proceedings

O

Optimization Techniques for “Scaling Down” Hadoop on
Multi-Core, Shared-Memory Systems

K. Ashwin Kumar

Jonathan Gluck

Amol Deshpande Jimmy Lin

University of Maryland, College Park

{ashwin, jdg, amol} @cs.umd.edu, jimmylin@umd.edu

ABSTRACT

The underlying assumption behind Hadoop and, more generally,
the need for distributed processing is that the data to be analyzed
cannot be held in memory on a single machine. Today, this assump-
tion needs to be re-evaluated. Although petabyte-scale datastores
are increasingly common, it is unclear whether “typical” analyt-
ics tasks require more than a single high-end server. Additionally,
we are seeing increased sophistication in analytics, e.g., machine
learning, where we process smaller and more refined datasets. To
address these trends, we propose “scaling down” Hadoop to run on
multi-core, shared-memory machines. This paper presents a proto-
type runtime called Hone (“Hadoop One”) that is API compatible
with Hadoop. With Hone, we can take an existing Hadoop ap-
plication and run it efficiently on a single server. This allows us
to take existing MapReduce algorithms and find the most suitable
runtime environment for execution on datasets of varying sizes. For
dataset sizes that fit into memory on a single machine, our experi-
ments show that Hone is substantially faster than Hadoop running
in pseudo-distributed mode. In some cases, Hone running on a sin-
gle machine outperforms a 16-node Hadoop cluster.

1. INTRODUCTION

The Hadoop implementation of MapReduce [6] has become the
tool of choice for “big data” processing (whether directly or indi-
rectly via higher-level tools such as Pig or Hive). Among its ad-
vantages are the ability to horizontally scale to petabytes of data
on thousands of commodity servers, easy-to-understand program-
ming semantics, and a high degree of fault tolerance. There has
been much activity in applying Hadoop to problems in data man-
agement as well as data mining and machine learning. Over the past
several years, the community has accumulated a significant amount
of expertise and experience on how to recast traditional algorithms
in terms of the restrictive primitives map and reduce.

Computing environments have evolved substantially since the in-
troduction of Hadoop. For example, in 2008, a typical Hadoop
node might have two dual-core processors with a total of 4 GB of
RAM. Today, a high-end commodity server might have two eight-
core processors and 256 GB of RAM—such a server can be pur-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

13

chased for roughly $10,000 USD. This means that a single server
today has more cores and more memory than did a small Hadoop
cluster from a few years ago. The assumption behind Hadoop and
the need for distributed processing is that the data to be analyzed
cannot be held in memory on a single machine. Today, this assump-
tion needs to be re-evaluated.

Although it is true that petabyte-scale datastores are becoming
increasingly common, it is unclear whether datasets used in “typ-
ical” analytics tasks today are really too large to fit in memory on
a single server. Of course, organizations such as Yahoo, Facebook,
and Twitter routinely run Pig or Hive jobs that scan terabytes of log
data, but these organizations should be considered outliers—they
are not representative of data analytics in most enterprise or aca-
demic settings. Even still, according to the analysis of Rowstron et
al. [20], at least two analytics production clusters (at Microsoft and
Yahoo) have median job input sizes under 14GB and 90% of jobs
on a Facebook cluster have input sizes under 100GB. Holding all
data in memory does not seem too far-fetched.

There is one additional issue to consider: over the past several
years, the sophistication of data analytics has grown substantially.
Whereas yesterday the community was focused on relatively sim-
ple tasks such as natural joins and aggregations, there is an in-
creasing trend toward data mining and machine learning. These
algorithms usually operate on more refined, and hence, smaller
datasets—typically in the range of tens of gigabytes.

These factors suggest that it is worthwhile to consider in-memory
data analytics on modern servers—but it still leaves open the ques-
tion of how we orchestrate computations on multi-core, shared-
memory machines. Should we go back to multi-threaded program-
ming? That seems like a step backwards because we embraced the
simplicity of MapReduce for good reason—the complexity of con-
current programming with threads is well known. Our proposed
solution is to “scale down” Hadoop to run on shared-memory ma-
chines [10]. In this paper, we present a prototype runtime called
Hone (“Hadoop One”) that is API compatible with standard (dis-
tributed) Hadoop. That is, we can take an existing Hadoop algo-
rithm and efficiently run it, without modification, on a multi-core,
shared-memory machine using Hone. This allows us to take an ex-
isting application and find the most suitable runtime environment
for execution on datasets of varying sizes—if the data fit in mem-
ory, we can avoid network latency and significantly increase per-
formance in a shared-memory environment.

Hadoop API compatibility is the central tenet in our design. Al-
though there are previous MapReduce implementations for shared-
memory environments (see Section 2), taking advantage of them
would require porting Hadoop code over to another API. In con-
trast, Hone is able to leverage existing implementations. In this pa-
per, we present experiments on a number of “standard” MapReduce

10.5441/002/edbt .2014.03

algorithms (word count, PageRank, etc.) as well as a Hadoop im-
plementation of Latent Dirichlet Allocation (LDA). This imple-
mentation represents a major research effort [26] and demonstrates
API compatibility on a non-trivial application.

Contributions. Our contributions can be summarized as follows:

e Hone is a scalable MapReduce implementation for multi-core,
shared-memory machines. To our knowledge it is the first Map-
Reduce implementation that is both Hadoop API compatible and
optimized for scale-up architectures.

e We propose and evaluate different approaches to implementing
the data shuffling stage in MapReduce, which is critical to high
performance.

e We discuss key challenges in implementing Hone on the JVM,
how we addressed them, and lessons we learned along the way.

e We evaluate Hone on a number of real-world applications, com-
paring it to Hadoop pseudo-distributed mode, a 16-node Hadoop
cluster, and a few other systems.

e We share a synthetic workload generator for evaluating Hone
that may be of independent interest for evaluating other systems.

2. RELATED WORK

There has been much work on MapReduce and related distributed
programming frameworks over the past several years. The litera-
ture is too vast to survey, so here we specifically focus on Map-
Reduce implementations for shared-memory environments. Per-
haps the best known is a series of systems from the Phoenix project:
the first system, Phoenix [19], evaluated the suitability of Map-
Reduce as a programming framework for shared-memory systems.
Phoenix2 [24] improved upon Phoenix by identifying inefficiencies
in handling large datasets—it utilizes user-tunable hash-based data
structures to store intermediate data. Phoenix++ [23] made further
improvements by observing that optimal intermediate data struc-
tures cannot be determined a priori, as they depend on the nature
of the application. Thus, the system provides container objects to
store map output as an abstraction to the developer. We see several
shortcomings of the Phoenix systems that limit broad applicabil-
ity. First, they are implemented in C/C++ and are not compatible
with Hadoop. Therefore, scaling down a Hadoop application us-
ing Phoenix involves essentially a full reimplementation. Second,
hash-based containers are not a feasible solution for a Java imple-
mentation, especially for applications that generate a large amount
of intermediate data. Java objects tend to be heavyweight, and
standard Java collections are inefficient for storing large datasets
in memory. We discuss this in more detail in Section 4.2.

In addition to the Phoenix systems, there have been other Map-
Reduce implementations for multi-core and share-memory envi-
ronments. Mao et al. [16] described Metis, which proposed using
containers based on hashing, where each hash bucket points to a B-
tree to store intermediate output. Chen et al. [5] proposed a “tiled”
MapReduce approach to iteratively process small chunks of data
with efficient use of resources. Jiang et al. [8] built upon Phoenix
and provided an alternate API for MapReduce. All of these systems
were implemented in C, and in some cases modify the MapReduce
model, and therefore they are not compatible with Hadoop. There
has also been a previous attempt to develop MapReduce implemen-
tations on multi-GPU systems by Stuart et al. [22].

Shinnar et al. [21] presented Main Memory MapReduce (M3R),
which is an implementation of the Hadoop API targeted at online
analytics on high mean-time-to-failure clusters. Although close in
spirit to our system, they mainly focus on scale-out architectures,
whereas we focus explicitly on single-machine optimizations. Fur-

14

Write 8GB Read 8GB
Cold Cache Warm Cache Cold Cache ‘Warm Cache
HDFS 178.0s 32.7s 81.4s 28.9s
Disk 194.0s 25.3s 27.1s 1.7s
Write 64MB Read 64MB
Cold Cache Warm Cache Cold Cache ‘Warm Cache
HDFS 5.10s 1.72s 5.64s 2.12s
Disk 0.47s 0.11s 3.27s 0.20s

Table 1: Performance comparisons between HDFS and direct disk access.

thermore, their experiments do not provide insights on scalability
and workloads behaviors in a scale-up setting. Spark [25] provides
primitives for cluster computing built on a data abstraction called
resilient distributed datasets (RDDs), which can be cached in mem-
ory for repeated querying and efficient iterative algorithms. Spark
is implemented in Scala, and so like Hone it runs on the JVM. How-
ever, Spark provides a far richer programming model than Map-
Reduce. Aside from not being directly Hadoop compatible, our ex-
periments with Spark show that it performs poorly on multi-core,
shared-memory machines (Section 6.4). This is no surprise since
Spark has not been optimized for such architectures.

Recently, Appuswamy et al. [1] also observed that most Map-
Reduce jobs are small enough to be executed on a single high-
end machine. However, they advocated tuning Hadoop pseudo-
distributed mode instead of building a separate runtime. In the next
section, we discuss Hadoop pseudo-distributed mode in detail, and
it serves as a point of comparison in our experiments. We show that
a well-engineered, multi-threaded MapReduce implementation op-
timized for execution on a single JVM can yield substantial perfor-
mance improvements over Hadoop pseudo-distributed mode.

3. HADOOP ON SINGLE MACHINE

We begin by discussing why Hadoop does not perform well on
a single machine. To take advantage of multi-core architectures,
Hadoop provides pseudo-distributed mode (PDM henceforth), in
which all daemon processes run on a single machine (on multiple
cores). This serves as a natural point of comparison, and below we
identify several disadvantages of running Hadoop PDM.

Multi-process overhead: In PDM, mapper and reducer tasks oc-
cupy separate JVM processes. In general, multi-process applica-
tions suffer from inter-process communication (IPC) overhead and
are typically less efficient than an equivalent multi-threaded imple-
mentation that runs in a single process space.

I/0 Overhead: Another disadvantage of Hadoop PDM is the over-
head associated with reading from and writing to HDFS. To quan-
tify this, we measured the time it takes to read and write a big file
(8GB) and a single split of the file (64MB) using HDFS as well as
directly using Java file I/O (on the server described in Section 5.1).
These results are shown in Table 1.

We find that direct reads from disk are much faster than reads
from HDFS for both the 8GB and 64MB conditions. Performance
improvements are observed under both cold and warm cache con-
ditions, and the magnitude of improvement is higher under a warm
cache. Interestingly, we find that writing 8GB is faster using HDFS,
but in all other conditions HDFS is slower. In the small data case
(64MB), writes are over a magnitude faster under both cold and
warm cache conditions. These results confirm that disk I/O opera-
tions using HDFS can be extremely expensive [7, 15] when com-
pared to direct disk access. In Hadoop PDM, mappers read from
HDFS and reducers write to HDFS, even though the system is run-

ning on a single machine. Thus, Hadoop PDM suffers from these
HDEFS performance issues.

Framework overhead: Hadoop is designed for high-throughput
processing of massive amounts of data on potentially very large
clusters. In this context, startup costs are amortized over long-
running jobs and thus do not have a large impact on overall per-
formance. Hadoop PDM inherits this design, and in the context of
a single machine running on modest input data sizes, job startup
costs become a substantial portion of overall execution time.

Hadoop PDM on a RAM disk provides negligible benefit: One
obvious idea is to run Hadoop PDM using a RAM disk to store in-
termediate data. RAM disks tend to help most with random reads
and writes, but since most Hadoop I/O consists of sequential oper-
ations, it is not entirely clear how much a RAM disk would help.
Our initial experiments with Hadoop PDM did explore replacing
rotational disk with RAM disk. We ran evaluations on the appli-
cations in Section 5.2, but results showed no benefits when using
a RAM disk. Moreover, previous studies have shown that a RAM
disk is at least four times slower than raw memory access [9, 17].
We expected greater benefits by moving completely to managing
memory directly, so we did not pursue study of Hadoop PDM on
RAM disks any further.

4. HONE ARCHITECTURE

The overall architecture of Hone is shown in Figure 1. Below, we
provide an overview of each processing stage.

Mapper Stage: As in Hadoop, this stage applies the user-specified
mapper to the input dataset to emit intermediate (key, value) pairs.
Each mapper is handled by a separate thread, which consumes the
supplied input split (i.e., portion of the input data) and processes
input records according to the user-specified InputFormat. Like
Hadoop, the total number of mappers is determined by the number
of input splits. This stage uses a standard thread-pooling technique
to control the number of mapper tasks that execute in parallel. Map-
pers in Hone accept input either from disk or from a namespace
residing in memory (see Section 4.2 for more details).

Data Shuffling Stage: In MapReduce, intermediate (key, value)
pairs need to be shuffled from the mappers where they are created
to the reducers where they are consumed. In Hadoop, data shuf-
fling is interwoven with sorting, but in Hone these are two separate
stages. The next section describes three different approaches to
data shuffling. Overall, we believe that efficient implementations
of this process is the key to a high-performance MapReduce imple-
mentation on multi-core, shared-memory systems.

Sort Stage: As with Hadoop, Hone sorts intermediate (key, value)
pairs emitted by the mappers. Sorting is handled by a separate
thread pool with a built-in load balancer, on streams that have al-
ready been assigned to the appropriate reducer (as part of the data
shuffling stage). If the sort streams grow too large, then an auto-
matic splitter divides the streams on the fly and performs parallel
sorting on the split streams. The split information is passed to the
reducer stage for proper stream assignment. The default stream
split size can be set as part of the configuration.

Reducer stage: In this stage, Hone applies the user-specified re-
ducer on values associated with each intermediate key, per the stan-
dard MapReduce programming model. A reducer either writes out-
put (key, value) pairs to disk or to memory via the namespace ab-
straction for further processing.

Combiners: In a distributed setting, combiners mimic the func-
tionality of reducers locally on every node, serving as an optimiza-
tion to reduce network traffic. Proper combiner design is critical

15

Disk

or
W

iiiiratined

Wiy

{
[Mapper 1

itiiuasait

|
Mapper 3]

I [Mapper 2 l
' ' Dati S:uflling S*tage]
gidoooo oooooo oooooo
@ l 1 l Namespace
Manager

or
W
Figure 1: Hone system architecture.

to the performance of a distributed MapReduce algorithm, but it is
unclear whether combiners are useful when the entire MapReduce
application is running in memory on a single machine. For this
reason, Hone currently does not support combiners: since they are
optional optimizations, we can ignore them without affecting algo-
rithm correctness.

Namespace Manager: This module manages memory assignment
to enable data reading and writing for MapReduce jobs. It converts
filesystem paths that are specified in the Hadoop API into an ab-
straction we call a namespaces: output is directed to an appropriate
namespace that resides in-memory, and, similarly, input records are
directly consumed from memory as appropriate.

4.1 In-Memory Data Shuffling

We propose three different approaches to implement data shuffling
between mappers and reducers: (1) the pull-based approach, (2)
the push-based approach, and (3) the hybrid approach. These are
described in detail below.

Pull-based Approach: In the pull-based approach, each mapper
emits keys to r streams, where r is the number of reducers. Each
mapper applies the partitioner to assign each intermediate (key,
value) pair to one of the r streams based on the key (per the stan-
dard MapReduce contract). If m is the number of mappers, then
there will be a total m X r intermediate streams. In the sort stage,
these m X r intermediate streams are sorted in parallel. In the re-
ducer stage, each reducer thread pulls from m of the m X r streams
(one from each mapper). Figure 2 shows an example with three
mappers and six reducers, with eighteen intermediate streams.
With this approach we encounter an interesting issue regarding
garbage collection. In Java, a thread is its own garbage collection
(GC) root. So any time a thread is created, irrespective of cre-
ation context, it will not be ready for garbage collection until its
run method completes. This is true even if the local method which
created the thread completes. In Hone, we maintain a pool of map-
per threads containing fp,, threads (usually for large jobs, tp,, < m,
where m is the number of mappers, determined by the split size).

?99?9999999? 999??999999? 999???99????

WW WW 99999?999?99

99????99??99 9999??99?9?9 9999??9?99?9

Mapper 1

Mapper 1

Mapper 2 Mapper 3

Mapper 2

Mapper 3 Mapper 1 Mapper 2 Mapper 3

el

100 00

Reducer
2

Reducer
3

Reducer
4

4 a ﬂ
| Reducer | [Reducer
5 6

Reducer Reducer
5 6

‘ Reducer | | Reducer | ' Reducer | [Reducer

Figure 2: Pull-based approach

Thus, tp,, mappers are running concurrently, and the objects that
each creates cannot be garbage collected until the mapper finishes.
Increasing this thread pool size allows us to take advantage of more
cores, but at the same time this increases the amount of garbage
that cannot be collected at any given time. Hone needs to contend
with the characteristics of the JVM, and garbage collection is one
re-occurring issue we have faced throughout this project.

Push-based Approach: In this approach, Hone creates only 7 in-
termediate streams, one for each reducer. This is shown in Figure 3,
where we have six streams. Each mapper emits intermediate (key,
value) pairs directly into one of those r streams based on the parti-
tioner. In this way, the mappers push intermediate data over to the
reducers. Because r streams are being updated by the mappers in
parallel, these streams must be synchronized and guarded by locks.
Due to this synchronization overhead, contention is unavoidable,
but this cost varies based on the distribution of the intermediate
keys to reducers. There are two ways of dealing with contention
cost: the first is to employ scalable and efficient locking mecha-
nisms (more discussion below), and second is to increase the num-
ber of reducers so that key distribution to reducers is spread out,
which in turn will reduce synchronization overhead. However, if
we have too many reducers, context-switching overhead of reducer
threads will negatively impact performance.

The push-based approach creates fewer intermediate data struc-
tures for the same amount of intermediate (key, value) pairs, and
thus in this manner is more efficient. In the pull-based approach,
since each mapper output is divided among r streams, the object
overhead in maintaining those streams is much higher relative to
the actual data held in those streams (compared to the push ap-
proach). In order to take advantage of greater parallelism in the re-
ducer stage (for the pull-based approach), we may wish to increase
the number of reducers, which further exacerbates the problem.

Another advantage of the push-based approach is that reducers
are only consuming from a single stream, so we would expect better
reference locality (and the benefits of processor optimizations that
may come from more regular memory access patterns) compared to
the pull-based approach. The downside, however, is synchroniza-
tion overhead since all the mapper threads are contending for write
access to the reducer streams.

Hybrid Approach: As a middle ground between the pull and push
approaches, we introduce a hybrid approach that devotes a small
number of streams to each reducer. In Figure 4, each reducer reads
from two streams, which is the default. There are two ways to dis-
tribute incoming (key, value) pairs to multiple streams for each re-
ducer: the first is to distribute evenly, and the second is to distribute
according to the current lock condition of a stream. The second
approach is perhaps smarter, but Hone currently implements the
first method, which we empirically discovered to work well. Hav-
ing multiple streams reduces, but does not completely eliminate
lock contention, but at the same time, the hybrid approach does
not suffer from a proliferation of stream objects. The number of
streams per reducer can be specified in a configuration, which pro-

Figure 3: Push-based approach

16

Figure 4: Hybrid approach

vides users a “knob” to find a sweet spot between the two extremes.

In the push and hybrid data-shuffling approaches, lock efficiency
plays an important role in overall performance. We have imple-
mented and experimented with various lock implementations, in-
cluding Java synchronization, test-and-set (tas) spin lock, test and
test and set (ttas) spin lock, and reentrant lock. Each lock imple-
mentation has its own advantages and disadvantages, but overall
we find that Java synchronization in JDK7 performs the best.

Tradeoffs: We experimentally compare the three different data-
shuffling approaches, but we conclude this section with a discus-
sion of the factors that may impact performance.

Obviously, input data size is an important factor. Larger in-
puts translate into more splits, more mappers, and thus more active
streams that are held in memory (for the pull-based approach). In
contrast, there are only 7 streams in the push-based approach, where
r is the number of reducers. Note that the number of reducers is a
user-specified parameter, unlike the number of mappers, which is
determined by the input data. As previously discussed, the cost of
fewer data streams (less object overhead) is synchronization costs
and contention when writing to those streams. The hybrid approach
tries to balance these two considerations.

Another factor is the amount of intermediate data that is pro-
duced. Some MapReduce jobs are primarily “reductive” in that
they generate less intermediate data than input data, but other types
of applications generate more intermediate data than input data;
some text mining applications, for example, emit the cross prod-
uct of their inputs [12]. This characteristic may have a significant
impact on the performance of the three data-shuffling approaches.

Finally, the distribution of the intermediate keys will play an
important role in performance—this particularly impacts synchro-
nization overhead in the push-based approach. For example, with
that approach, if the distribution is Zipfian (as with word count and
certain types of graph algorithms), then increasing the number of
reducers may not substantially lower contention, since the “head”
of the distribution will always be assigned to a single reducer [13].
On the other hand, if the intermediate key distribution is more uni-
form, we would expect less lock contention since mapper output
would be more evenly distributed over the reducer streams, reduc-
ing the chance that multiple mappers are contending for a lock.

4.2 Challenges and Solutions

This section discusses key challenges in developing Hone for the
Java Virtual Machine on multi-core, shared-memory architectures
and how we addressed them.

Memory consumption: To retain compatibility with Hadoop, we
made the decision to implement Hone completely in Java, which
meant contending with the limitations of the JVM. In a multi-core,
shared-memory environment, the mapper, sort, and reducer threads
compete for shared resources, and thus we must be careful about
the choice of data structures, the number of object creations, proper
de-referencing of objects for better garbage collection, etc. We dis-
covered early that many Java practices scale poorly to large datasets.

With a naive implementation based on standard Java collections,
on a server with 128GB RAM, an initial implementation of Map-
Reduce word count on an input size 10% of the total memory gen-
erated out-of-memory errors because standard Java collections are
heavyweight [18]. For example, an implementation using a Java
TreeMap<String, Integer> to hold intermediate data can have up
to 95% overhead, i.e., only 5% of the memory consumed is used
for actual data.

To address this issue, we extensively use primitive data struc-
tures such as byte arrays to minimize JVM-related overhead. In
the mapper stage, (key, value) pairs are serialized to raw bytes and
in the reducer stage, new object allocations are reduced by reading
pairs from byte arrays using bit operations and reusing container
objects when possible. We avoid using standard Java collections in
favor of more efficient custom implementations.

Sorting is expensive: Intermediate (key, value) pairs emitted by
the mappers need to be sorted by key. For large intermediate data
(on the order of GBs), we found sorting to be a major bottleneck.
This is in part because operations such as swapping objects can be
expensive, but the choice of data structures has a major impact on
performance also. In Hadoop, sorting is accomplished by a com-
bination of in-memory and on-disk operations. In Hone, however,
everything must be performed in memory.

We experimented with two approaches to sorting. In the first,
each thread from the mapper thread pool handles both mapper exe-
cution as well as sorting. In the second approach, mapper execution
and sorting are handled by separate thread pools. We ultimately
adopted the second design. Note that sorting is orthogonal to the
pull, push, hybrid data-shuffling approaches.

We see a number of advantages to our decoupled approach. First,
the optimal thread pool size depends on factors such as the number
of cores available, the size of the intermediate data, and skew in
the intermediate key distribution. The decoupled approach lets us
configure the sort thread pool size based on these considerations,
independent of the mapper thread pool size. Second, the decoupled
approach allows the garbage collector to clean up memory used by
the mapper stage before moving to the sort stage. Finally, combin-
ing mapping and sorting creates a mix of different memory access
patterns, which can negatively impact performance.

Hone implements a custom quick sort that works directly on byte
arrays; these are the underlying implementations of the streams that
the mappers write to when emitting intermediate data. The main
idea is to store intermediate (key, value) pairs in a data byte array
in serialized form, and to create an offset array that records offset
information corresponding to the serialized objects in the data byte
array. Offsets are also stored in byte arrays. Once mapper output
is stored in these data and offset byte arrays, quick sort is applied.
Offsets are read from the offset array and data are read using bit
operations depending on the data type (to avoid object materializa-
tion whenever possible). Values are compared with each other, but
only offset bytes are swapped. Usually, the size of the offset byte
array is much less than the size of the data byte array, and therefore
it is more efficient to perform swapping on the offset byte array.
Moreover, most of the bytes in the offset byte array contain zeros
(i.e., the high order bytes of an offset): only the non-zero bytes and
the bytes that are not equal need to be swapped. This eliminates a
large amount of the total cost of swapping elements during sorting.

Interactions between data shuffling and sorting: In the pull-
based approach to data shuffling described in Section 4.1, the sort
stage takes maximum advantage of parallelism since the intermedi-
ate data are divided among m X r streams (usually a large number).
However, in the push and the hybrid approaches, intermediate data
are held in a much smaller number of streams: r in the case of the

17

push approach and a small factor of r for the hybrid approach. In
both cases, this reduces the amount of parallelism available, since
each sorting thread must handle a much larger amount of data. For
large datasets, this becomes a performance bottleneck. For the push
and hybrid approaches, we remedy this by splitting intermediate
streams into several smaller streams on the fly. The sizes of these
streams is a customizable parameter, but we have heuristically set-
tled on a value that works reasonably well across different applica-
tions (10000 bytes).

Disk-based readers and writers: One of the challenges in de-
veloping a Hadoop-compatible MapReduce implementation is that
Hadoop application code makes extensive use of disk-based read-
ers and writers, mainly implemented using the RecordReader and
RecordWriter classes. The simplest way to avoid disk overhead
is to provide an API to access memory directly and then change
the application code to take advantage of these hooks. Since we
wanted to make Hone compatible with the existing Hadoop API,
we needed deeper integration.

We introduce the notion of a namespace, which is a dedicated re-
gion in memory where data are stored. Application code can access
namespaces through the standard Hadoop Job object. To main-
tain compatibility with the Hadoop API, we provide efficient in-
memory alternatives for Hadoop FileReader and FileWriter classes.
Disk paths in application code are automatically converted to ap-
propriate namespaces and output is redirected to these namespaces.

Iteration support: Iterative MapReduce algorithms, where a se-
quence of MapReduce jobs are chained together such that the out-
put of the previous reducer stage serves as the input to the next
mapper stage, are a well-known weakness of Hadoop [4]. Since
many interesting algorithms are iterative in nature (e.g., PageRank,
LDA), this is an important problem to solve. The primary issue
with Hadoop-based implementations of iterative algorithms is that
reducer output at each iteration must be serialized to disk, even
though it should be considered temporary since the data are imme-
diately read by mappers at the next iteration. Of course, serializing
serves the role of checkpointing and provides fault tolerance, but
since Hadoop algorithms are forced to do this at every iteration,
there is no way to trade off fault tolerance for speed.

In Hone, all of these issues go away, since intermediate data
reside in memory at the end of each iteration. The choice to se-
rialize data to disk can be made independently by the developer.
Thus, Hone provides natural support for iterative MapReduce al-
gorithms. In a bit more detail: typically, in an iterative algorithm,
there is a “driver program” that sets up the MapReduce job for each
iteration, checks for convergence, and decides if another iteration is
necessary. Convergence checks are usually performed by reading
reducer output (i.e., files on HDFS). In Hone, this is transparently
handled by our notion of namespaces.

Garbage collection and off-heap memory allocation: All objects
allocated in the JVM heap are scanned periodically by the garbage
collector, with frequency determined in part by the size of the heap
and in part by the rate at which new objects are created. This sig-
nificantly impacts the overall performance of Hone, with a major
culprit being the mappers, which generate a large number of ob-
jects to store the intermediate data. The techniques that we have
discussed so far (e.g., using byte arrays to serialize ob