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ABSTRACT

Uncertain, or probabilistic, graphs have been increaginged to
represent noisy linked data in many emerging applicati@nac
ios, and have recently attracted the attention of the databe:
search community. A fundamental problem on uncertain gréaph

reliability, which deals with the probability of nodes being reach-

able one from another. Existing literature has exclusiVetused

onreliability detection which asks to compute the probability that

two given nodes are connected.
In this paper we studyeliability searchon uncertain graphs,

which we define as the problem of computing all nodes reach-
able from a set of query nodes with probability no less than a

given threshold. Existing reliability-detection apprbes are not
well-suited to efficiently handle the reliability-searctoplem. We

proposeRQ-tree, a novel index which is based on a hierarchical

clustering of the nodes in the graph, and further optimizédgia
balanced-minimum-cut criterion. Based B®Q-tree, we define a
fast filtering-and-verification online query-evaluatidnasegy that
relies on a maximum-flow-based candidate-generation plfalse
lowed by a verification phase consisting of either a loweurtabing
method or a sampling technique. The first verification mettead
turns no incorrect nodes, thus guaranteeing perfect poecisom-
pletely avoids sampling, and is more efficient. The seconmifica-
tion method ensures instead better recall.

Extensive experiments on real-world uncertain graphs ghatv
our methods are very efficient—over state-of-the-art bdliig-
detection methods, we obtain a speed-up up to five ordersgfima
tude; as well as accurate—our techniques achieve precisi@f5
and recall usually higher than75s.

1. INTRODUCTION

Graphs are a ubiquitous model to represent objects and #heir
tions. In many applications, uncertainty is inherent indiaga due
to a variety of reasons, such as noisy measurements [2leinde
and prediction models [1, 26], or explicit manipulationg.e for
privacy purposes [8]. In these cases, data is representalas
certain graph also calledprobabilistic graph i.e., a graph whose
arcs are accompanied with a probability of existence.
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A fundamental problem in uncertain graphs is the so-cate!
liability problem, which asks to estimate the probability that
given (sets of) nodes are reachable. Reliability has bedh
studied in the context of device networks (e.g., telecomination
networks): networks whose nodes are electronic devicegtsr
(physical) links between such devices have a probabilitjadf
ure [3]. More recently, the attention has been shifted teokind
of networks that can naturally be represented as uncertaphg,
such as social networks or biological networks [20, 28, 34].

The reliability problems studied so far in the literatureluding
all works on device-network reliability, fall into the geaé class
of reliability detection Specific problem formulations in this cla
ask to measure the probability that a certain reliabilitgrevoc-
curs, e.g., what is the probability that two given nodes ame-
nected two-terminalreliability [3]), all nodes in the network ai
pairwise connecteda(l-terminal reliability [31]), or all nodes in ¢
given subset are pairwise connectéetérminal reliability [18]).

In this work we depart from the existing literature and foou:
the problem ofreliability search which, to the best of our know
edge, has never been considered so far: given a probahilégh-
oldn € (0,1) and a set of source nodss find all nodes that ar
reachable fromd' with probability no less than.

Applications. Reliability search naturally arises in a variety of s
narios. In the problem known asfluence maximizatignwhose
main application issiral marketing[23], the probability of an ar
(u,v) represents the influence thatexerts onw, i.e., the likeli-
hood that some action af will be adopted by, or the likelihood
that information propagates fromto v. An important, as well a
the most computationally expensive step common to statkes
art methods, is to determine all nodes that can be influenge
a givensetof nodes, whose computation is based on the iter.
execution of reliability-search queries, as shown in ®ecti.7.

In protein-interaction networks [5] nodes represent pnstend
arcs represeninteractionsamong them. Interactions are est
lished for a limited number of proteins, through noisy andel
prone experiments. Thus, each arc is typically associatddar
probability accounting for the existence of the interactidn this
context, predicting co-complex memberships [5, 25], and ime
teractions [28, 30] require to compute all proteins thateatdently
(i.e., with high probability) reachable from a core (soyrset of
proteins: this operation exactly corresponds to runniraiability-
search query using the core proteins as source nodes.

In mobile ad-hoc networks the connectivity between nodes-
timated using noisy measurements, thus leading to linksralit
associated with a probability of existence. In these nets/dine
notion of “delivery probability” is usually exploited to temine
the nodes for which the probability of receiving a packet by
other node in the network is adequately high [15]. Once adhé&

10.5441/002/edbt .2014.48



Table 1: Time complexity of reliability-search queries: the propdRQ-tree-based methods vs. existing two-terminal reliabilityedéibn methods whe
used for reliability searchn andm are the number of nodes and arcs in the input uncertain g@pfhis the diameter ofj, K is the number of determinist
graphs sampled frorg, S is the set of query source nodes.andm (n < n, m < m) are the number of nodes and arcs of the subgrap§ tfat the

proposedRQ-tree-based methods need to visit.

RQ-tree-LB (this work) | RQ-tree-MC (this work)

MC-Sampling13] | RHT-Sampling[20]
single-source queries| O(K(m +n)) O(n?d)
multiple-source querie§] O(K(m + n)) O(n2d)

O(im)
O(|S|7um)

O(m + K (m + 1))
O(|S|ivm + K (m + 7))

solution to this problem can be determined by reliabilitsrsf.

a sampling technique applied to the candidate set only. ®he¢

Road networks can be modeled as uncertain graphs because ofner verification method guaranteparfect precisionas it returns

unexpected traffic jams [19]. Due to the presence of arc fitha
ties in such types of networks, reachability from a set cdrafutive
source locations to a set of affordable target locationsilshbe
interpreted in a probabilistic way, thus naturally leadiogjueries
formulated as reliability-search queries: “What are &l libcations
among the possible alternative ones given in input that emeh-
able from the source location(s) with high probability?”.

Challenges. Even the simplest reliability-detection problem, i.e.,
two-terminal reliability, is a#P-complete problem [6, 32]. Thus,
although exact reliability detection has received attaniin the
past [3], the focus nowadays, due to the large size of netsyork
has mainly been on approximate solutions. Most work in teis r
gard has resorted to Monte-Carlo sampling methods [133322
well as other sampling techniques improving upon the effimyeof
classic Monte Carlo method®HT-samplind20]). Such approx-
imate reliability-detection strategies can in principkddapted to
handle the novel reliability-search queries we study is thork,
but, as discussed next, they are not really appropriate.

The classic Monte-Carlo approach would simply considerta se
of K deterministic graph instances sampled from the input uncer
tain graph according to its edge probabilities, and deteenaill

nodes reachable from the query source nodes in each graph in-

stance: all nodes reachable in a fraction of graph instancg#’
are returned as answer to the query.

The RHT-sampling technique [20] can also be easily adapted t
handle reliability-search queries. The idea is to make abaurof
O(n) distinct reliability-detection queries (whereis the number
of nodes in the input graph) in order to determine the prdigbi
that each node in the graph is reachable from the source nbges
answer to the reliability-search query will be then giverabiyhose
nodes whose reliability is no less than the threshpld

In all applications such as those listed above, howeverrghe
quired rate of reliability-search queries is usually higithus,

a fundamental requirement is to perform any single query ver
quickly. This makes the naive adaptations of existing agpro
mate reliability-detection methods not well-suited. ledefor an
input graph ofn nodes;m arcs, and diametet, the time complex-
ity of such adaptations is eith€( K (n + m)) (MC-sampling) or
O(n?d) (RHT-sampling), which is clearly unaffordable for online
computations on large-sized graphs that are commonly enecd
nowadays (Table 1). This makes the problem of fast estimatin
reliability-search queries very challenging.

Our contributions and roadmap. In this work we study the prob-
lem of fast online approximation of reliability-search queriea o
uncertain graphs Our solution relies on pre-computing offline in-
formation that can be exploited to speed-up online quergess-
ing. To this aim, we devise a novel index, callR@-tree, which
allows to process our queries very efficiently. Our offlinder-
ing technique relies onlaierarchical clusteringf the nodes in the
input graph, where the hierarchical structure is based erofi
timization of a principled balanced-minimum-cut criterioQuery
evaluation consists of a maximum-flow-based candidatergéor
(filtering) step and a verification step that relies on eifagran ef-
ficient lower bound based on the notion of most-likely path()
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no incorrect (false positive) nodes (while false negatcasarise)
it also avoids sampling at all, resulting in very high effieig—
the speed-up over reliability-detection baselines up te @ixders
of magnitude. On the other hand, sampling-based verific:
guarantees better accuracy (in terms of recall). The inggt@c-
curacy comes at a price of higher execution time, which, t
ever, remains drastically less than the time required byptiag:
based baselines—speed-up over reliability-detectioellres, in
this case, is up to one order of magnitude.

As a further important feature, the propodR@-tree supports
both single-source andhultiple-source reliability-search querie
Particularly, multiple-source reliability search is a cial gener-
alization that is required in several real-world scenarigsch as
influence maximization (see Section 7.7).

Our contributions can be summarized as follows:

o \We define the fundamental problem of reliability search in
certain graphs (Section 2).

e \We devise an index, calle®Q-tree, to support efficien
yet effective approximate online answers to reliabiligasch
queries (Section 3). The proposed index is based on a
archical clustering of the nodes in the graph. The hiera
cal structure ofRQ-tree derives from the optimization of
partitioning method based on the balanced-minimum-cui
timization criterion (Section 6).

e Based orRQ-tree, we develop a fast filtering-and-verificati
strategy (Sections 4-5). We exploit an upper bound or
probability of a set of nodes in a cluster to reach nodes del
the cluster, and a lower bound on the probability of reac
any other node. The first bound is used for candidate ge
tion, while the latter is used for verification.

e We conduct a thorough experimental evaluation by inv
ing several real-world uncertain graphs and comparing
proposedRQ-tree-based query-evaluation strategy with t
baselines: a simple Monte-Carlo-sampling technique ae
RHT-sampling method [20], both originally conceived
two-terminal reliability detection (Section 7). Resultsarly
attest high efficiency and accuracy of our proposal.

e \We show how to appliRQ-tree in the well-known influence
maximization problem [23] (Section 7.7).

2. PROBLEM STATEMENT

An uncertain graphg is a triple(N, A, p), whereN is a set ofn
nodes,A C N x N is a set ofin directed arcs, ang: A — (0, 1]
is a probability function that assigns a probability of éaige tc
each arc inA.

The bulk of the literature on uncertain graphs and de\
network reliability assumes the existence of the arcs ingtiagph
independent from one another and interprets uncertairhgrap-
cording to the well-knowmossible-world semanti¢40,11, 18,20
28,29,31,34]: an uncertain graghwith m arcs yield2™ possible
deterministic graphs, which are derived by sampling inddpatly
each ara € A with probability p(a). More precisely, a possib



Figure 1:Run-through example: an uncertain graph.

graphG C G is a pair(N, Ag), whereAg C A, and its sampling
probability is:

Pr(@) =[] @ JI (-n(a). @)
a€Ag a€A\Ag

For a possible deterministic graph, we define an indicator
function P¢ (S, t) to be 1 if there is a path i@ from a set of source

nodesS C Ato atarget node € A, and O otherwise. We say there

is a path from the node sétto a node if a path fromat leastone
nodes € S tot exists. The probability thatis reachable front
in the uncertain grapf, denoted byR (S, t), is computed as:

R(S,t) = Y Pa(S,t) Pr(G). )

GEg

The number of possible worlds C G is exponential in the number
of arcs, which makes the exact computationR{fS, t) infeasible
even for moderately-sized graphs.

The problem we address in this work is the following.

PROBLEM1 (RELIABILITY SEARCH). Given an uncertain
graphG = (N, A, p), a probability threshold; € (0,1), and a
set of source nodeS C N, find all nodes inN that are reach-
able from S with probability greater than or equal tg, that is,
RS(S,n) ={te N | R(S,t) >n}. O

ExampPLE 1. Consider the uncertain graph in Figure 1, and

suppose one wants to comput& ({s}, 0.5), i.e., all nodes reach-
able froms with probability no less thaf.5. It is easy to see that
w is part of the solution due to a direct arc frosnwith probability
0.6. Also,u can be reached directly, or via; the probability that
u is reachable frons is thusl — (1 —0.5) x (1—0.6 x 0.5) = 0.65.
Hence, alsou belongs to the solution set.

RS({s},0.5) = {s,u,w}. O

Problem 1 is a generalization of the two-terminal relidipili
detection problem, which asks to compute the probabiliat tn
target node is reachable from a source nosgelIndeed, a simple
reduction from two-terminal reliability-detection to Rilem 1 ex-
ists. The idea is to estimate the answer to a given instantgeof
former problem by performing a binary search on the threshol
Two-terminal reliability detection is a prototypicg#P-complete
problem [6, 32]; as a consequence, Problem 1 is hard as well.

Due to its intrinsic hardness, we tackle the reliabilitysh
problem from an approximation viewpoint. Particularlyy enain
goal is to develop index structures that can be exploitege¢ed-up
online query estimation. As our focus is on approximate tgmhs,
the answer to any reliability-search query inevitably edm errors
in terms of false negatives and/or false positives. Idettly goal
is to have answers that exhibit low false-negative and fptsstive
rates. However, which of these two rates is to favor realjyedels
on the application. Some applications require high prenigi.e.,
low false-positive rate) such as packet-delivery prolighih sen-
sor networks [15]. In other applications we are rather moteri
ested in high recall (i.e., low false-negative rate), sucpradicting
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Following a simi-
lar reasoning, one may verify that the answer to the query is:

U,,({S}{SUW}) = 0.496

U, ({S}{SW}) = 0.80

<D
A0 0 O
U,.:({S},{S}) = 0.80

® W

Figure 2: An RQ-tree index for the uncertain graph in Figure 1. Tl
upper bounds of outreach probability frofs} to outside various clustel
are also shown (Example 2).

co-complex memberships by finding all proteins reachaldmfa
core of proteins [5]. For this purpose, our proposal provithes
user with a choice between two methods—the first method |
tion 5.1) favors precision (guaranteeipgrfectprecision), while
the second method (Section 5.2) focuses more on recall.

3. THE RQ-TREE INDEX: OVERVIEW

The proposed index, calléRiQ-tree, is based on &ierarchical
clusteringof the nodes in the input uncertain graph. Specific.
the RQ-tree, hereinafter denoted by, is a tree, where the ro
contains the complete set of nod¥s and the leaves correspond
individual nodes ofV. All clusters at any level form a partition
of N. A cluster at level is partitioned into a number of childre
clusters at level + 1. As a result, there exists a unique pathir
that connects each nodec N to the root. Such a path is compos
of clusters that are all nested into each other. An exampR®@f
tree index for the uncertain graph of Figure 1 is shown in Figur
together with some bounds that will be clarified in the negtisa.

Our query-processing strategy is based on two phases:

1. Candidate generatigrwhere acandidateset of nodes is bui
based on the information stored into the pre-compRed
tree index. All nodes not belonging to the candidate set
discarded. A nice feature of this step is to guaranteertb
true positivenode is discarded from the candidate set.

2. Verification where a screening is applied to the candidatt
so to discard nodes that should not be part of the answe

As the way we define thRQ-tree depends on the query process
strategy, for the sake of clarity we first present the quene@ssing
strategy assuming aRQ-tree given (Sections 4-5), then we ¢
scribe how to build th&®Q-tree index (Section 6).

4. QUERY PROCESSING: CANDIDATE
GENERATION

Here we describe the candidate-generation step of oure
reliability-search strategy. We first present the main tegécal re-
sults (Section 4.1). Then, we discuss the case in which thes
set is a singleton (Section 4.2). Finally, we focus on theegal
case where the source set has cardinality larger than ore
tion 4.3).

4.1 Outreach probability

A key concept in our candidate-generation algorithm is the
tion of outreach probability which is the probability that a subs
of nodesS within a clusterC' in theRQ-tree index is connected t
nodes outsid€’, i.e., withinC' = N \ C.



DEFINITION1 (OUTREACH PROBABILITY). Given a set of
nodes (cluster)” C N and a subset C C, theoutreach proba-
bility R..:(S,C) from S to outsideC' is defined as the probability
that S reaches the nodes not belongingdoi.e.,

Rout(S7 C) = Z PG(S7 6) PI‘(G) (3)
GLG

wherePg (S, C) = 1if there exists at least a nodes C' such that
Pg(S,t) =1, Pa(S,C) = 0 otherwise. []

Two interesting observations arise from the definition of-ou

reach probability: if the outreach probability Sfin C' is smaller
thanmn, then the probability of reachingverysingle node outside

C'is also smaller than (Observation 1), and the outreach probabil-

ity values are non-decreasing for clusters that are nesteceach
other (Observation 2).

OBSERVATION 1. For a clusterC C N and its subsef C C
the following holds: ifR,.:(S, C) < nthenR(S,t) < ¢ for all
teC. O

OBSERVATION 2. Given any two cluster€’;, C; such that
C; C Cj, and a set of source nodes C Cj, it holds that
Rout(57 Cz) 2 ROut(S7 CJ) I:‘

Observations 1 and 2 create the basis for retrieving a valid

candidate set from aRQ-tree 7. Specifically, given a query
RS(S,n), consider all cluster€' in 7, such that,S C C and

Rout(S,C) < 7. Observation 1 guarantees that all nodes out-

side each of those clusters violate the reliability cooditiherefore
they can safely be discarded. Clearly, one wants to consialgr

the smallest among those clusters in order to maximize the nu
ber of pruned nodes. Observation 2 ensures that one onlg need

focus on the clustef’ having the largest valu®,..:(S, C) that is
smaller tham,.

A candidate-generation strategy based on the above regsoni

would require to compute outreach probabilities exactly, duch

a computation is#P-complete. A possible solution is to approx-
imate R, values by sampling. Unfortunately, besides the well-

known efficiency issues, this sampling-based solution damdt
guarantee that the results stated in Observations 1-2 oagryas
any sampling-based approximal.: value can in general be ei-
ther smaller or larger than the refl,... value. Instead, the validity
of Observations 1-2 is still guaranteed if one would use greup

bound onR,.:. For this reason, we next define an upper bound on

R, and use it in substitution for the actu@l,..; value.

Upper bound on outreach probability. While various upper
bounds for reliability exist in the literature [7, 14, 24,]2%0ne
of them is really suitable for our problem. Indeed, the catre
probability can be viewed as a special notionsofurce-to-any-

terminalreliability, where one is asked to compute the probability

that some source nodes are connectedt teast onenode in a tar-

get set [21]. To our knowledge, no upper bounds have beeredefin

for this particular type of reliability problem. One migtdapt the
upper bounds on two-terminal reliability by interpretirmusce-to-
any-terminal reliability as a special case of two-termimgdilability
where the sources and the terminals are sets of nodes insteiad
gle nodes. However, the upper bounds on two-terminal riétiab
require to consider the entire netwgnkhich in our context would
lead to lose the pruning benefits given by R@-tree structure.
Instead, the upper bound we propose, denotedhy, is based
on the min-cut/max-flow principle andiéquires only to consider
the subgraph induced by the nodes of the currently beinggssmd
cluster We start by defining the notion ofiost-likely cutetween
two disjoint sets of nodes.
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Algorithm 1 Compute Uyt

Input: an uncertain graply = (N, A, p); a clusterC C N, a set of
source nodes C C

Output: Uswt (S, C)

1 C +—{veC|3ueC : (uv) €A}

DA {(u,v) € A| {u,v} CCUT}

s foralla € A', setc(a) = —log(1l — p(a))

(buildG = (CUCT’, A, ¢)

. f* < MaxFlow(G, S,C")

P Uout(S,C) 1 —exp(—f*)

oA WN -

DEFINITION 2 (MOST-LIKELY CUT). Consider a determinis
tic graphG = (NN, A) and two disjoint sets of nodes,Y C N.
We define a cu€(X,Y) between the setX andY to be a se
of arcs in A whose removal disconnecf§ and Y. Consider
now an uncertain grapty = (N, A, p) and two disjoint sets ¢
nodesX,Y C N. We define the most-likely cGt'(X,Y") to
be a set of arcs such that: (1) it is a cut betwe&nand Y,
as defined on the deterministic graph that contains all thes
of G; (2) among all cuts betweeX and Y, it is the one tha
maximizes the probability of having all its arcs non-prdsere.,
C*(X,Y) = argmaxc(x,y) Haec(x,m(l —p(a)). O

As stated in the following theorem, the most-likely cut pd®s us
a way to express the desired upper bolhd:.

THEOREM 1. Given a clustelC C N and a subset C C, it
holds that:

Rout(57 C) S Uaut(s, C) =1- max
C(5,0)

(1 —p(a)).

a€C(S,0)

PROOF. Consider any cu(S, C)). From the independence ¢
sumption, the probability that none of the arcifs, C) exists is
equal to] [ ,c¢(s,& (1 — p(a)). Now, consider the event that no
of the nodes inS can reach any node outsideé The probability
of such an event is equal fo— R...(S, C), and is clearly lower
bounded by the probability that no arc@iiS, C) exists. Based o
this reasoning, it holds that:

I[I (—pla)), foraic(s,O),

a€C(S,0)

1-— Rout(Sy C) 2

or, equivalently, Zout (S, C) < 1 — maxc(se) [laccsa (1 —
p(a)). The theorem follows. [J

The upper bound,.; defined in Theorem 1 can be compu
by running a max-flow algorithm on a capacitated graph appr
ately derived frong (see Algorithm 1). Specifically, our algorith
works as follows. First, we construct a capacitated gi@ptvhich
has the same sets of nodes and arcg.a€ach arca in G has
a capacityc(a) equal to—log(1 — p(a)). Then, we compute tt
max-flow f* from S to C on G.* As the following theorem state
the desired upper bound,.:(S, C') can eventually be computt
asl — exp(—f").

THEOREM 2. Given an uncertain graply = (N, A, p), let

G = (N, A, c) be a capacitated graph derived froghby assign-
ing a capacityc(a) = —log(1 — p(a)) to each arca € A. Also,
given a clustelC’ C N and a set of source nodes C C, let f*

- 1o compute max-flow between a set of source noflesd a set of sink node
C' we exploit the classic trick of asking for the max-flow betweedummy sourc
so and a dummy sinko, where the dummy sourcs) is connected to all nodes ifi
while all nodes inC” are connected to the dummy sitk, and all arcs outgoing fror
so or incident totog have infinite capacity.



denote the maximum flow frafito C on the grapk@. It holds that
Uout(S,C) =1 —exp(—f7).

PROOF From the max-flow/min-cut equivalence, it follows that
the valuef™ of the max-flow is equal to the valug of the min-cut.
We have

* *
ff=c

min
c(5,0)

> —log(1 - p(a))

a€C(S,0)

min

= c(a) = min
c(s,C)

a€C(8,0)

min — log H (1 —p(a))

¢(s,0) a€C(S,C)
= —log| max [] (1-pa)|=
C(S’C)aeas,@
= —log(1l— Usut(S,C)), (from Theorem 1)

which proves the theorem. [

As stated above, the proposed upper bolhd; can be com-
puted by considering only the subgraph induced by the nodéei
clusterC' (and some close periphery), which leads to a significant
speed-up. This is indeed possible thanks to following ofadiEm,
which is exploited in Lines 1-2 of Algorithm 1.

OBSERVATION 3. Given an uncertain graply = (N, A, p),
letG = (N, A, ¢) be a capacitated graph derived froghby as-
signing a capacitye(a) = —log(1l — p(a)) to each arca € A.
Given a clusteC' C N and a set of source nodé€sC C, the max-
imum flow fromS to C'is equivalent to the maximum flow frag$ito
the sefC’ C C of all nodes inC’ having an incident arc outgoing
fromC, i.e. thesel = {v e C|3uecC : (u,v) € A}. O

EXAMPLE 2. Consider the running example in Figures 1-2.
The upper bound on the outreach probability frqs} to outside
cluster{s,w} is 0.80, due to the arc&, w), (s, u). It means that
the probability that{s} reaches any node not belonging{e, w}
is no greater thar®).80. Similarly, the upper bound on the outreach
probability from {s} to outside clustefs, w,u} is 0.496, due to
the arcs(u, t), (u,v), (w,v). Asn = 0.5, all nodes outside cluster
{s, w,u} can be pruned. I

4.2 Single-source queries

We next describe how to perform candidate generation wheen th
query set of source nodes is a singleton, i.e., queries areufated
asRS({s}, ).

Given a query nods, there exists a single path in tR€Q-tree
index7 from the leaf clustefs} to the root of7. Our candidate-
generation strategy traverses all clusters along thisipabottom-
up fashion i.e., starting from the leaf cluster and goingais the
root. The traversal of the path stops as soon as it encoumtens-
didate clustetC*, whose upper bountf,..({s}, C*) on outreach
probability is smaller thar. More formally:

C"({s},n) = Uout({s}, 0).

arg max
C2{s},
Uout({s},C)<n

Observation 2 ensures tha} C* is the smallest “valid” candidate
cluster, i.e., the cluster that guarantees that the disdasdtC* is

as large as possible; and)(all nodest ¢ C* haveR({s},t) < n,
i.e., no true positive is discarded.
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Note that, during our bottom-up traversal’bf the upper-boun
valuesU,.:({s}, ) are computed in a lazy fashion accordinc
the strategy outlined in Algorithm 1. To further speed-ugm
processing, one may consider pre-computing the upperebeain
uesUsut({s}, C), for all clustersC € 7 and all nodess € C.
However, such a pre-computation would lead to an increatie
index storage space and, more importantly, the index lmgjldme,
which would becomé&(nm), thus unaffordable for large graph:

Running time. Our candidate generation consists of two steps
bottom-up traversal of the trég, and the computation of the uppt
bound valued/,..: during that traversal. The first step is lineai
the heighth of the tree7. The second step requires performin
max-flow computation for each cluster visited during theeraal.
As a result, the overall running time of computing the uppeutnd
valuesU.,. is expressed as max-flow computations. Accordir
to Observation 3, the max-flow computation can be performe
the subgraph induced by the nodes in the cluster and thebeig
of each of such nodes. Thus, one can upper bound the ru
time of each max-flow instance by using the size of the sulbc
in the last (i.e., the largest-sized) cluster encountengihg the
traversal. Lef: andm denote the number of nodes and arcs in
subgraph. First of all, we note that, using appropriate datac-
tures to store the treg, the subgraph induced by the that clus
can be derived irO(n + m) time. Then, concerning max-flo
computation, one of the fastest existing max-flow algorihsthe
one by Goldberg and Tarjan [16], whose running timé&igim),
where the® notation hides logarithmic factors. Assuming that
tree7 is balanced (see Section 6), ther= O(log n). Moreover,
asn < n, itis reasonable to assume that= O(ﬁ’“), with k con-
stant. This way, it holds thdt = O(log*) = O(logn), and,
therefore, the overall time complexity of the candidateegation
phase i) (nmh) = O(mlogn) = O(am).

4.3 Multiple-source queries

In case of queries containing multiple source nodes, on&l«
follow exactly the same candidate-generation strategynathe
single-source case: retrieve the smallest cluster in ttexiriree
that contains all nodes of the query sourceSeHowever, such
strategy may not be very effective in the multiple-sourcgecd he
reason is that the cluster enclosing all nodes imight be a large
cluster placed very close to the root of tRE-tree 7. This would
affect the efficiency of query processing, as a larger portb7”
would be visited before encountering the desired candgkztteanc
thus a large number of candidate nodes would need to be d
Therefore, we discuss next how to seledetof clusters (rathe
than a single cluster common to all source nodes) that mag\a
better pruning.

Multiple-source candidate clusters. Our goal is to derive a s
of clusters{C; }*_, of T whose union sef', = |J, C; meets the
following requirements:if all source nodes belong t@; (ii) the
property of having no false negatives discarded still holdat is
no false negatives are present among the nodes ouisideand
(iii ) the size ofCy is minimum, so to guarantee maximum pruni

We translate the above requirements into an optimizatiob-{
lem. RequirementsiY and {ii) are straightforward to formulat
while for requirementi{) we first need to derive some theoreti
results, which are formally stated in Lemma 1 and Theorem 3

LEmmA 1. Let {C4,---,C} be a set of clusters iff” and
{S1,---, Sk} be a set of source node sets, whsreC C;, for all
t,andS; NS; =0, forall ¢ # j. LetalsoCy = |J; Cs and Sy =
U, Si. Itholds thatUsw (Su, Cu) < 1 =TT, (1 — Uout(Si, C)).



PROOF Given any two (disjoint) sets of nodés, Y C N, let
C*(X,Y) denote the most-likely cut fronX to Y (as defined in
Definition 2). Let als@r(—~C*(X,Y)) = [[,ccx(x,vy(1 —p(a))

be the probability thaf* (X, Y") does not exist. First, we note that,

by definition, the probabilityPr(-C*(X,Y")) cannot be smaller
than the probability that any single valid cut frakhto Y does not
exist. Given any superséf’ D Y (such thatX N Y’ = ) itis
easy to see that* (X, Y") is a valid cut fromX to Y too. Thus,

Pr(~C*(X,Y)) 2 Pr(-C"(X,Y")),
forall Y’ DY, X NY’ = (), which implies that
Pr(=C*(Ss, Cu)) > Pr(=C"(Si, Ci)),

as, clearlyC; D Cy (andS; N Cy = 0). Furthermore, notice that
U, C*(S:,Cu) is a valid cut fromSy, to Cu. Hence, based on the
same argumentation as above, the following holds:

Pr(=C"(Su, Cu)) = Pr(=U; €*(Si, CL)).

Finally, the probability that none of the arcs in the uniomafitiple
cuts exists is lower-bounded by the product of the proligtiitiat
any single arc in the union cut does not exist, that is:

Pr(=J, C* (S, Cu)) > H Pr(=C*(S;,C0)).

In summary, based on the above results, we have:
Pr(=C"(Su,Cu)) = Pr(=U,C"(8i,Cu)) =
1-Uout (Su,Cu)
> [[Pr(=c7(s:;,C0)) > T[] Pr(=C*(5:,C)),

1-Uout(S;,C4)

which implies thatl,.:(Su, Cu) < 1 =TT, (1 — Usut(Si, Ci)).
The lemma follows. [

Based on the above lemma, we can now provide the ultimate

condition to be ensured for having no false negatives oeitSig
As formally stated in Theorem 3, such a condition is exprsse
1-— HiE[l..k](l — U(mt(Ci ns, CZ)) <.

THEOREM 3. LetS be a set of source nodes af@1, - - - , Cx}
be a set of clusters iff such thatC; NS # 0, for all 4, and
{C; N S}F_, forms a partition ofS. Let alsoC, denote the union
setJ, Ci. It holds that:

1= [0 = Uout(Ci N S, Co)) < = R(S,t) <,
forall t € Cu.
PROOF For each node € Cy, we have

R(S,t) < Rout(S,CU) < Uout(S,Cu) <

1-J]( = Usu(Ci N S, Ci)) <n. (from Lemma 1) O

i

The optimization problem we are interested in can now be pre-

cisely characterized.

PROBLEM2 (MULTIPLE-SOURCECANDIDATE GENERATION).
Given anRQ-tree index 7 and a set of source nodes, select
a set of clusters{C,...,Cx} of T so that, for the union set
Cu = UL, Ci, the following holds:

() SCCy;
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(i) 1-TL(A = Uoue(Cin S, Cy)) <m;
(i) |Cu|is minimum. O

The above problem can be solved by using a dyna
programming algorithm withO(|.S|n logn) max-flow computa
tions. However, such an exact algorithm may be too slow i
tice. For this purpose, we introduce next a faster greedyidteu

Heuristic multiple-source candidate generation.The idea of ou
heuristic is to perform a number of bottom-up traversal§ oin
parallel, one for each € S. Similar to the single-source case, ei
traversal proceeds along the path that connects thestodée root
of 7. Traversals are performed in a round-robin way and terra
when the following condition is met. Lef; denote the currer
cluster inT that encloses node at a certain point of the traversa
for all s; € S (note that any two nodes, s; € .S can be enclose
by the same cluste?; = C;). Our procedure stops when it reacl
the minimum-sizedinion setC'y, = J; C; for which condition {z)
of Problem 2 is satisfied, i.el,— [T, (1 — Uou: (Ci NS, Cy)) < 1.
The final candidate s&t™ corresponds to the union sét, of the
last clusters reached by the traversal.

Running time. The running time analysis of the (heurist
multiple-source candidate generation roughly followsdhalysis
of the single-source case. We need to perf@iS| log n) max-
flow computations—contrast to th@(|.S|n log n) max-flow com-
putations required by the exact method, &(dS| log n) computa-
tions of U,..:. The overall time complexity is therefoe@(|S|nn).

5. QUERY PROCESSING: VERIFICATION

Though guaranteed not to miss any true positive, the cate
setC™* generated according to our candidate-generation stes
may still contain false positives, i.e., nodefor which R(S,t) <
n. To filter as many of such false positives as possible ot
C™, we propose two verification methods: one method is r
suited for precision, while the other method guaranteetebes-
call. Moreover, the two proposed methods allows for traeffc
between accuracy and efficiency in a different way. The F
precision method is in general very fast, while the efficien€
the high-recall method can easily be tuned (at a price of l@age
curacy) by playing with a parameter (i.e., the number of dag)p

Next we describe the proposed verification methods. Both
ifications take as input the candidate set eventually gézebiay
candidate generation. As a result, there is no distinctetweer
single- and multiple-source verification.

5.1 \Verification based on alower bound on re
liability

The first verification method we propose exploits a lower lot
on R(S,t), for any source node sétand a node ¢ S. The idee
is that if the lower bound i& 7, then one can safely conclude tl
t belongs to the solution set.

Several lower bounds on (two-terminal) reliability haveeb
defined in the context of device networks, including Krus
Katona bound, polynomial-based, edge-packing-basedgssdt-
enumeration-based bounds [10, 11, 14, 29]. However, theseds
require extensive computations to be performed on theeentt-
work (their time complexity is typically in the order 6¥(n*), with
k > 2, or even more). We recall that our lower bound needs t
exploited during online query evaluation, thus it must bieerrely
efficient. For this purpose, we derive a novel and simplerek
bound, denoted.r(S,t), that is based on the concept wiost-
likely pathfrom S to ¢, and has the advantage of being really f&



DEFINITION 3 (MOST-LIKELY PATH). Given a set of nodeS
and a nodet ¢ S, the most-likely pathP*(S,¢) from S to ¢ is
defined as

P*(S,t) = arg max
PeP(s,t),
SE(S : a€P

whereP (s, t) denotes the set of all paths fromo ¢. O

p(a), 4)

The following theorem states that the desired lower bofird
corresponds to the probability of the most-likely path.

THEOREM 4. Given a set of source nodésand a node ¢ S,
it holds thatR(S,t) > Lr(S,t) = [l,epx(s,Pla). Herea
denotes an arc on the pat* (S, ¢).

PrRoOF By definition,R(S, t) is the probability thast least one
pathfrom a nodes € S tot exists. HenceR(S, t) is larger than or

equal to the probability thainy single pattfrom somes € S tot¢
exists, that is,

R(S,t) = [] p(a)

acP

, foralls € Sand allP € P(s,t).

Therefore, we have

R(S,t) > max

PEP(g 0 H rla

which proves the theorem.[]

I »@,

a€P*(S,t)

Based on the lower bounllr, the verification step simply con-
sists in keeping only those nodes C* such thatLr(S,t) > n.
This way, we guarantee perfect precision.

The lower bound. r is computed by a shortest-path computation

on a weighted graph derived froghby assigning to each atce A

a weight—log(p(a)). An important observation here is that, the

shortest-path computation can be limited to the subgGui G

induced by the candidate s@t, and this is the main reason behind

the high efficiency of the proposed lower bound. The motbrati
is that our candidate-generation step ensures that alsnmaside
the candidate set have reliability from the query sout&sss than
n. Hence, all paths passing through nodes ndtirare guaranteed

to have reliability less than too and can thus be safely discarded,

reliability as compared tg, and thus it does not significantly affe
the reliability values of candidates.

Our sampling-based verification improves upon the recahe
lower-bound-based verification. As a side effect, it (dighde-
creases precision (not perfect anymore, but still very high, in
the [0.95, 1] range) and the efficiency. Another nice feature
sampling-based verification is that the number of samplashe:
used as a knob to tradeoff between efficiency and accuracy

5.3 Running time

As stated in Section 5.1, the lower-bound-based verifin:
strategy only needs to focus on the subgrgpbf G induced by
the candidate set™. According to the reasoning reported in S
tion 4.2, the number of nodes and arcsébfare upper-bounde
by n andm, respectively. The lower-bounding-based verifica
strategy requires to compute the probability of the mdwtHi path
from the source node sétto each node in the candidate set. T
can be accomplished with a shortest-path distance conpuiat
G from the source sef, which can be carried out by a simy
variant of the standard Dijkstra’s algorithm where theatise vec
tor is initialized with the set source nodésrather than a singl
source node. The time complexity of this Dijkstra varianhaéns
clearly unchanged with respect to the standard algoritherefore
the time complexity of the lower-bounding-based verificatstrat-
egy isO(m + 7).

The sampling-based verification, on the other hand, res|uo
compute all nodes that are reachable from sourceSsat ev-
ery deterministic graph sampled from subgrapimduced by the
candidate seC*. This can be accomplished by BFS in til
O(K (m + n)) time, K being the number of samples.

In Table 2 we summarize the time complexities of the v
ous phases of the proposed query-processing strategy.n lbe
noted that, overall, our query processing ranges fédfnm) time
(single-source, lower-bounding-based verification))(ds |7 +
K(m + n)) time (multiple-source, sampling-based verificatic
In all cases, however, as andm are very small in practice (st
Section 7), the efficiency of our query processing is verjhig

6. BUILDING THE RQ-TREE INDEX

In this section, we provide the guidelines for building therar-

as the verification method would anyway keep only those nodes chical structure of ouURQ-tree index 7. We note that:

whose most-likely path frony has probability> 7.

5.2 Sampling-based verification

Our second verification method perfornC-sampling to es-
timate the reliability of the candidate nodes, and therefyroves
the recall of the lower-bounding-based verification. Ualgkisting

sampling methods [13, 20], sampling here is performed onallsm

subgraph of the input uncertain graph, i.e., the subgragacied
by the candidates only. We combiiC-sampling with a breadth

first search (BFS) from the query set, and thus restrict oor-sa

pling method only inside the subgraph induced by the canetida
As a result, even though less efficient than lower-bounthiased
verification, this sampling-based verification is still ydast and
outperforms the baselines by an order of magnitude in efibgie
(Section 7). This is indeed possible by the intrinsic chiamdstics
of our RQ-tree index, which allows to significantly reduce #ize

of the subgraph where sampling is applied. One may note that,

when sampling over the subgraph induced by the candidatthset
contribution of the paths passing through nodes not in thdidate
set is ignored. Since all non-candidate nodes have retiafibm

1. TheRQ-tree should be equally effective for any reliabilit
search query, regardless of the source set. Intuitively,is!
achieved by partitioning™’s clusters intdbalancedchildren.

2. Avery small height off” is not desirable, for example, thii
about the extreme case where the heigh¥ois 1 (which
arises when the branching factor dfis n): such anRQ-
tree would be completely useless for our query proces
strategy. Within this view, we keep the heightbfof rea-
sonable size by fixing the branching factorbfto a small
number, i.e.2 for simplicity.

3. Finally, for each clustef’' in T, and for each node € C, we
require forR..¢({s}, C) to be as small as possible, since 1
would reduce the size of the set produced during cand
generation.

Based on above requirements, we develop the following nae
for building anRQ-tree index 7. First, according to requiremer
1) and 2), we perform a (recursivbplanced bi-partitionof each

the source set less thgna path from the source set to a candidate non-leaf cluster ir”. Requirement 3), instead, provides the b
node that goes through non-candidate nodes also have vaty sm for the specific criterion to employ for defining each bi-fiaob.
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Table 2:RQ-tree: query-processing time complexity.

candidate verification total
generation lower bound MC-sampling | Tower-bound verification — MC-sampling verification
single-source |  O(nm) O(m + 1) O(K(m+n)) O(nm) O(nm + K (m + 7))
multiple-source| O(|S|am) | O(S|(m + 7)) O(K(m + 7)) O(|S|am) O(|S|am + K (i + 7))

Particularly, for any cluste€' in 7, the ideal desideratum would
be to minimize the single outreach probabilities of eaclssti® C
C, which is clearly unaffordable. Within this view, we firstrie
an upper bound that is general for the outreach probabkilifeall

subsets of nodes in a specific cluster, and then we searchdor t

balanced bi-partition that minimizes this upper bound. e\tbiat
the upper bound provided here differs from ttig,: upper bound
derived in Theorem 1, because the latter is instead speoifia f

given set of source nodes. The expression of this generarupp

bound, denoted bi/,.:, is formalized in Theorem 5.

THEOREM 5. Given a clusterC, for all sets of source nodes
S C C, it holds that Rou:(S,C) < Usu(C) = 1 —
oy wecvge(l = p((w,v))).

PROOF By definition,1 — R..+(.5, C) corresponds to the prob-
ability that no nodess € S can reach any node outside
C. In this respect, consider all outgoing arcs @f i.e., those
arcs that connect a node ifi with a node outsideC'. The

probability that none of these arcs exists is a lower-bourd f

1 — Rout(S,C). As aresult, it holds that — Rou:(S,C)
H(u,v):uec,véc(l - p((u,v))), or, eqUiValent'y,Rout(S, C)
- H(u,v):uéC,véC(l - p((u,v))) O

INIV

Based on the above reasoning, we next formalize the optimiza

tion problem to be recursively solved for generating a biipan
of various clusters irf”. The objective is to partition any given
clusterC € T into two clusters’; andC’ such thatd) Us.:(C1)
andU,.+(C2) are simultaneously minimized, ani)(C1 andC»
have roughly the same size. Note that minimizing.(-) is equiv-

alent to maximizing — Uo+(-), thereby our requirements are fully

captured as follows:

PROBLEM 3 (BUILD-RQ-TREE). Given a clusterC' € T,
partition C into two clusterg’, Cs that maximize

(1=Uout (C1)) (1 =Uout (Co)) " (1=Uout (C1)) (1 =Uout(C))

. d
|C1 | |C2|

As shown in Theorem 6, Problem 3 is equivalentiel -RATIO-
cuT [33]. As aresult, Problem 3 BIP-hard.

THEOREM 6. Problem 3 isNP-hard.

PROOF We prove the theorem by a reduction frefTN -RATIO-

CUT. We construct a weighted (deterministic) gra& con-
taining the same nodes and arcs@s We assign to each arc
a in G a weightw(a) = —log(1 — p(a)), and we makeG
undirected by ignoring the directness of the arcs.
node setsN;,N; C N, let A(N;, N;) denote the set of all

arcs in G betweenN; to N;. Solving MIN-RATIO-CUT on
G finds a bi-partition{ N1, N>} of the node setNV that min-
IMizes 15— 3, caony vy W) + X5 Zoaca(ny,ny) w(a), OF
equivalently, that maximizesml—l‘ [locacn, vy (L — pla)) +
|N_12|HaeA(N1,N2)(1 — pla)) = ﬁ(l — Uour(N1))(1 —
Z/{out(N2)) + ﬁ(l _uou,t(Nl))(l - Z/[out(NQ))- |:|
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Algorithm 2 BuildRQtree

Input: an uncertain grapf = (N, A, p)
Output: anRQ-tree index7"
1: C«+ {N}, T« {C}

2: repeat

3 C'+0

4: forall C € Cs.t.|C|>1do

5: build G = (N, A, w), whereN = C, A = {(u,v) | (u,v) €

A,u € C,v € C},andw(a) = —log(1—p(a)), foralla € A
6 {C1,C32} < METIS (G)
7. C’ (—C/U{Cl,CQ}
8: endfor
9 C«+C, T+ TU{C}
10: until C =0

Given two

In principle, one of the existing approximation algorithfios
MIN-RATIO-CUT [4] can be employed to solve OWBUILD-RQ-
TREEproblem. But the main issues of this approach are that
RATIO-CUT is hard to approximate (the best known approxima
factor is polylogarithimic), and, more importantly, thesting ap-
proximation algorithms are typically inefficient. Henceg @epar
from solutions having approximation guarantees and agprtize
problem heuristically. Specifically, in our implementatiove use
the well-knownMETIS algorithm [22], whose validity in terms «
both accuracy and efficiently has been widely attested. Eleld
of our RQ-tree building strategy are reported in Algorithm 2.

Index building time. Given a clusterC' in T, let nc and mc
denote the number of nodes and arcs in the subgraph of the
uncertain graply identified by the nodes i@, respectively. Com
puting a bi-partition ofC by means of thé/METIS algorithm take:
O(nc + m¢) time. RunningMETIS on all clusters of any singl
level of T takesO (> (nc + mc)). As all clusters in any singl
level of T forms a partition of the whole set of nodegnthe latter
is equivalent ta?(n + m). The number of levels (height) af is
O(log n), as oulRQ-tree index building strategy guarantees for
to be a balanced tree. As a result, the overall time complefi
building anRQ-tree index isO((n 4+ m) log n).

Index storage space. As explained above, the height 6 is
O(logn). Each level ofT contains a partition of the whole <
of nodes inG, thus each node ig is stored exactly one time fi
each level. Hence, the overall storage space required BCxr
tree index isO(nlogn).

7. EXPERIMENTAL RESULTS

We present experiments to assess the performance ¢
RQ-tree-based reliability-search methods. We evaluate: ir
time/space performance (Section 7.2), query-processingracy
and efficiency (Section 7.3), pruning power BRQ-tree (Sec-
tion 7.4), performance with varying source set sizes (8acti5),
and scalability (Section 7.6). Furthermore, as an examipteat-
world application, we show how ouRQ-tree index can signifi-
cantly improve upon the efficiency of the hill-climbing atgbm
[23] used in thanfluence-maximizatioproblem (Section 7.7).

The code is implemented in C++ and the experiments were
formed on a single core of DOGB, 2.50GHz Xeon server.



Table 3:Dataset characteristics.

Dataset # Nodes # Arcs
DBLP (1 = 2) 684911 4569 982
DBLP (1 = 5) 684911 4569 982
DBLP (1 = 10) 684911 4569982
Flickr 78 322 20343018
BioMine 1008201 13445048
Last.FM 6899 24144
WebGraph 10 000 000 174918 788
NetHEPT 15235 62776
7.1 Settings
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Figure 3:Cumulative distribution of arc probabilities.

Datasets.We involve five real-world datasets, each representing a MC-Sampling. We consider a Monte-Carlo-sampling method |

directed uncertain graph (Table 3 and Figure 3).
DBLP (http://www. informatik.uni-trier.de/

running on the whole graph. We deriv€ deterministic graphs b
sampling the input uncertain graph according to arc praiviaisi

~l ey/ db/ ). The dataset is a subset of the popular co-authorship Note that the sampling is performed online, i.e., combinéith &

network used in [20, 28]. Here, the arc probabilities exprise
strength of the collaboration between the two incident ansth
Particularly, in [20, 28], the probabilities derive from a&xpo-

nential cdf of mearnu to the number of collaborations; hence, if
two authors collaborated times, the corresponding probability

is1 —exp~“*. We considen € {2,5,10} in our experiments.
Keeping fixed the collaborations, higher values jofgenerate
smaller probabilities (see Figure 3).

Flickr (ht t p: // www. f 1 i ckr. comn). Flickr is a popular online
community, where users share photos, and participate immorm

interest groups. We borrowed the dataset from [28], wheee th

probability of the edge between any two users is computashass

ing homophily the principle that similar interests indicate social

ties. In particular, [28] uses as a measure of homophily élceard
coefficient of the interest groups that the two users belong t

BioMine This is a recent snapshot of database of the BIOMINE

project [30], which is a collection of biological interaatis. The
graph is directed, and with probability associated to tlos guan-
tifying the strength of the interaction [30].

Last.FM (http://ww. | ast. fn). Last.FM is a music web
site, where users listen to their favorite tracks, and comoate

with each other based on their music preferences. We craavied

local network of Last.FM, and formed a directed graph by emtn
ing two users if they communicated at least once. The préibabi
on each arqu, v) corresponds to thiafluenceprobability ofu on
v, where “influence” is interpreted according to its meanimghie
influence-maximization context [23]. Following a numbenafrks
on influence maximization [12, 17, 23], the probability ory amc
corresponds to the inverse of the out-degree of the nodevioich
that arc is outgoing.

WebGraphht t p: / / webgr aph. dsi . unimi .it). Thisisthe

uk-2007-05 web graph data [9]. For our experiments, we use a

subset containingOM pages and 75M hyperlinks. LikeLast.FM,
the probability of the various arcs are “influence” probitile$.

NetHEPT(ht t p: / / www. ar Xi v. or g). This graph is created

from the “High Energy Physics - Theory” section of the e-prin

arXiv with papers from 991 to 2003. Like DBLP, two authors are
connected by directed arcs if they co-authored at least. ofiees
graph was used in [12] for the influence-maximization tasthwi
constant arc probabilitie® (5).

Competing methods. We evaluate the performance of dRQ-
tree by focusing on both the verification strategies proposectiz: S
tion 5. Particularly, we hereinafter denote RQ-tree-LB the vari-
ant involving lower-bounding-based verification, and®@-tree-
MC the variant involving (Monte-Carlo-)sampling-based fiea-
tion. We compare botiRQ-tree-LB and RQ-tree-MC with the
following baselines:

043

BFS from the source set, in order to improve its efficiencyer
tually, all nodes that are reachable in at leg&t sampled graph
form the answer to the reliability-search query. Such albasbas
time complexityO (K (m + n)).

RHT-Sampling. This method was proposed in [20] as a fast
ternative to Monte-Carlo sampling for the two-termindiability
problem with an additional distance threshdld@hus, in order tc
answer our reliability-search queries, it needs to benrtimes, ev-
ery time using a different node in the graph as target nod#fee
distance threshold set dsthe diameter of the uncertain graph. F
lowing [20], the time complexity of a single execution RHT is
O(nd), hence, when used for reliability search, its complexity
comesO(n’d). For this purpose, even being faster than MC s
pling for two-terminal reliability, RHT-sampling perforsrworse ir
the reliability-search task.

Given its quadratic complexity, we were able to obtain rssfolr
RHT in reasonable time only on our smallest datasets Liaest. FM
andNetHEPT(on larger graphs such &oMineandFlickr, RHT
could not finish in one day). We report such results in Tabl
where it can be evinced that our methods drastically outper
RHT: up to 2 RQ-tree-MC) and 6 RQ-tree-LB) orders of mag
nitude faster.

In the remainder of this section we focus on the larger d&g¢
thus leaving th&HT baseline out of the comparison.

Query workload and parameter setting. For single-sourc
queries, we select a node uniformly at random. For multiolerce
queries, we select uniformly at random a set of nodes fronba
graph of the original graph. We vary the diameter of the saplg
from 2 to 6, as these are typical distance values on most real-v
graphs (small-world phenomenon), while, as the number efy
nodes is usually small (up to few tens), we vary the cardinali
the query set fron2 to 20. All results are averaged oved0 sets ol
nodes, while the probability thresholds varied from0.4 to 0.8.

For all sampling methods, i.e., the baselines andRQrtree-
MC, we observed accuracy convergence on all datasets witha
ber of sampleg< around1 000. This is roughly the same numk
observed in [20, 28]. Hence, we skt = 1000 for all sampling
methods.

Accuracy assessment criteria. Computing the exact answer
our reliability-search queries is computationally infiéées due to
the size of our datasets. Hence, to measure accuracy of ¢h
posedRQ-tree-based methods, we use the answer compute
MC-Sampling as a proxy. This is a reasonable choiceM§-
Sampling is an unbiased estimator, thus running it for a sufficie
large number of times, its answer is expected to converdeeteeal
answer with high probability.

3We use the code provided by the authors of [20].



Table 4:Comparison betweeRQ-tree and RHT-sampling baseline using
smaller graphs: query-processing time (sec). On largerppisuch as
BioMine and Flickr, RHT-sampling baseline does not finish in one day.
Thus, for larger graphs, we compaRQ-tree with only MC-sampling.

Last.FM NetHEPT
n T RQ-tree-MC RQ-tree- T RQ-tree-MC RQ-tree-
0.4 6.21 0.1 0.008 2353 15.97 0.010
0.6| 6.21 0.08 0.007 2353 15.96 0.008
0.8 6.21 0.08 0.006 2353 15.64 0.006

Table 5:RQ-tree statistics and index building time.

time (sec) size (MB) height # clusters
DBLP (1 = 5) 1855 123 14 735424
Flickr 1649 118 11 80726
BioMine 2890 203 15 1040750

We assess accuracy usipgecisionandrecall. Denoting byT
the node set outputted by any selected method arii"tihe node
set produced b C-Sampling, we define precision a¢22"1 and

[T
recall as'T‘;’f‘ L. Hence, precision and recall MC-Sampling are

always 1 so we avoid to report them.

7.2 Indexing performance

We report the basic statistics about R€-tree index in Table
5. It can be observed that the offline index building time igequ
modest for all datasets: for instance, building the indeBmMine
(1M nodes andl3M arcs) takes aboui0 minutes. The space re-
quirement is contained as well: d@ioMine our index takes ap-
proximately only 200 MB.

7.3 Query-processing performance

We now focus on the online query-processing phase of our-meth
ods. In Table 6 we show precision, recall and query-prongssi
time of our RQ-tree-LB and RQ-tree-MC, as well as theviC-
Sampling baseline, on three larger datasets; we also report these
measurements on different versionsOBLP where the arc prob-
abilities are varied. SpecificallipBLP2 DBLP5 andDBLP10in
Table 6 refer to DBLP graphs with = 2, 5, 10, respectively.

The accuracy behavior (in terms of precision and recallhef t
proposed methods perfectly conforms the design principieéke
two methods:RQ-tree-LB achieves perfect precision, whileQ-
tree-MC achieves very high recallX 0.95). It is worth notic-
ing that the recall oRQ-tree-LB is however reasonably high as
well: up to 0.96, and 0.81 on average. This attests the walafi
the lower bound proposed in Section 5.1. In general, thdlreta
RQ-tree-LB increases ag increases. This is due to the lower-
bounding verification method, which is based on the mostyik
path between source and target nodes: higher probabiliegith
olds leads to tighter lower bounds. MoreovBQ-tree-MC ex-
hibits very high precision too: always 0.95.

We also observe that the recall BiQ-tree-MC does not re-
ally depend on arc probabilities in the three variants of i P
dataset. The recall ®®Q-tree-LB instead is clearly increasing as
arc probabilities decrease. This is due to®@-tree-LB verifica-
tion method, which considers the most-likely path betwemnee
and target nodes as a lower bound, and the smaller the plitieabi
the tighter the lower bound.

As far as running times, both our methods are evidently faste
than theMC-Sampling baseline.RQ-tree-LB is even 3-5 orders
of magnitude faster. Due to its improved accurd&@-tree-MC is
generally slower thaRQ-tree-LB, as expected, but it still guaran-
tees a significant speed-up of at least one order of magnitude

In addition, RQ-tree-MC and MC-Sampling exhibit improved
efficiency with smaller arc probabilities IDBLP. This is because

544

the smaller the arc probabilities, the smaller the numbearo$
in the various sampled graphs. However, aRQ-tree-LB gets
faster as the arc probabilities get smaller, as this imdiealler-
sized candidate sets. Indeed, the running time of IRifhtree-
MC andMC-Sampling is higher orBioMine which complies witt
the higher arc probabilities exhibited by such a datasefuiei 3).

7.4  Pruning power of therqQ-tree index

We next provide an insight into the properties of the progc
RQ-tree index, particularly focusing on its pruning capabiliti
Here we provide evidence of the filtering guaranteed byRRe
tree-candidate-generation phase, with a twofold goal in mind:
evaluate the pruning power &1Q-tree and, as side effect, tt
tightness of the upper bound proposed in Section 4.1 whiel
RQ-tree-candidate-generation phase relies on. We define the
following metrics:

e Height ratio: the ratio of the number of clusters traver:
during candidate generation over the total height of Rl
tree;

e Candidate ratio: the ratio of the candidate-set size, over
total number of nodes in the graph.

Clearly, the smaller the above measurements, the highgrtime
ing guaranteed bRQ-tree.

In Figure 4 we report height ratio and candidate ratid@iP
(all the three variants¥lickr, andBioMine Both height ratio an
candidate ratio remain quite small, i.e., in f}ie4, 0.6] range or
average, meaning that almost half of nodes are pruned on
age. The ratios are never higher than5, being even less than C
(height ratio) and less than 0.05 BMBLP1Q These results confiri
the usefulness of thRQ-tree in terms of pruning, as well as tt
effectiveness of the proposed upper bound. We also notdttia
the height ratio and the candidate ratio decrease with highas
highern leads to smaller answer sets and thus better pruning.

As a further insight into the candidate-generation phasealac

provide in Figure 4 evidence abodi} precision (defined a%T‘”T—Tl*‘,
whereT is the set produced by tHRQ-tree candidate generatic
and T~ is the MC-Sampling answer set), andi4) running time
of the candidate generation. It can be observed that théspe
improves as the probability threshold increases and theratza-
bilities decrease, e.g., precision0ig5 for n = 0.8 in DBLP with
© = 5. However, in many cases the precision is around (or
below) 0.5, meaning that half of the candidates are not gahe
final solution, thus confirming the need for verification. Rung
times, instead, are decreasing with smaller arc probigsiliinc
larger probability thresholds.

7.5 Performance varying the source-set size

We next analyze the performance of tR&-tree index for
multiple-source queries. For the sake of brevity, here wag
only on theRQ-tree-LB variant. Table 7 reports query-process
results orDBLP with ;» = 5 andn = 0.6. The table reports rece
of our overall query-processing method, precision of thedaate
generation phase, height ratio, and query-processing iiveevary
both query-set size2( 5, 10, and20) and query diameted, i.e.,
the diameter of the subgraph (of the original uncertain lgyréom
which the queries are randomly selectdd=£ 2, 4, and6). Note
that, as the query diameter or the number of query nodesases
it is more likely that the smallest cluster containing ak thuery
nodes is close to the root of thRQ-tree, thus resulting in lowe
pruning/efficiency. Therefore, an interesting directian future
work is to improve the indexing strategy so to provide higbrem-
ing capacity as the cardinality of the source set increases.



Table 6:RQ-tree: precision, recall, and query-processing time (sec) owrous datasets (single-source queries).

precision recall query-processing time (sec)
RQ-tree-MC RQ-tree-LB RQ-tree-MC RQ-tree-LB RQ-tree-MC RQ-tree-LB MC
7n=0.41=0.6 n=0.8|n=0.41n=0.6 n=0.8 71=0.4 n=0.6 n=0.8|n=0.4 n=0.6 n=0.8 n=0.47m=0.6 n=0.8]n=0.47m1=0.6 n=0.8] alln
DBLP2] 0.95 0.98 0.98 1 1 1 095 096 094 052 0.75 0.76 152.94 14572 141]8@.5 0.82 0.68] 8114
DBLP5| 0.96 0.99 0.99 1 1 1 0.99 0.99 1]075 087 0.91 43.01 40.48 36.831.5 0.6 0.6]588.15
DBLP1Q 0.96 0.99 0.99 1 1 1 0.97 097 0.99 089 091 0.96 38.7 36.15 33j11.4 057 0.57|76.77
Flickr | 0.97 0.98 0.98 1 1 1 098 099 099 0.76 0.79 0.83 60.23 58.6 54.Y%.21 0.2 0.17]114.29
BioMing 0.95 0.96 0.97] 1 1 1 0.97 098 0.9§4 0.77 0.81 0.85 6062 5417 4974 1 0.5 0.5 125608
1 N=0.4 mmmm = 1)=0.8 mmmm 0.8 N=0.4 mmmm  1=0.8 mmmm E N=0.4 mmmm = 1=0.8 mmmm 2 nN=0.4 mmmm = 1=0.8 mmmm
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dblp2 dblp5dblp10 flickrbiomine dblp2 dblp5dblp10 flickrbiomine

Figure 4:RQ-tree pruning power: height ratio, candidate ratio, candidatergration precision, and candidate-generation time (sec)

Table 7:RQ-tree-LB query-processing results d»BLP (1 = 5, n = 0.6), varying the size of the set of query nodes (first column)thedliameter ) of

the subgraph from which these nodes were picked.

# nodes [ recall | precision (candidate generation) | height ratio | RQ-tree-LB runtime (sec) | MC runtime (sec)
[d=2 d=4 d=6[d=2 d=14 d=6 |d=2 d=4 d=6]d=2 d=4 d=6 |d=2 d=4 d=26
2 0.85 0.86 0.82 ] 0.65 0.61 0.55 0.40 0.41 0.44 | 0.60 0.60 0.67 | 1201 1377 1417
5 0.82 0.85 0.82 | 0.60 0.45 0.24 0.40 0.57 0.81 | 0.61 0.87 250 | 2498 3063 3137
10 0.82 0.81 0.81 | 0.55 0.37 0.17 0.40 0.80 0.87 | 0.60 2.35 3.32 | 5077 5155 5470
20 0.76 0.76 0.75 | 0.55 0.17 0.13 0.45 0.93 0.95 | 071 3.41 420 | 7102 7200 7457
Table 8:Scalability analysis using single-source queries wjtk= 0.6 on
the WebGraplhdataset. 200 R wee 3 280 [ _RQree —x .
indexing  query proc. § 60| Mosample e § 200 MOsamele e g
# nodes# arcs size height  # cIusterJ (sec) (sec) fg‘ 120 g?; 4 ff igg ¥ -
M, 15M 62 MB 17 1202754 1221 0.11 g o & g B eF
3M, 50M 177 MB 18 3410221 | 7312 0.13 g w| o+ 8§ ol
5M, 81M 421 MB 19 5810934 | 11273 0.17 1t 1
7M,122M | 813 MB 21 9570259 | 25315 0.21 o m w0 o m w0
10M, 175M | 1220 MB 21 11758022| 37146 0.27
700000 P 1.1e+06 T
o 2000001 i S 250000 e i
- & 50000 1 & s0000 e
7.6 Scalability E ol et R
We analyze the scalability of olRQ-tree on WebGraph For = 2000 Qe = LRQee
. . . - -sample -sample
this experiment, we consider subgraphs of the origilebGraph e 20 0 o 2000 w0 o

with a number of node$sM, 3M, 5M, 7M, and 10M, respectively.
The corresponding index building space and time, as welhaes t
guery-processing time, are reported in Table 8. We obsbaatdhe
index time increases polynomially with the number of nodethe
graph, while the query time is linear in the size of the grapich
results assess the high scalability of &@-tree.

7.7 Application: Influence Maximization

The influence-maximizatiomproblem [23], whose primary ap-
plication is viral marketing has received a great deal of atten-
tion over the last decade. It requires to find a Sedf £ nodes
that maximize theexpected spread.e., the expected number of
nodes that would be infected by a viral propagation stantes. i
Theindependent cascade mod@B8] is a widely used propagation
model: according to which the expected spread can be fotetlla
aso(S) =3 ,c4 R(S,1).

The problem of finding a sef of k nodes that maximizes
o(S) is hard. However, thanks to the submodularitysdf5), the
Greedy algorithm that iteratively adds t§ the node bringing the
largest marginal gain in the objective function providées- 1) ap-
proximation guarantee [23]. Unfortunately, finding the fimaum-
marginal-gain node requires to solve#aP-complete reliability
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# seed nodes # seed nodes

Figure 5: Exploiting RQ-tree in the influence-maximization problel
comparison to the MC-based baseline in terms of expecteghd@nd run-
ning time (sec) o.ast.FM(left) andNetHEPT(right)

problem. Hence, existing approaches usually apply sagpéing.,
Monte Carlo) to estimate the best seed node at each iterati
the Greedy algorithm. Next, we show how the classieeedy al-
gorithm can exploit ouRQ-tree-LB method, thus achieving hic
speed-up and paying almost nothing in terms of accuracy.

At each iteration, given the current set of nod&sthe Greedy
algorithm needs to find the node € N \ S that maximize:
> iea R(S U{w},t). We use a histogram-based method to
ploit our RQ-tree. We fix a few probability threshold values
ascending order, i.e;p < 2 < ... < 7. Let f(S,n;) denote
the size of the reliability-search sBtS (S, n;): we compute the e»
pected spread & as f (S, 1) n, + [ (S, mp) — (S, mp—1)]mp—1 +
et [f(Sﬂh) = f(S, 771)]771'

We compare thesreedy algorithm coupled with Monte-Carl
sampling (1000 samples), and the same algorithm equipptt
RQ-tree-LB: the results oLast. FMandNetHEPTare reported it
Figure 5 (we focus only on our smallest datasets to allow N€eb



Greedy to terminate in reasonable time). For accuracy evaluation, [4] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion el
we measure the expected spread of the node set outputtee by th sparsest cut. ISTOG 2005.

two competing methods via Monte-Carlo sampling. We observe [5] S. Asthana, O.D. King, F. D. Gibbons, and F. P. Roth. Ftéd
that the two methods achieve roughly the same expecteddsprea Protein Complex Membership using Probabilistic Network

while, as far as running time, employirRQ-tree-LB leads to at
least one order of magnitude of speed-up.

8. RELATED WORK

Reliability is a classic problem studied in device networks

number of variants to the problem have been defined, indudin

two-terminal reliability [32], all-terminal reliability{31], and k-
terminal reliability [18], and many solutions have beenpmsed,
either exact (see [3] for a survey) or approximate [13, 21, 2p-
proximate solutions, in particular, have mainly involvedofte-
Carlo) sampling methods [13, 23].

More recently, the proble
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has been studied in the context of more general types of un-[12] W.Chen, Y. Wang, and S. Yang. Efficient Influence Maxiatian in

certain graphs, such as social networks and biological orésv
[20,28,34], as well as in the context of clustering [27].tRatarly,
Jin et al. [20] deal with distance-constrained reliabitjtyeries, i.e.,
they ask for the probability that any two nodes have distance
greater than a user-defined threshold.

However, all existing works on reliability fall into the da of

reliability detection whose goal is to determine the probability of a

certain reliability event. In this work we study a novel tygfeelia-
bility problem, that igeliability search A problem that is closer to
reliability search than the above ones is the problem ofstiokl-
based probabilistic reachability [34], which consists @etmining
if two nodes are connected with probability higher than &shr
old. But, like the problem in [20], the input there is a painoides;
hence, applying the methods in [34] to our reliability seéanould
lead to quadratic (thus unaffordable) time complexity.

Further research on reliability has concerned the defimitib
polynomial-time upper/lower bounds to reliability probie [7, 10,

11, 14,24, 29]. We have already discussed in Section 4.1 dnd 5

how the bounds proposed in this work differ from the existings.

9. CONCLUSIONS

In this paper we studied reliability search, a novel religbi
problem for uncertain graphs. We definB®-tree, a novel in-
dex that allows for answering online reliability-searcteras ef-
ficiently and effectively, as confirmed by an extensive expen-
tal evaluation conducted on real-world datas&§-tree provides
one order of magnitude efficiency gain fdC-sampling by its

own, while our overallRQ-tree-based methods outperform ex-
isting sampling methods up to five orders of magnitude in effi-

ciency, while also exhibiting precision and recall usually0.95
and> 0.75, respectively.

Our experiments show that the performancédr@j-tree can be
further improved when the arc probabilities get higher anttie
size of the source set increases. Thus, a natural direcirdntire
work is to improve the indexing strategy in order to handlédye
multi-source reliability-search queries and higher aabpbilities.
We also plan to study the theoretical properties of the pgegdo
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