the output of a numeric function
f to fulfill ε-differential privacy of releasing f , where the
noise is drawn from Laplace distribution with a probability

density function Pr[η = x] = 1
2b
e−
|x|
b . A Laplace noise has a

variance 2b2 with a magnitude of b. The magnitude b of the
noise depends on the concept of sensitivity which is defined
as follows.

Definition 3.2 (Sensitivity [13]). Let f denote a nu-
meric function and the sensitivity of f is defined as the
maximal L1-norm distance between the outputs of f over
the two datasets D and D′ which differs in only one tuple.
Formally,

∆f = maxD,D′ ||f(D)− f(D′)||1.

With the concept of sensitivity, the noise follows a zero-

mean Laplace distribution with the magnitude b =
∆f
ε

. To
fulfill ε-differential privacy for a numeric function f over D,
it is sufficient to publish f(D) +X, where X is drawn from

Lap(
∆f
ε

).
For a sequence of differentially private mechanisms, the

composability [28] theorems guarantee the overall privacy.

Theorem 3.1 (Sequential Composition [28]). For a
sequence of n mechanisms M1, . . . ,Mn and each Mi pro-
vides εi-differential privacy, the sequence of Mi provides
(
∑n
i=1 εi)-differential privacy.

Theorem 3.2 (Parallel Composition [28]). If Di are
disjoint subsets of the original database and Mi provides α-
differential privacy for each Di, then the sequence of Mi

provides α-differential privacy.

3.2 The Copula function
Consider a random vector (X1, . . . , Xm) with the contin-

uous marginal cumulative distribution function (CDF) of
each component being Fi(x) = P (Xi ≤ x), the random
vector (U1, . . . , Um) = (F1(X1), . . . , Fm(Xm)) has uniform
margins after applying the probability integral transform to
each component. Then the copula function can be defined
as follows:

Definition 3.3 (Copula and Sklar’s theorem [31]).
The m-dimensional copula C : [0, 1]m → [0, 1] of a random
vector (X1, . . . , Xm) is defined as the joint cumulative dis-
tribution function (CDF) of (U1, . . . , Um) on the unit cube
[0, 1]m with uniform margins:

C(u1, . . . , um) = P (U1 ≤ u1, . . . , Um ≤ um)

where each Ui = Fi(Xi). Sklar’s theorem states that there
exists an m-dimensional copula C on [0, 1]m with F (x1, . . . , xm) =
C(F1(x1), . . . , Fm(xm)) for all x in R̄m. If F1, . . . , Fm
are all continuous, then C is unique. Conversely, if C is
an m-dimensional copula and F1, . . . , Fm are distribution
functions, then C(u1, . . . , um) = F (F−1

1 (u1), . . . , F−1
m (um)),

where F−1
i is the inverse of marginal CDF Fi.

From definition 3.3, copula refers to co-behaviors of uniform
random variables only; since any continuous distribution can

be transformed to the uniform case via its CDF, this is the
appeal of the copula functions: they describe the depen-
dence without any concern of the marginal distributions.
Here, dependence is a general term for any change in the
distribution of one variable conditional on another while
correlation is a specific measure of linear dependence [32]
(e.g. Pearson correlation). Two distributions with the same
correlations may have different dependencies. We use the
rank correlation in our method and will discuss it later in
this section. Although the data should be continuous to
guarantee the continuity of margins, discrete data in a large
domain can still be considered as approximately continuous
as their cumulative density functions do not have jumps,
which ensures the continuity of margins. We will discuss
later how to handle small-domain attributes.

To study the accuracy of the copula-derived synthetic
data, we introduce a convergence analysis on copulas, show-
ing that the copula-derived synthetic data is arbitrarily
close to the original data when the data cardinality is
sufficiently large. Assume we have an original data D0

with n records, {F10, . . . , Fm0} being the original marginal
distributions, C0 be the original copula function (i.e. the
original dependence), H0 be the original joint distribution
of the D0. We also have t synthetic data D1, . . . , Dt
with {F1t}, . . . , {Fmt} be a sequence of m one-dimensional
marginal distributions and {Ct} be a sequence of copu-
las. Each {F1i}, . . . , {Fmi} and Ci correspond to Di, i ∈
{1, . . . , t} and are parameterized by the number of records
of Di. We have the following theorem:

Theorem 3.3 (Convergence of Copulas [25]). For
every t in N+, a m-dimensional joint distribution function
Ht is defined as Ht(x1, . . . , xm) := Ct(F1t(x1), . . . , Fmt(xm)).
Then the sequence {Ht} converges to H0 in distribution,
if and only if {F1t}, . . . , {Fmt} converge to F10, . . . , Fm0

respectively in distribution, and if the sequence of copulas
{Ct} converges to C0 pointwise in [0, 1]m.

The Gaussian copula and Gaussian dependence. Al-
though copula has several families, the elliptical class is
the most commonly used, including Gaussian copula and
t copula. In this paper, we focus on the semi-parametric
Gaussian copula as it has better convergence properties
for multi-dimensional data [26] and most real-world high-
dimensional data follow the Gaussian dependence structure
[31] that can be modeled by the Gaussian copula. We note
that Gaussian copula is not to be confused with Gaussian
distributions. The Gaussian copula can be used not only to
model data with Gaussian joint distributions, but also data
with arbitrary marginal distributions or joint distributions
as long as they follow Gaussian dependence. For other
types of data with special dependence structures, such as
tail dependence, we can apply the t copula, the empirical
copula and other copulas. Actually we can use many
approaches to test the goodness-of-fit, such as Akaike’s
Information Criterion (AIC) to identify the best copula.
We leave designing DP t copula and other copulas and
testing the goodness-of-fit for the best copula as our future
work. Formally, we give the Gaussian copula and Gaussian
dependence definitions as follows:

Definition 3.4 (The Gaussian Copula [6]). Deducing
via Sklar’s theorem, a multivariate Gaussian density can
be written as the product of two components: the Gaussian
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dependence and margins, denoted as

ΦP(x) =
1

|P|
1
2

exp

{
−

1

2
φ
−1

(u)
T

(P
−1 − I)φ

−1
(u)

}
︸ ︷︷ ︸

Gaussian dependence

m∏
i=1

ϕ(φ−1(ui))

σi︸ ︷︷ ︸
Margins

where P is a correlation matrix3, I is the identity matrix,
φ−1 is the inverse CDF of a univariate standard Gaus-
sian distribution, φ−1(u) = (φ−1(u1), . . . , φ−1(um)), ui =
Fi(xi), Fi(xi) is Gaussian CDF with the standard deviation
σi and ϕ is the standard Gaussian density, ΦP denotes the
multivariate Gaussian density. If we allow Fi(xi) to be an
arbitrary distribution function, we can obtain the density
of Gaussian copula which is the Gaussian dependence part,
denoted as cGaP , with the form

c
Ga
P = |P|−

1
2 exp

{
−

1

2
φ
−1

(u)
T

(P
−1 − I)φ

−1
(u)

}
(1)

From definition 3.4, the density function of Gaussian copula
in equation (1) has no 1/

√
(2π)m compared to that of Gaus-

sian distribution because Gaussian copula allows arbitrary
margins. The Gaussian copula does not necessarily have
anything to do with Gaussian distributions that require
all the margins to be Gaussian distributions. Rather,
it represents the Gaussian dependence that arises from a
random vector (U1, . . . , Um) with uniform margins. Each
component of (U1, . . . , Um) may correspond to an arbitrary
distribution Fi(Xi) before the probability integral transform
is applied.
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Figure 3: Gaussian copula vs. multivariate distribu-
tion

Figure 3 illustrates two bivariate Gaussian copula exam-
ples (i.e. two uniform random variables on [0, 1] with a
Gaussian dependence structure) with the same correlation
but different margins and the corresponding joint distribu-
tion. The same principle can be extended to more than two
random variables. Figure 3(a) and (b) illustrates a scatter
plot of a bivariate Gaussian copula with the exponential and

3Here P must be a positive definite matrix to ensure that
P−1 exists

gamma margins and a corresponding bivariate joint distri-
bution with the attributes on the original domains. The
scatter plots in Figure 3(c) and (d) is a bivariate Gaussian
copula with uniform and t margins and its corresponding
joint distribution. We can see that the joint distributions
may be different due to different margins but the Gaussian
copula scatter plots (i.e. Gaussian dependence) are the same
with the same correlation. In other words, the dependence
of data can be modeled independently from the margins.
While real-world high dimensional data may have different
marginal or joint distributions, most data follow the Gaus-
sian dependence which can be modeled by Gaussian copula
with different correlations.

Estimation of the Gaussian copula. Since there are
unknown parameters which are margins and P in the cop-
ula function, they can be estimated based on input data.
The steps of estimation are as follows. First, the data is
transformed to pseudo-copula data on [0, 1]m by the non-
parametric estimation method to estimate the marginal
CDF. Assume Xj = (X1,j , . . . , Xn,j)

T is the jth data vector
of (X1, . . . ,Xm), the empirical marginal CDF Fj on the jth
dimension can be estimated by

F̂j =
1

n+ 1

n∑
i=1

1{
Xi,j≥x

} (2)

where F̂j is the empirical distribution function of Xj . Here

n+ 1 is used for division to keep F̂j lower than 1. Then, we
can generate the jth-dimension pseudo-copula data by

Ûj = (F̂j(X1,j), . . . , F̂j(Xn,j))
T (3)

Once we get the pseudo-copula data, there are two meth-
ods to estimate the correlation matrix P. The first method
is directly using maximum likelihood estimation with the
pseudo-copula data as input [6], named as MLE in our paper.
However, maximizing the log likelihood function is specially
difficult in multi-dimensions. For this reason, estimation
based on dependence measure is of practical interest.

The second method is to estimate the correlation matrix
P based on Kendall’s τ correlation coefficients between
dimensions. From the original data vectors, we can estimate
ρτ (Xj ,Xk) by calculating the standard sample Kendall’s τ
coefficient ρ̂τ (Xj ,Xk) (see Section 3.2.3). Due to [6], the
estimator of the general correlation coefficient, ρ(Xj ,Xk),
is given by

ρ(Xj ,Xk) = sin(
π

2
ρ̂τ (Xj ,Xk)) (4)

In order to estimate the entire correlation matrix P, we need
to obtain all pairwise estimates in an empirical Kendall’ τ
matrix Rτ (Rτjk = ρ̂τ (Xj ,Xk)), then build the estimator

P̂ = sin(π
2
Rτ ) with all diagonal entries being 1.

Kendall’s τ rank correlation. Kendall’s τ rank corre-
lation is a well-accepted rank correlation measure of con-
cordance for bivariate random vectors. The definition of
Kendall’s τ is given as follows:

Definition 3.5 (Kendall’s τ rank correlation [11]).
The population version of Kendall’s τ rank correlation has
the form:

ρτ (Xj ,Xk) = E(sign(xi1,j − xi2,j)(xi1,k − xi2,k))

where (xi1,j , xi1,k) and (xi2,j , xi2,k) are two different inde-
pendent pairs with the same distribution. In practice, we
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can estimate ρτ (Xj ,Xk) using ρ̂τ (Xj ,Xk) with the form(
n
2

)−1∑
1≤i1<i2≤n sign(xi1,j , xi2,j)(xi1,k, xi2,k).

We shorten Kendall’s τ rank correlation as Kendall’s τ . We
choose to use Kendall’s τ instead of other correlation metrics
such as Pearson or Spearman because it can better describe
more general correlations while Pearson can only describe
the linear correlation and has better statistical properties
than Spearman.

4. DPCOPULA
Under differential privacy, we propose two DPCopula

algorithms for estimating Gaussian copula functions based
on multi-dimensional data, namely DPCopula using M-
LE (DPCopula-MLE) and DPCopula using Kendall’s τ
(DPCopula-Kendall). The general idea is to estimate marginal
distributions and the gaussian copula function based on
the original multivariate data, then sample synthetic data
from this joint distribution while preserving ε-differential
privacy. In this section, we first present the methods of
DPCopula-MLE and DPCopula-Kendall with privacy proofs
and complexity analysis, then analyze their convergence
properties. Finally, we present a DPCopula hybrid method
to handle small-domain attributes.
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(b) DPCopula-Kendall

Figure 4: DPCopula Overview

4.1 DPCopula-MLE
One basic method of DPCopula is to first compute DP

marginal histograms, then estimate DP correlation matrix
using the DP MLE method proposed by Dwork [17], then
sample DP synthetic data. We illustrate this algorithm
schematically in Figure 4(a). Algorithm 1 presents the
steps of DPCopula-MLE. We present the details of each step
below.

Computing DP marginal histograms. As a first step,
we compute DP marginal histograms for each attribute.
There are several state-of-the-art techniques for obtaining
one-dimensional DP histograms effectively and efficiently,
such as PSD, Privelet [39], NoiseFirst and StructureFirst
[41], EFPA [1]. Here we use EFPA to generate DP marginal
histograms which is superior to other methods. We note
that an important feature of DPCopula is that it can take

Algorithm 1 DPCopula-MLE algorithm

Input: Original data vector D = (X1, . . . ,Xm), and privacy budget
ε.

Output: Differentially private synthetic data D̃
1. Create a differentially private marginal histogram with privacy
budget

ε1
m for each dimension Xj , j = 1, . . . ,m, in the original data

vector to obtain DP empirical marginal distribution (Ũ1, . . . , Ũm)
by equation (2);

2. Use DP MLE to estimate the DP correlation matrix P̃ with
privacy budget

ε2(
m
2

) for each correlation coefficient and ε2 = ε− ε1;

3. Sample DP synthetic dataset D̃ by algorithm 3.

advantage of any existing methods to compute DP marginal
histograms for each dimension, which can be then used to
obtain DP empirical marginal distributions.

DP MLE. In step 2, we fit a Gaussian copula to the pseudo
copula data generated from original data using equation
2 and 3, then use the DP MLE method to compute DP

correlation matrix P̃. Our DP MLE method uses the similar
idea with [17]. Algorithm 2 presents the general idea of
DP MLE. It first divides the D horizontally into l disjoint
partitions of n

l
records each, computes the MLE coefficient

estimator on each partition, and then releases the average
of these estimates plus some small additive noise. Here
the sensitivity of each coefficient is 2

l
, for the diameter of

each coefficient is 2. The value of l should be larger than(
m
2

)
/0.025ε2 which requires a large data cardinality for high

dimensions. Algorithm 2 guarantees ε2 differential privacy
due to theorem 3.2 because each partition that is disjoint
with each other preserves ε2 differential privacy.

Algorithm 2 DP MLE

Input: Original data vector D = (X1, . . . ,Xm), privacy budget ε2,

and k ∈ N+.
Output: Differentially private correlation matrix estimator P̃

1. Divide D horizontally into l disjoint partitions D1, . . . , Dl with
each partition having b = n

l tuples;
2. For each partition Dt, t ∈ 1, . . . , l:

P̃t = arg max
Pij∈Θ

rb∑
r=(i−1)b+1

logC
Ga
P (x

r
1, . . . , x

r
m)

where CGaP represents the density of Gaussian copula.
3. For each Pij ∈ [−1, 1], i, j ∈ 1, . . . ,m

Compute the average value through P̄ij = 1
l

∑t=1
l P tij ,

Then inject Laplace noise to P̄ij and obtain DP P̃ij as

P̃ij = P̄ij + Lap[

(m
2

)
Λ

lε2
]

where Λ is the diameter of each correlation coefficient space Θ
with a value of 2;
4. Collect all P̃ij to constitute the DP correlation matrix estimator

P̃

Sampling DP synthetic data. In step 3, we build a joint
distribution based on definition 3.4 using the DP marginal
histograms from step 1, and DP correlation matrix estimator
P̃ from step 2, then sample data points from the joint
distribution. The procedure of sampling DP synthetic data
is given in Algorithm 3.

Privacy Properties. We present the following theorem
showing the privacy property of the DPCopula-MLE algo-
rithm.
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Algorithm 3 Sampling DP synthetic data

Input: DP marginal histograms and DP correlation matrix P̃
Output: DP synthetic data D̂

1. Generate DP pseudo-copula synthetic data (T̃1, . . . , T̃m):

a. Generate a multivariate random number vector (X̃1, . . . , X̃m)
in an arbitrary domain following the gaussian joint distribution
Φ(0, P̃), where P̃ is returned by step 2 of Algorithm 1;

b. Transform (X̃1, . . . , X̃m) to (T̃1, . . . , T̃m) ∈ [0, 1]n×m, where

T̃j = φ(X̃j),j = 1, . . . ,m and φ(X̃j) is the standard gaussian
distribution;
2. Compute DP synthetic data D̃ as follows:

D̃ = (F̃
−1
1 (T̃1), . . . , F̃

−1
m (T̃m))

where F̃−1
j is the inverse of DP empirical marginal distribution

function generated from the jth DP marginal histogram, and in
the domain of the original dataset.

Theorem 4.1. Algorithm 1 guarantees ε - differential
privacy.

Proof. Step 1 guarantees ε1 differential privacy due to
theorem 3.1. Step 2 guarantees ε2 differential privacy due to
[17]. Algorithm 1 guarantees ε1 + ε2 = ε differential privacy
due to theorem 3.1.

Computation complexity. For the space complexity, the
DPCopula-MLE algorithm takes O(mn) (i.e. the size of the
original dataset), where m is the number of dimensions, n is
the number of records in the original dataset. For the time
complexity, computing all DP marginal histograms take
O(
∑m
i=1(AilogAi+n)) = O(mAlogA+mn) due to [1], where

A = max{A1, . . . , Am}. DP MLE takes O(l × m2n2

l2
) =

O(m
2n2

l
). DPCopula-MLE takes O(mAlogA+m2n2/l).

4.2 DPCopula-Kendall
In this section, we first present the key steps of DPCopula-

Kendall and then provide formal proof for the privacy
guarantee. Figure 4(b) illustrates the process of DPCopula-
Kendall. Algorithm 4 presents the detailed steps of DPCopula-
Kendall. From the key steps of algorithm 4, we can see that
the differential privacy guarantee relies on step 1 and step
2, which share the privacy budget. As step 1 and step 3 of
algorithm 4 are the same with algorithm 1, we only present
the details of step 2 below.

Algorithm 4 DPCopula-Kendall’s τ algorithm

Input: Original data vector (X1, . . . ,Xm) containing m attributes,
privacy budget ε

Output: Differentially private synthetic data D̃
1. Compute a differentially private marginal histogram with the
privacy budget

ε1
m for each Xi in D ;

2. Compute the DP correlation matrix P̃ using algorithm 5 with
privacy budget

ε2(
m
2

) for each correlation coefficient, and ε2 = ε−ε1;

3. Sample DP synthetic data D̃ by algorithm 3.

Computing differentially private correlation matrix.
The differentially private estimator P̃ of the general cor-
relation matrix is estimated by calculating noisy pairwise
Kendall’ τ correlation coefficients matrix. From the original
data vector (X1, . . . ,Xm), we can compute a noisy Kendall’s
τ coefficient of any arbitrary two attributes Xj and Xk by
the standard sample Kendall’s τ coefficient ρ̃τ (Xj ,Xk) using
Laplace mechanism that guarantees ε2-differential privacy.

We then construct a noisy Kendall’ τ matrix ρ̃τ with each
element defined by ρ̃τjk = ρ̃τ (Xj ,Xk). Finally, we construct

the noisy correlation matrix estimator as P̃ = sin(π
2
ρ̃τ )

with all diagonal entries being 1. We note that P̃ may
not be a positive definite matrix (although in most cases,
it is positive definite in our experience when ε2 is not too
small, ε2 ≥ 0.001). In this case, P̃ can be transformed
to be positive definite using postprocessing methods like
the eigenvalue procedure proposed by Rousseeuw et al.
[35]. Algorithm 5 presents detailed steps of DP correlation
coefficient matrix computation.

Algorithm 5 Computing differentially private correlation
coefficient matrix
Input: Original data vector (X1, . . . ,Xm) containing m attributes,

and privacy budget ε2
Output: Differentially private correlation matrix estimator P̃

1. Compute DP pairwise noisy Kendall’ τ correlation coefficient
ρ̂τ (Xj ,Xk) as follows:

ρ̃τ (Xj ,Xk) =
(n

2

)−1∑
1≤i1<i2≤n

sign(Xi1j , Xi2j)(Xi1k, Xi2k)+

Lap
[ (m

2

)
∆

ε2

]
, where ∆ is the sensitivity of each pairwise Kendall’s

τ coefficient with a value of 4
n+1 ;

2. Compute noisy correlation coefficient matrix P̃1 using P̃1 =
sin(π2 ρ̃τ ), each element of ρ̃τ is defined by (ρ̃τjk = ρ̃τ (Xj ,Xk)′).

If P̃1 is NOT positive definite, then go to step 3; else set P̃ = P̃1;

3. Use the eigenvalue method to transform P̃1 to be positive
definite matrix P̃2:

a. Compute the eigenvalue decomposition form of P̃1 as P̃1 =
RDRT , where D is a diagonal matrix containing all eigenvalues of
P̃1 and R is an orthogonal matrix containing the eigenvectors

b. Compute D̃ by replacing all negative eigenvalues in D by a
small value or their absolute values

c. Compute P̃2 = RD̃RT while normalizing P̃2 to be the
correlation matrix form with diagonal elements to be 1, then set
P̃ = P̃2.

Privacy Properties. We first present a lemma analyz-
ing the sensitivity of the Kendall’s τ coefficient followed
by a theorem showing that DPCopula-Kendall satisfies ε-
differential privacy.

Lemma 4.1. The sensitivity of a pairwise Kendall’s τ
coefficient is ∆ = 4

n+1
.

Proof. Assume we have two dataset D and D′ differing
in only one tuple, and let ρ̂τ (Xi,Xj) and ρ̂τ (X′i,X

′
j) be

two Kendall’s τ coefficients which, respectively comes from
D and D′, then the sensitivity of a pairwise Kendall’s
τ coefficient is defined by the domain of |ρ̂τ (Xi,Xj) −
ρ̂τ (X′i,X

′
j)|.

Let A = |ρ̂τ (Xi,Xj) − ρ̂τ (X′i,X
′
j)|. From Definition 3.6 of

Kendall’s τ coefficient, we can deduce that

A =
(n2 + n)(nc − nd)− (n2 − n)(n′c − n′d)

1
2
n2(n+ 1)(n− 1)

where nc is the number of concordant pairs of (Xi,Xj),
nd is the number of disconcordant pairs of (Xi,Xj), n

′
c

is the number of concordant pairs of (X′i,X
′
j), and n′d is

the number of disconcordant pairs of (X′i,X
′
j). In general,

nc−nd = k−[
(
n
2

)
−k], and n′c−n′d = k+r−[

(
n
2

)
+n−(k+r)],

where k is the number of concordance, k = 0, 1, . . . ,
(
n
2

)
, r

is additive number of concordance after adding one tuple,
r = 0, 1, . . . , n. We have (n2 + n)(nc − nd)− (n2 − n)(n′c −
n′d) = 2n[2k −

(
n
2

)
] + n(n − 1)(n − 2r), where 0 ≤ k ≤

(
n
2

)
,

0 ≤ r ≤ n. According to the property of inequality, we have
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−2n
(
n
2

)
−n2(n−1) ≤ (n2 +n)(nc−nd)−(n2−n)(n′c−n′d) ≤

2n
(
n
2

)
+ n2(n − 1), followed by |(n2 + n)(nc − nd) − (n2 −

n)(n′c − n′d)| ≤ 2n
(
n
2

)
+ n2(n− 1) = 2n2(n− 1). Thus

A =
|(n2+n)(nc−nd)−(n2−n)(n′c−n

′
d)|

1
2
n2(n+1)(n−1)

≤ 4
n+1

, i.e., the sensi-

tivity of a pairwise Kendall’s τ coefficient is 4
n+1

, which
completes the proof.

Theorem 4.2. Algorithm 4 guarantees ε - differential
privacy and ε = mε1 +

(
m
2

)
ε2.

Proof. In step 1, each margin guarantees ε1
m

-differential
privacy and there are m margins. Due to theorem 3.1, step
1 satisfies ε1-differential privacy. In step 2, each pairwise
coefficient guarantees ε2/

(
m
2

)
-differential privacy due to the

above Lemma and the Laplace mechanism; and there are(
m
2

)
pairs. Due to theorem 3.1, step 2 satisfies ε2-differential

privacy. Due to theorem 3.1 again, Algorithm 4 satisfies
ε1 + ε2 = ε-differential privacy.

Computation complexity. For the space complexity,
DPCopula-Kendall is the same with DPCopula-MLE. For
the time complexity, the complexity of each Kendall’s τ
takesO(nlogn) using a fast Kendall’s τ computation method.
The total time complexity is O(mAlogA+m2nlogn). When
the number of records is large, computing Kendall’s τ is
very time consuming. A natural technique is to compute
Kendall’s τ only on n̂ sample records of the full data to
reduce the computation complexity which requires O( 4

n̂+1
)

Laplace noise on each coefficient. This sampling method
guarantees differential privacy by enlarging the Laplace
noise from O( 4

n+1
) to O( 4

n̂+1
). Here the selection of n̂ should

guarantee that the Laplace noise O( 4
n̂+1

) be sufficiently s-
mall compared to the scale of original correlation coefficients
that is [−1, 1]. In practice, setting n̂ ≥ (50m(m− 1)/ε2)− 1
is adequate. Thus, no matter how large n is, the time
complexity will be fixed to O(mAlogA+m2).

4.3 Convergence properties of DPCopula
In this subsection, assuming that the original data follows

the Gaussian dependence structure, we provide a conver-
gence analysis on DPCopula-Kendall, and show that the
distribution of the private synthetic dataset generated by
DPCopula-Kendall copula has the same joint distribution
as the original dataset when the database cardinality n
is sufficiently large. We leave the convergence analysis of
DPCopula-MLE as our future work. We first present a
few lemmas on the convergence properties of noisy empirical
margin and noisy Kendall’s τ coefficient, then present the
main result in Theorem 4.3.

lemma 4.1. (Convergence of private empirical marginal

distribution). limn→∞ F̃n(t) = limn→∞ F̂n(t) = F (t) almost

surely, where F̃n(t) is the empirical CDF based on the private

histogram, F̂n(t) is the empirical CDF based on the original
histogram, and F (t) is the population CDF when n tends to
be infinity.

Proof. Due to the analysis in [37], we can deduce that

the discrimination of F̂n(t) and F̃n(t) is bounded byO( logm
n

).

Hence, we can achieve that limn→∞ |F̃n(t)−F̂n(t)| = 0 lead-

ing to limn→∞ F̃n(t) = limn→∞ F̂n(t) and the conclusion can
be proved by the strong law of large numbers.

lemma 4.2. (Convergence of private Kendall’s tau coef-
ficient). Assume ρ̃τ and ρτ are noisy and original Kendall’s
tau coefficient respectively, then limn→∞ |ρ̃τ − ρτ | = 0.

Proof. Since ρ̃τ = ρτ + Lap( 4
(n+1)ε2

), then

lim
n→∞

|ρ̃τ − ρτ | = lim
n→∞

|Lap( 4

(n+ 1)ε2
)|

When ε2 is a finite real number, it follows that

limn→∞ |Lap( 4
(n+1)ε2

)| = 0,

leading to limn→∞ |ρ̃τ − ρτ | = 0.

Theorem 4.3. (Convergence of DPCopula) Let {F̃1t}, . . . , {F̃mt}
be m sequences of noisy univariate marginal distribution and
let {C̃t} be a sequence of noisy copulas; then, for every t in
N+, an m-dimensional noisy joint distribution function Ht
is defined as:

H̃t(x1, . . . , xm) := C̃t(F̃1t(x1), . . . , F̃mt(xm))

Then the sequence H̃t converges to the joint distribution H0

of original data in distribution, if and only if {F̃1t}, . . . , {F̃mt}
converge to {F10}, . . . , {Fm0} respectively in distribution,

and if the sequence of copulas {C̃t} converges to {C̃0}
pointwise in [0, 1]2.

Proof. Since the copula remains invariant under any
series of strictly increasing transformation of the random
vector X, which can be considered as empirical CDF, then
the Gaussian copula of Gaussian distribution Gm(µ,

∑
) is

identical to that of Gm(0, P ) where P is the correlation ma-
trix implied by the dispersion matrix

∑
and this Gaussian

copula is unique. Due to Lemma 4.2, we can deduce that

limn→∞ ρ̃τ = limn→∞ ρτ = E(sign(xj − x′j)(xk − x′k))

in probability, where (xj , xk) and (x′j , x
′
k) are two distinct

independent pair with the same distribution. Then, as the
noisy sample correlation matrix converges in probability to
the common true correlation matrix of the original data
when n tends to be infinity, the noisy gaussian distribution
G̃mt(0, Pt) which is determined only by noisy correlation
matrix converges in probability to Gm(0, P ) due to the
continuous mapping theorem. Therefore, from Theorem
3.3 we can imply that the noisy gaussian copula CGat,P of

Gmt(0, Pt) converges pointwise to the gaussian copula CGaP
of Gd(0, P ) as the data cardinality n tends to be infinity.

Then for the noisy joint distribution with noisy Gaussian
copula Ct,P , since the noisy margins converge to the original
margins almost surely as n tends to be infinity implied
by Lemma 4.1, then we can deduce that they converge
to the original margins in distribution. Therefore, the
noisy joint distribution converges in distribution to the
joint distribution of the original data according to Theorem
3.3.

4.4 DPCopula Hybrid
Although DPCopula can model continuous attributes and

discrete attributes with a large domain (i.e. attributes with
the number of values no less than 10), it cannot handle
attributes with small domains (i.e. attributes with the
number of values less than 10) in the dataset. However,
we can first partition the original dataset and compute DP
counts for those partitions based on small-domain attributes
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using other methods, such as Dwork’s method, DPCube,
PSD and EFPA, then use DPCopula to handle remaining
large domain attributes in each partition. We demonstrate
the hybrid solution in Algorithm 6. The privacy guarantee
is proved in theorem 4.4.

Algorithm 6 DPCopula hybrid

Input: Original data vector (X1, . . . ,Xm) containing m1 small-
domain attributes and m2 continuous or large-domain discrete
attributes, and privacy budget ε

Output: Differentially private synthetic data D̃
1. Partition the original dataset based on small-domain attributes
A1, . . ., Am1

with domain sizes |A1|, . . ., |Am1
|, and the overall

number of partitions will be
∏
|Ai| = |A1| × . . .× |Am1

|;
2. Compute the noisy number of tuples ñi of the ith partition,
i ∈ {1, . . . ,

∏
|Ai|} by ni + X, where X is drawn from Lap( 1

ε1
)

and ni is the original number of tuples, with ε1;
3. For each partition, generate DP synthetic data using DPCopula
and noisy number of tuples with ε − ε1, then combine all DP
synthetic data in all partitions to compose the final DP synthetic
data D̃.

Theorem 4.4. Algorithm 6 guarantees ε-differential pri-
vacy.

Proof. In step 1 and 2, each partition guarantees ε1-
differential privacy. Since the partitions are disjoint, they
preserve ε1-differential privacy overall due to theorem 3.2.
Likewise, step 3 guarantees (ε − ε1)-differential privacy.
Algorithm 6 guarantees ε-differential privacy due to theorem
3.1.

5. EXPERIMENT
In this section, we experimentally evaluate DPCopula and

compare it with four state-of-the-art methods. DPCopula
methods are implemented in MATLAB R2010b and python,
and all experiments were performed on a PC with 2.8GHz
CPU and 8G RAM.

5.1 Experiment Setup

Datasets. We use two real datasets in our experiments:
Brazil Census dataset (https://international.ipums.org)
and US census dataset (http://www.ipums.org). The Brazil
census dataset has 188,846 records after filtering out records
with missing values and eight attributes are used for the
experiments: age, gender, disability, nativity, working hours
per week, education, number of years residing in the current
location, and annual income. We generalized the domain
of income to 586. The US Census dataset has a randomly
selected 100,000 records from the original 10 million records
and all four attributes are used: age, occupation, income and
gender. Table 2 shows the domain sizes of the datasets. For
nominal attributes, we convert them to numeric attributes
by imposing a total order on the domain of the attribute as
in [39].

In order to study the impact of distribution, dimensionali-
ty and scalability, we also generated synthetic datasets with
50000 records. The default attribute domain size is 1000 and
each margin follows the Gaussian distribution by default.

Comparison. We evaluate the utility of the synthetic data
generated by DPCopula for answering random range-count
queries and compare it with the state-of-the-art differentially
private histogram methods. We included four methods for
comparison (based on our discussions in Section 2): Priv-
elet+ [39], PSD (Private Spatial Decomposition) KD-hybrid

Table 2: Domain sizes of the real datasets
(a) US census dataset

Attribute Domain size
Age 96

Income 1020
Occupation 511

Gender 2

(b) Brazil census dataset

Attribute Domain size
Age 95

Gender 2
Disability 2
Nativity 2

Number of Years 31
Education 140

Working hours
per week 95

Annual income 586

methods [9], Filter Priority (FP) with consistency checks
[10], and P-HP [1]. Among these methods, we observed
that PSD and P-HP consistently outperform others in most
settings. Hence, after presenting a complete comparison
on US dataset, we only show PSD and P-HP for better
readability of the graphs.

For datasets with number of dimensions higher than 2 and
domain size of each dimension being 1000 (ie. the number
of histogram bin is larger than 106), we only show PSD
because PSD uses the original dataset as input and hence
have a space complexity of O(mn)) which is not affected
by the domain size. In contrast, P-HP uses the histogram
generated from the original data as input and hence have a
time and space complexity of O((

∏m
i=1 |Ai|)

2) in the worst
case and O(

∏m
i=1 |Ai|) respectively. Thus, the computation

complexity can be extremely high because the number of
bins in the histogram (i.e.

∏m
i=1 |Ai|) is 1012, 1018 and 1024

respectively in our 4D, 6D and 8D datasets. In fact, for
all methods with histograms as inputs, we cannot run their
implementations directly due to the extremely high space
complexity and memory constraints.

For each method, implementations provided by their re-
spective authors are used and all parameters in the algo-
rithms are set to the optimal values in each experiment.
For comparison, we only show the results of DPCopula-
Kendall, as the results of DPCopula-MLE are similar to that
of DPCopula-Kendall.

Metrics. We generated random range-count queries with
random query predicates covering all attributes defined in
the following:
Select COUNT(*) from D
Where A1 ∈ I1 and A2 ∈ I2 and. . .and Am ∈ Im
For each attribute Ai, Ii is a random interval generated from
the domain of Ai.

The query accuracy is primarily measured by the relative
error defined as follows: For a query q, Aact(q) is the
true answer to q on the original data. Anoisy(q) denotes
the answer to q when using DP synthetic data generated
from DPCopula or the DP histogram constructed by other
methods. Then the relative error is defined as:

RE(q) =
|Anoisy(q)−Aact(q)|
max{Aact(q), s}

where s is a sanity bound to mitigate the effects of queries
with extremely small query answers (a commonly used
evaluation method from existing literatures, e.g. [39]). For
most datasets, s is set to 1 by default to avoid division by
0 when Aact(q) = 0. For the US dataset, s is set to 0.05%
of the data cardinality, nearly consistent with [39]. For the
brazil dataset, s is set to 10.
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Table 3: Experiment Parameters
Parameter Description Default value

n number of tuples in D 50000
ε Privacy budget 1.0
m number of dimensions 8
s Sanity bound 1
k ratio of ε1 and ε2 8
Ai domain size of ith dimension 1000

While we primarily use relative error, we also use absolute
error when it is more appropriate and clear to show the
results for extremely sparse data, in which case, the true
answers are extremely small. The absolute error is defined
as ABS(q) = |Anoisy(q)−Aact(q)|.

In each experiment run, 1000 random queries are gener-
ated and the average relative error is computed. The final
reported error is averaged over 5 runs. Table 3 summarizes
the parameters in the experiments.

5.2 DPCopula Methods
We first evaluate the impact of the parameter k in the D-

PCopula method and compare the two DPCopula methods:
DPCopula-Kendall and DPCopula-MLE.
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Figure 6: DPCopula-Kendall vs. DPCopula-MLE

Impact of Parameter k on DPCopula. Since k is the
only algorithmic parameter in the DPCopula method, we
first evaluate its impact on the effectiveness of the method.
Figure 5 shows the relative error of DPCopula-Kendall
method for random count queries with respect to varying
k for 2D synthetic data. DPCopula-MLE has similar trends
and we omit it for the clarity of the graph. We observe that
when k is less than 1, the relative error clearly degrades as
k increases. When k is greater than 1, the relative error
does not change significantly. This shows that having a
higher budget allocated for computing differentially private
margins than the coefficients ensures better query accuracy.
In addition, the method is quite robust and insensitive to
the value of k as long as it is greater than 1, which alleviates
the burden of parameter selection on the users. For the
remaining experiments, we set the value of k to 8.

DPCopula-MLE vs. DPCopula-Kendall. Figure 6
investigates the trade-off between two DPCopula methods.
Figure 6(a) compares the relative error for random queries
of the two methods on synthetic data with varying number
of dimensions and n = 106 considering the sensitivity of
DPCopula-MLE. We observe that DPCopula-Kendall per-
forms better than DPCopula-MLE. This is because the sen-
sitivity of the general coefficient in DPCopula-MLE is higher
than DPCopula-Kendall. As a consequence, the correlation
matrix estimated by DPCopula-Kendall is more accurate
than DPCopula-MLE. Figure 6(b) shows the runtime of the
two methods. We can see that with higher dimensions, the
time to compute the coefficients becomes longer because
the time complexity of DPCopula is quadratic with the
number of dimensions. We use the sampling method in all
experiments to reduce the computation time. DPCopula-
Kendall has a slightly higher computation overhead than
DPCopula-MLE while the total computation time for both
methods are quite efficient. We show that the computation
time of DPCopula is acceptable for various data cardinalities
and dimensions in later experiments. In the remaining
experiments, we only use DPCopula-Kendall to compare
with other methods.

5.3 Comparison on real datasets
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Figure 7: Relative error vs. differential privacy
budget

Query accuracy vs. differential privacy budget. Fig-
ure 7 compares DPCopula with other methods with respect
to varying differential privacy budget. Figure 7(a)-(b) shows
the relative error for random range count queries on the US
census dataset and Brazil dataset, respectively. Note that we
use DPCopula-hybrid on top of DPCopula-Kendall for both
datasets since they contain binary attributes. From both
figures, we observe that DPCopula outperforms all the other
methods and their performance gap expands as the privacy
budget decreases. The noise incurred by partitioning small
domain attributes imposes little impact on the performance
of DPCopula. In addition, the accuracy of DPCopula is
robust against various epsilon values. This overall good
performance is due to the fact that DPCopula method only
computes DP margins and DP correlation matrix whose
influence on the accuracy is much smaller than the margins.
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Meanwhile, the other methods require noise being added
to histogram cells or partitions and introduce either large
perturbation errors or estimation errors.

5.4 Comparison on synthetic datasets
We use synthetic datasets to evaluate the impact of query

range size, distributions of each dimension, and dimension-
ality on the error, since we can vary these parameters easily
in synthetic data.
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Figure 8: Query accuracy vs. query range size

Query accuracy vs. query range size. We study the
impact of query range size on the query accuracy for different
methods. For each query range size, we randomly generated
queries such that the product of the query ranges on each
dimension is the same. We use 2D synthetic data in order to
include P-HP. We set the privacy budget ε to be 0.1 to better
present the performance difference of three methods. The
trend is similar for PSD and DPCopula in higher dimension
data. Figure 8 presents the impact of various query range
sizes on the query accuracy in terms of relative error and
absolute error. DPCopula outperforms PSD and P-HP. For
all methods, the relative error gradually degrades as the
query range size increases while the absolute error has the
contrary trend. The reason is that when the query size is
small, the true answer Aact(q) is also small which may incur
a small absolute error but large relative error. For the cell-
based query (i.e. query range size is 1), the average relative
error is small because the relative errors of most cell-based
queries are zeros, which greatly reduces the average value.

0.1 0.25 0.5 1
0

1

2

3

ε

R
el

at
iv

e 
er

ro
r

 

 

DPCopula
PSD

(a) Gaussian

0.1 0.25 0.5 1
0

20

40

60

80

100

ε

A
b

so
lu

te
 e

rr
o

r

 

 

DPCopula
PSD

(a) Gaussian(absolute error)

0.1 0.25 0.5 1
0

0.2

0.4

0.6

0.8

ε

R
el

at
iv

e 
er

ro
r

 

 

DPCopula
PSD

(b) Uniform

0.1 0.25 0.5 1
0

0.05

0.1

0.15

0.2

ε

R
el

at
iv

e 
er

ro
r

 

 

DPCopula
PSD

(c) Zipf

Figure 9: Relative error vs. distribution

Relative error vs. distribution. Figure 9 presents the
relative error for 8D data with Gaussian dependence and all

margins respectively generated from the Gaussian distribu-
tion, uniform distribution and zipf distribution, under vari-
ous ε values. Akin to the results in Figure 7, DPCopula per-
forms best in all distributions, and significantly outperforms
PSD especially when the margin is skewed. Meanwhile, this
verifies that DPCopula using Gaussian copula performs well
not only for data with Gaussian distributions but also for
data with different marginal distributions as long as they fol-
low the Gaussian dependence. An interesting phenomenon is
that DPCopula performs better on the uniform and zipf data
than Gaussian distribution data. This is because the method
used for generating marginal DP histograms in DPCopula,
EFPA, performs better on uniform-distributed data than
skewed data.
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Figure 10: Query accuracy vs. dimensionality

Query accuracy vs. dimensionality. We study the
effect of the dataset dimensionality as shown in Figure 10.
All marginal distributions of synthetic datasets in various
dimensions are Gaussian distribution with domain size of
1000. We set the dimensionality ranging from 2D to 8D
which corresponds to domain space of 106 to 1024. So the
dataset is highly sparse with only 50000 records. For all
dimensions from 2D to 8D, DPCopula again outperforms
PSD. The 2D data has the lowest relative error and absolute
error for both methods. The query accuracy of all methods
from 4D to 8D gradually drops with the performance gap
gradually expanding as the number of dimensions increases.
For DPCopula, this is due to the fact that for a fixed overall
privacy budget ε, higher dimensionality means less privacy
budget is allocated to each margin and correlation coefficient
incurring larger amount of noise. For PSD, consistent
with the analysis in [9], higher dimensionality will increase
the size of the domain space

∏m
i=1 |Ai|, resulting in larger

relative error. We can also observe that the increasing
relative errors for DPCopula are incurred by the small true
answers with higher dimensions.
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Figure 11: Time efficiency

Scalability. Figure 11(a) illustrates the computation time
with various data cardinality n using the 4D US census
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dataset. Observe that all three techniques run linear time
with respect to n. Computing the correlation matrix is
not a bottleneck for DPCopula as we use the sampling
technique. PSD incurs a higher computation overhead
than DPCopula and Privelet+ since its time complexity
O(mn̂logn̂) is linearithmic with n̂, where n̂ = 0.01 × n.
Figure 11(b) illustrates the computation time with various
dimensions and data cardinality fixed to 50000. DPCopula
has a higher computation overhead than PSD because the
time complexity is quadratic with the number of dimensions
but the time for 8D is still quite acceptable. In contrast, all
the other methods including EPFA that use histograms as
input are not shown here due to their high time and space
complexity due to the large domain sizes.

6. CONCLUSIONS
In this paper, we presented DPCopula using copula func-

tions for differentially private multi-dimensional data syn-
thesization. Different from existing methods, DPcopula
captures marginal distribution of each dimension and de-
pendence between separate dimensions via copula functions.
Our experimental studies on various types of datasets vali-
dated our theoretical results and demonstrated the efficiency
and effectiveness of our algorithm, particularly on high-
dimensional and large domain datasets.

In the future, we plan to extend our research on the follow-
ing directions. First, we are interested in employing other
copula families and investigate how to select optimal copula
functions for a given dataset. Second, we are interested in
developing data synthesization mechanisms for dynamically
evolving datasets.
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