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ABSTRACT
Uncertain, or probabilistic, graphs have been increasingly used to
represent noisy linked data in many emerging application scenar-
ios, and have recently attracted the attention of the database re-
search community. A fundamental problem on uncertain graphs is
reliability, which deals with the probability of nodes being reach-
able one from another. Existing literature has exclusivelyfocused
on reliability detection, which asks to compute the probability that
two given nodes are connected.

In this paper we studyreliability search on uncertain graphs,
which we define as the problem of computing all nodes reach-
able from a set of query nodes with probability no less than a
given threshold. Existing reliability-detection approaches are not
well-suited to efficiently handle the reliability-search problem. We
proposeRQ-tree, a novel index which is based on a hierarchical
clustering of the nodes in the graph, and further optimized using a
balanced-minimum-cut criterion. Based onRQ-tree, we define a
fast filtering-and-verification online query-evaluation strategy that
relies on a maximum-flow-based candidate-generation phase, fol-
lowed by a verification phase consisting of either a lower-bounding
method or a sampling technique. The first verification methodre-
turns no incorrect nodes, thus guaranteeing perfect precision, com-
pletely avoids sampling, and is more efficient. The second verifica-
tion method ensures instead better recall.

Extensive experiments on real-world uncertain graphs showthat
our methods are very efficient—over state-of-the-art reliability-
detection methods, we obtain a speed-up up to five orders of magni-
tude; as well as accurate—our techniques achieve precision> 0.95
and recall usually higher than0.75.

1. INTRODUCTION
Graphs are a ubiquitous model to represent objects and theirrela-

tions. In many applications, uncertainty is inherent in thedata due
to a variety of reasons, such as noisy measurements [2], inference
and prediction models [1, 26], or explicit manipulation, e.g., for
privacy purposes [8]. In these cases, data is represented asanun-
certain graph, also calledprobabilistic graph, i.e., a graph whose
arcs are accompanied with a probability of existence.
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A fundamental problem in uncertain graphs is the so-calledre-
liability problem, which asks to estimate the probability that two
given (sets of) nodes are reachable. Reliability has been well-
studied in the context of device networks (e.g., telecommunication
networks): networks whose nodes are electronic devices andthe
(physical) links between such devices have a probability offail-
ure [3]. More recently, the attention has been shifted to other kind
of networks that can naturally be represented as uncertain graphs,
such as social networks or biological networks [20,28,34].

The reliability problems studied so far in the literature, including
all works on device-network reliability, fall into the general class
of reliability detection. Specific problem formulations in this class
ask to measure the probability that a certain reliability event oc-
curs, e.g., what is the probability that two given nodes are con-
nected (two-terminalreliability [3]), all nodes in the network are
pairwise connected (all-terminal reliability [31]), or all nodes in a
given subset are pairwise connected (k-terminal reliability [18]).

In this work we depart from the existing literature and focuson
the problem ofreliability search, which, to the best of our knowl-
edge, has never been considered so far: given a probability thresh-
old η ∈ (0, 1) and a set of source nodesS, find all nodes that are
reachable fromS with probability no less thanη.

Applications. Reliability search naturally arises in a variety of sce-
narios. In the problem known asinfluence maximization, whose
main application isviral marketing[23], the probability of an arc
(u, v) represents the influence thatu exerts onv, i.e., the likeli-
hood that some action ofu will be adopted byv, or the likelihood
that information propagates fromu to v. An important, as well as
the most computationally expensive step common to state-of-the-
art methods, is to determine all nodes that can be influenced by
a givensetof nodes, whose computation is based on the iterative
execution of reliability-search queries, as shown in Section 7.7.

In protein-interaction networks [5] nodes represent proteins and
arcs representinteractionsamong them. Interactions are estab-
lished for a limited number of proteins, through noisy and error-
prone experiments. Thus, each arc is typically associated with a
probability accounting for the existence of the interaction. In this
context, predicting co-complex memberships [5, 25], and new in-
teractions [28,30] require to compute all proteins that areevidently
(i.e., with high probability) reachable from a core (source) set of
proteins: this operation exactly corresponds to running a reliability-
search query using the core proteins as source nodes.

In mobile ad-hoc networks the connectivity between nodes ises-
timated using noisy measurements, thus leading to links naturally
associated with a probability of existence. In these networks the
notion of “delivery probability” is usually exploited to determine
the nodes for which the probability of receiving a packet by an-
other node in the network is adequately high [15]. Once again, the
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Table 1: Time complexity of reliability-search queries: the proposed RQ-tree-based methods vs. existing two-terminal reliability-detection methods when
used for reliability search.n andm are the number of nodes and arcs in the input uncertain graphG, d is the diameter ofG, K is the number of deterministic
graphs sampled fromG, S is the set of query source nodes.ñ and m̃ (ñ ≪ n, m̃ ≪ m) are the number of nodes and arcs of the subgraph ofG that the
proposedRQ-tree-based methods need to visit.

MC-Sampling[13] RHT-Sampling[20] RQ-tree-LB (this work) RQ-tree-MC (this work)
single-source queries O(K(m+ n)) O(n2d) Õ(ñm̃) Õ(ñm̃+K(m̃+ ñ))

multiple-source queries O(K(m+ n)) O(n2d) Õ(|S|ñm̃) Õ(|S|ñm̃+K(m̃+ ñ))

solution to this problem can be determined by reliability search.
Road networks can be modeled as uncertain graphs because of

unexpected traffic jams [19]. Due to the presence of arc probabili-
ties in such types of networks, reachability from a set of alternative
source locations to a set of affordable target locations should be
interpreted in a probabilistic way, thus naturally leadingto queries
formulated as reliability-search queries: “What are all the locations
among the possible alternative ones given in input that are reach-
able from the source location(s) with high probability?”.

Challenges. Even the simplest reliability-detection problem, i.e.,
two-terminal reliability, is a#P-complete problem [6, 32]. Thus,
although exact reliability detection has received attention in the
past [3], the focus nowadays, due to the large size of networks,
has mainly been on approximate solutions. Most work in this re-
gard has resorted to Monte-Carlo sampling methods [13,23,28], as
well as other sampling techniques improving upon the efficiency of
classic Monte Carlo methods (RHT-sampling[20]). Such approx-
imate reliability-detection strategies can in principle be adapted to
handle the novel reliability-search queries we study in this work,
but, as discussed next, they are not really appropriate.

The classic Monte-Carlo approach would simply consider a set
of K deterministic graph instances sampled from the input uncer-
tain graph according to its edge probabilities, and determine all
nodes reachable from the query source nodes in each graph in-
stance: all nodes reachable in a fraction of graph instances≥ ηK
are returned as answer to the query.

The RHT-sampling technique [20] can also be easily adapted to
handle reliability-search queries. The idea is to make a number of
O(n) distinct reliability-detection queries (wheren is the number
of nodes in the input graph) in order to determine the probability
that each node in the graph is reachable from the source nodes; the
answer to the reliability-search query will be then given byall those
nodes whose reliability is no less than the thresholdη.

In all applications such as those listed above, however, there-
quired rate of reliability-search queries is usually high.Thus,
a fundamental requirement is to perform any single query very
quickly. This makes the naïve adaptations of existing approxi-
mate reliability-detection methods not well-suited. Indeed, for an
input graph ofn nodes,m arcs, and diameterd, the time complex-
ity of such adaptations is eitherO(K(n +m)) (MC-sampling) or
O(n2d) (RHT-sampling), which is clearly unaffordable for online
computations on large-sized graphs that are commonly encountered
nowadays (Table 1). This makes the problem of fast estimating
reliability-search queries very challenging.

Our contributions and roadmap. In this work we study the prob-
lem of fast online approximation of reliability-search queries on
uncertain graphs. Our solution relies on pre-computing offline in-
formation that can be exploited to speed-up online query process-
ing. To this aim, we devise a novel index, calledRQ-tree, which
allows to process our queries very efficiently. Our offline index-
ing technique relies on ahierarchical clusteringof the nodes in the
input graph, where the hierarchical structure is based on the op-
timization of a principled balanced-minimum-cut criterion. Query
evaluation consists of a maximum-flow-based candidate generation
(filtering) step and a verification step that relies on either(a) an ef-
ficient lower bound based on the notion of most-likely path, or (b)

a sampling technique applied to the candidate set only. The for-
mer verification method guaranteesperfect precision, as it returns
no incorrect (false positive) nodes (while false negativescan arise);
it also avoids sampling at all, resulting in very high efficiency—
the speed-up over reliability-detection baselines up to five orders
of magnitude. On the other hand, sampling-based verification
guarantees better accuracy (in terms of recall). The improved ac-
curacy comes at a price of higher execution time, which, how-
ever, remains drastically less than the time required by sampling-
based baselines—speed-up over reliability-detection baselines, in
this case, is up to one order of magnitude.

As a further important feature, the proposedRQ-tree supports
both single-source andmultiple-source reliability-search queries.
Particularly, multiple-source reliability search is a crucial gener-
alization that is required in several real-world scenarios, such as
influence maximization (see Section 7.7).

Our contributions can be summarized as follows:

• We define the fundamental problem of reliability search in un-
certain graphs (Section 2).

• We devise an index, calledRQ-tree, to support efficient
yet effective approximate online answers to reliability-search
queries (Section 3). The proposed index is based on a hier-
archical clustering of the nodes in the graph. The hierarchi-
cal structure ofRQ-tree derives from the optimization of a
partitioning method based on the balanced-minimum-cut op-
timization criterion (Section 6).

• Based onRQ-tree, we develop a fast filtering-and-verification
strategy (Sections 4–5). We exploit an upper bound on the
probability of a set of nodes in a cluster to reach nodes outside
the cluster, and a lower bound on the probability of reaching
any other node. The first bound is used for candidate genera-
tion, while the latter is used for verification.

• We conduct a thorough experimental evaluation by involv-
ing several real-world uncertain graphs and comparing the
proposedRQ-tree-based query-evaluation strategy with two
baselines: a simple Monte-Carlo-sampling technique and the
RHT-sampling method [20], both originally conceived for
two-terminal reliability detection (Section 7). Results clearly
attest high efficiency and accuracy of our proposal.

• We show how to applyRQ-tree in the well-known influence-
maximization problem [23] (Section 7.7).

2. PROBLEM STATEMENT
An uncertain graphG is a triple(N,A, p), whereN is a set ofn

nodes,A ⊆ N ×N is a set ofm directed arcs, andp : A → (0, 1]
is a probability function that assigns a probability of existence to
each arc inA.

The bulk of the literature on uncertain graphs and device-
network reliability assumes the existence of the arcs in thegraph
independent from one another and interprets uncertain graphs ac-
cording to the well-knownpossible-world semantics[10,11,18,20,
28,29,31,34]: an uncertain graphG with m arcs yields2m possible
deterministic graphs, which are derived by sampling independently
each arca ∈ A with probabilityp(a). More precisely, a possible
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Figure 1:Run-through example: an uncertain graph.

graphG ⊑ G is a pair(N,AG), whereAG ⊆ A, and its sampling
probability is:

Pr(G) =
∏

a∈AG

p(a)
∏

a∈A\AG

(1− p(a)). (1)

For a possible deterministic graphG, we define an indicator
functionPG(S, t) to be 1 if there is a path inG from a set of source
nodesS ⊆ A to a target nodet ∈ A, and 0 otherwise. We say there
is a path from the node setS to a nodet if a path fromat leastone
nodes ∈ S to t exists. The probability thatt is reachable fromS
in the uncertain graphG, denoted byR(S, t), is computed as:

R(S, t) =
∑

G⊑G

PG(S, t) Pr(G). (2)

The number of possible worldsG ⊑ G is exponential in the number
of arcs, which makes the exact computation ofR(S, t) infeasible
even for moderately-sized graphs.

The problem we address in this work is the following.

PROBLEM 1 (RELIABILITY SEARCH ). Given an uncertain
graph G = (N,A, p), a probability thresholdη ∈ (0, 1), and a
set of source nodesS ⊆ N , find all nodes inN that are reach-
able fromS with probability greater than or equal toη, that is,
RS(S, η) = {t ∈ N | R(S, t) ≥ η}.

EXAMPLE 1. Consider the uncertain graph in Figure 1, and
suppose one wants to computeRS({s}, 0.5), i.e., all nodes reach-
able froms with probability no less than0.5. It is easy to see that
w is part of the solution due to a direct arc froms with probability
0.6. Also,u can be reached directly, or viaw; the probability that
u is reachable froms is thus1−(1−0.5)×(1−0.6×0.5) = 0.65.
Hence, alsou belongs to the solution set. Following a simi-
lar reasoning, one may verify that the answer to the query is:
RS({s}, 0.5) = {s, u, w}.

Problem 1 is a generalization of the two-terminal reliability-
detection problem, which asks to compute the probability that a
target nodet is reachable from a source nodes. Indeed, a simple
reduction from two-terminal reliability-detection to Problem 1 ex-
ists. The idea is to estimate the answer to a given instance ofthe
former problem by performing a binary search on the threshold η.
Two-terminal reliability detection is a prototypical#P-complete
problem [6,32]; as a consequence, Problem 1 is hard as well.

Due to its intrinsic hardness, we tackle the reliability-search
problem from an approximation viewpoint. Particularly, our main
goal is to develop index structures that can be exploited to speed-up
online query estimation. As our focus is on approximate solutions,
the answer to any reliability-search query inevitably contains errors
in terms of false negatives and/or false positives. Ideally, the goal
is to have answers that exhibit low false-negative and false-positive
rates. However, which of these two rates is to favor really depends
on the application. Some applications require high precision (i.e.,
low false-positive rate) such as packet-delivery probability in sen-
sor networks [15]. In other applications we are rather more inter-
ested in high recall (i.e., low false-negative rate), such as predicting
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Figure 2: An RQ-tree index for the uncertain graph in Figure 1. The
upper bounds of outreach probability from{s} to outside various clusters
are also shown (Example 2).

co-complex memberships by finding all proteins reachable from a
core of proteins [5]. For this purpose, our proposal provides the
user with a choice between two methods—the first method (Sec-
tion 5.1) favors precision (guaranteeingperfectprecision), while
the second method (Section 5.2) focuses more on recall.

3. THE RQ-TREE INDEX: OVERVIEW
The proposed index, calledRQ-tree, is based on ahierarchical

clusteringof the nodes in the input uncertain graph. Specifically,
the RQ-tree, hereinafter denoted byT , is a tree, where the root
contains the complete set of nodesN , and the leaves correspond to
individual nodes ofN . All clusters at any leveli form a partition
of N . A cluster at leveli is partitioned into a number of children
clusters at leveli + 1. As a result, there exists a unique path inT
that connects each nodes ∈ N to the root. Such a path is composed
of clusters that are all nested into each other. An example ofRQ-
tree index for the uncertain graph of Figure 1 is shown in Figure 2,
together with some bounds that will be clarified in the next section.

Our query-processing strategy is based on two phases:

1. Candidate generation, where acandidateset of nodes is built
based on the information stored into the pre-computedRQ-
tree index. All nodes not belonging to the candidate set are
discarded. A nice feature of this step is to guarantee thatno
true positivenode is discarded from the candidate set.

2. Verification, where a screening is applied to the candidate set
so to discard nodes that should not be part of the answer.

As the way we define theRQ-tree depends on the query processing
strategy, for the sake of clarity we first present the query-processing
strategy assuming anRQ-tree given (Sections 4–5), then we de-
scribe how to build theRQ-tree index (Section 6).

4. QUERY PROCESSING: CANDIDATE
GENERATION

Here we describe the candidate-generation step of our online
reliability-search strategy. We first present the main theoretical re-
sults (Section 4.1). Then, we discuss the case in which the source
set is a singleton (Section 4.2). Finally, we focus on the general
case where the source set has cardinality larger than one (Sec-
tion 4.3).

4.1 Outreach probability
A key concept in our candidate-generation algorithm is the no-

tion of outreach probability, which is the probability that a subset
of nodesS within a clusterC in theRQ-tree index is connected to
nodes outsideC, i.e., withinC = N \ C.
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DEFINITION 1 (OUTREACH PROBABILITY). Given a set of
nodes (cluster)C ⊆ N and a subsetS ⊆ C, theoutreach proba-
bility Rout(S,C) fromS to outsideC is defined as the probability
thatS reaches the nodes not belonging toC, i.e.,

Rout(S,C) =
∑

G⊑G

PG(S,C) Pr(G) (3)

wherePG(S,C) = 1 if there exists at least a nodet ∈ C such that
PG(S, t) = 1, PG(S,C) = 0 otherwise.

Two interesting observations arise from the definition of out-
reach probability: if the outreach probability ofS in C is smaller
thanη, then the probability of reachingeverysingle nodet outside
C is also smaller thanη (Observation 1), and the outreach probabil-
ity values are non-decreasing for clusters that are nested into each
other (Observation 2).

OBSERVATION 1. For a clusterC ⊆ N and its subsetS ⊆ C
the following holds: ifRout(S,C) < η thenR(S, t) < η for all
t ∈ C.

OBSERVATION 2. Given any two clustersCi, Cj such that
Ci ⊆ Cj , and a set of source nodesS ⊆ Ci, it holds that
Rout(S,Ci) ≥ Rout(S,Cj).

Observations 1 and 2 create the basis for retrieving a valid
candidate set from anRQ-tree T . Specifically, given a query
RS(S, η), consider all clustersC in T , such that,S ⊆ C and
Rout(S,C) < η. Observation 1 guarantees that all nodes out-
side each of those clusters violate the reliability condition, therefore
they can safely be discarded. Clearly, one wants to consideronly
the smallest among those clusters in order to maximize the num-
ber of pruned nodes. Observation 2 ensures that one only needs to
focus on the clusterC having the largest valueRout(S,C) that is
smaller thanη.

A candidate-generation strategy based on the above reasoning
would require to compute outreach probabilities exactly, but such
a computation is#P-complete. A possible solution is to approx-
imateRout values by sampling. Unfortunately, besides the well-
known efficiency issues, this sampling-based solution would not
guarantee that the results stated in Observations 1–2 carryover, as
any sampling-based approximateRout value can in general be ei-
ther smaller or larger than the realRout value. Instead, the validity
of Observations 1–2 is still guaranteed if one would use an upper
bound onRout. For this reason, we next define an upper bound on
Rout and use it in substitution for the actualRout value.

Upper bound on outreach probability. While various upper
bounds for reliability exist in the literature [7, 14, 24, 29], none
of them is really suitable for our problem. Indeed, the outreach
probability can be viewed as a special notion ofsource-to-any-
terminal reliability, where one is asked to compute the probability
that some source nodes are connected toat least onenode in a tar-
get set [21]. To our knowledge, no upper bounds have been defined
for this particular type of reliability problem. One might adapt the
upper bounds on two-terminal reliability by interpreting source-to-
any-terminal reliability as a special case of two-terminalreliability
where the sources and the terminals are sets of nodes insteadof sin-
gle nodes. However, the upper bounds on two-terminal reliability
require to consider the entire network, which in our context would
lead to lose the pruning benefits given by theRQ-tree structure.
Instead, the upper bound we propose, denoted byUout, is based
on the min-cut/max-flow principle and itrequires only to consider
the subgraph induced by the nodes of the currently being processed
cluster. We start by defining the notion ofmost-likely cutbetween
two disjoint sets of nodes.

Algorithm 1 Compute Uout

Input: an uncertain graphG = (N,A, p); a clusterC ⊆ N ; a set of
source nodesS ⊆ C

Output: Uout(S, C)

1: C
′
← {v ∈ C | ∃ u ∈ C : (u, v) ∈ A}

2: A′ ← {(u, v) ∈ A | {u, v} ⊆ C ∪ C
′
}

3: for all a ∈ A′, setc(a) = − log(1 − p(a))

4: build Ĝ = (C ∪ C
′
, A′, c)

5: f∗ ←MaxFlow(Ĝ, S,C
′
)

6: Uout(S,C)← 1− exp(−f∗)

DEFINITION 2 (MOST-LIKELY CUT ). Consider a determinis-
tic graphG = (N,A) and two disjoint sets of nodesX,Y ⊆ N .
We define a cutC(X,Y ) between the setsX and Y to be a set
of arcs in A whose removal disconnectsX and Y . Consider
now an uncertain graphG = (N,A, p) and two disjoint sets of
nodesX,Y ⊆ N . We define the most-likely cutC∗(X, Y ) to
be a set of arcs such that: (1) it is a cut betweenX and Y ,
as defined on the deterministic graph that contains all the arcs
of G; (2) among all cuts betweenX and Y , it is the one that
maximizes the probability of having all its arcs non-present, i.e.,
C∗(X,Y ) = argmaxC(X,Y )

∏
a∈C(X,Y )(1− p(a)).

As stated in the following theorem, the most-likely cut provides us
a way to express the desired upper boundUout.

THEOREM 1. Given a clusterC ⊆ N and a subsetS ⊆ C, it
holds that:

Rout(S,C) ≤ Uout(S,C) = 1− max
C(S,C)

∏

a∈C(S,C)

(1− p(a)).

PROOF. Consider any cutC(S,C). From the independence as-
sumption, the probability that none of the arcs inC(S,C) exists is
equal to

∏
a∈C(S,C)(1− p(a)). Now, consider the event that none

of the nodes inS can reach any node outsideC. The probability
of such an event is equal to1 − Rout(S,C), and is clearly lower-
bounded by the probability that no arc inC(S,C) exists. Based on
this reasoning, it holds that:

1−Rout(S,C) ≥
∏

a∈C(S,C)

(1− p(a)), for all C(S,C),

or, equivalently,Rout(S,C) ≤ 1 − maxC(S,C)

∏
a∈C(S,C)(1 −

p(a)). The theorem follows.

The upper boundUout defined in Theorem 1 can be computed
by running a max-flow algorithm on a capacitated graph appropri-
ately derived fromG (see Algorithm 1). Specifically, our algorithm
works as follows. First, we construct a capacitated graphĜ, which
has the same sets of nodes and arcs asG. Each arca in Ĝ has
a capacityc(a) equal to− log(1 − p(a)). Then, we compute the
max-flowf∗ from S to C on Ĝ.1 As the following theorem states,
the desired upper boundUout(S,C) can eventually be computed
as1− exp(−f∗).

THEOREM 2. Given an uncertain graphG = (N,A, p), let
Ĝ = (N,A, c) be a capacitated graph derived fromG by assign-
ing a capacityc(a) = − log(1 − p(a)) to each arca ∈ A. Also,
given a clusterC ⊆ N and a set of source nodesS ⊆ C, let f∗

1To compute max-flow between a set of source nodesS and a set of sink nodes
C we exploit the classic trick of asking for the max-flow between a dummy source
s0 and a dummy sinkt0, where the dummy sources0 is connected to all nodes inS
while all nodes inC

′

are connected to the dummy sinkt0, and all arcs outgoing from
s0 or incident tot0 have infinite capacity.
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denote the maximum flow fromS toC on the graphĜ. It holds that
Uout(S,C) = 1− exp(−f∗).

PROOF. From the max-flow/min-cut equivalence, it follows that
the valuef∗ of the max-flow is equal to the valuec∗ of the min-cut.
We have

f∗ = c∗ =

= min
C(S,C)

∑

a∈C(S,C)

c(a) = min
C(S,C)

∑

a∈C(S,C)

− log(1− p(a)) =

= min
C(S,C)

− log
∏

a∈C(S,C)

(1− p(a)) =

= − log



 max
C(S,C)

∏

a∈C(S,C)

(1− p(a))



 =

= − log(1− Uout(S,C)), (from Theorem 1)

which proves the theorem.

As stated above, the proposed upper boundUout can be com-
puted by considering only the subgraph induced by the nodes in the
clusterC (and some close periphery), which leads to a significant
speed-up. This is indeed possible thanks to following observation,
which is exploited in Lines 1–2 of Algorithm 1.

OBSERVATION 3. Given an uncertain graphG = (N,A, p),
let Ĝ = (N,A, c) be a capacitated graph derived fromG by as-
signing a capacityc(a) = − log(1 − p(a)) to each arca ∈ A.
Given a clusterC ⊆ N and a set of source nodesS ⊆ C, the max-
imum flow fromS toC is equivalent to the maximum flow fromS to
the setC

′
⊆ C of all nodes inC having an incident arc outgoing

fromC, i.e., the setC
′
= {v ∈ C | ∃ u ∈ C : (u, v) ∈ A}.

EXAMPLE 2. Consider the running example in Figures 1–2.
The upper bound on the outreach probability from{s} to outside
cluster{s, w} is 0.80, due to the arcs(s, w), (s, u). It means that
the probability that{s} reaches any node not belonging to{s, w}
is no greater than0.80. Similarly, the upper bound on the outreach
probability from{s} to outside cluster{s, w, u} is 0.496, due to
the arcs(u, t), (u, v), (w, v). Asη = 0.5, all nodes outside cluster
{s, w, u} can be pruned.

4.2 Single-source queries
We next describe how to perform candidate generation when the

query set of source nodes is a singleton, i.e., queries are formulated
asRS({s}, η).

Given a query nodes, there exists a single path in theRQ-tree
indexT from the leaf cluster{s} to the root ofT . Our candidate-
generation strategy traverses all clusters along this pathin a bottom-
up fashion i.e., starting from the leaf cluster and going towards the
root. The traversal of the path stops as soon as it encountersa can-
didate clusterC∗, whose upper boundUout({s}, C

∗) on outreach
probability is smaller thanη. More formally:

C∗({s}, η) = argmax
C⊇{s},

Uout({s},C)<η

Uout({s}, C).

Observation 2 ensures that (i) C∗ is the smallest “valid” candidate
cluster, i.e., the cluster that guarantees that the discarded setC∗ is
as large as possible; and (ii) all nodest /∈ C∗ haveR({s}, t) < η,
i.e., no true positive is discarded.

Note that, during our bottom-up traversal ofT , the upper-bound
valuesUout({s}, ·) are computed in a lazy fashion according to
the strategy outlined in Algorithm 1. To further speed-up query
processing, one may consider pre-computing the upper-bound val-
uesUout({s}, C), for all clustersC ∈ T and all nodess ∈ C.
However, such a pre-computation would lead to an increase ofthe
index storage space and, more importantly, the index building time,
which would becomeΩ(nm), thus unaffordable for large graphs.

Running time. Our candidate generation consists of two steps: the
bottom-up traversal of the treeT , and the computation of the upper-
bound valuesUout during that traversal. The first step is linear in
the heighth of the treeT . The second step requires performing a
max-flow computation for each cluster visited during the traversal.
As a result, the overall running time of computing the upper-bound
valuesUout is expressed ash max-flow computations. According
to Observation 3, the max-flow computation can be performed in
the subgraph induced by the nodes in the cluster and the neighbors
of each of such nodes. Thus, one can upper bound the running
time of each max-flow instance by using the size of the subgraph
in the last (i.e., the largest-sized) cluster encountered during the
traversal. Let̃n andm̃ denote the number of nodes and arcs in that
subgraph. First of all, we note that, using appropriate datastruc-
tures to store the treeT , the subgraph induced by the that cluster
can be derived inO(ñ + m̃) time. Then, concerning max-flow
computation, one of the fastest existing max-flow algorithms is the
one by Goldberg and Tarjan [16], whose running time isÕ(ñm̃),
where theÕ notation hides logarithmic factors. Assuming that the
treeT is balanced (see Section 6), thenh = O(log n). Moreover,
asñ ≪ n, it is reasonable to assume thatn = O(ñk), with k con-
stant. This way, it holds thath = O(log ñk) = O(log ñ), and,
therefore, the overall time complexity of the candidate-generation
phase isÕ(ñm̃h) = Õ(ñm̃ log ñ) = Õ(ñm̃).

4.3 Multiple-source queries
In case of queries containing multiple source nodes, one could

follow exactly the same candidate-generation strategy as in the
single-source case: retrieve the smallest cluster in the index tree
that contains all nodes of the query source setS. However, such a
strategy may not be very effective in the multiple-source case. The
reason is that the cluster enclosing all nodes inS might be a large
cluster placed very close to the root of theRQ-tree T . This would
affect the efficiency of query processing, as a larger portion of T
would be visited before encountering the desired candidateset, and
thus a large number of candidate nodes would need to be verified.
Therefore, we discuss next how to select aset of clusters (rather
than a single cluster common to all source nodes) that may achieve
better pruning.

Multiple-source candidate clusters. Our goal is to derive a set
of clusters{Ci}

k
i=1 of T whose union setC∪ =

⋃
i Ci meets the

following requirements: (i) all source nodes belong toC∪; (ii ) the
property of having no false negatives discarded still holds, that is
no false negatives are present among the nodes outsideC∪; and
(iii ) the size ofC∪ is minimum, so to guarantee maximum pruning.

We translate the above requirements into an optimization prob-
lem. Requirements (i) and (iii ) are straightforward to formulate,
while for requirement (ii ) we first need to derive some theoretical
results, which are formally stated in Lemma 1 and Theorem 3.

LEMMA 1. Let {C1, · · · , Ck} be a set of clusters inT and
{S1, · · · , Sk} be a set of source node sets, whereSi ⊆ Ci, for all
i, andSi ∩ Sj = ∅, for all i 6= j. Let alsoC∪ =

⋃
i Ci andS∪ =⋃

i Si. It holds thatUout(S∪, C∪) ≤ 1−
∏

i(1− Uout(Si, Ci)).
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PROOF. Given any two (disjoint) sets of nodesX, Y ⊆ N , let
C∗(X,Y ) denote the most-likely cut fromX to Y (as defined in
Definition 2). Let alsoPr(¬C∗(X,Y )) =

∏
a∈C∗(X,Y )(1− p(a))

be the probability thatC∗(X,Y ) does not exist. First, we note that,
by definition, the probabilityPr(¬C∗(X,Y )) cannot be smaller
than the probability that any single valid cut fromX to Y does not
exist. Given any supersetY ′ ⊇ Y (such thatX ∩ Y ′ = ∅) it is
easy to see thatC∗(X,Y ′) is a valid cut fromX to Y too. Thus,

Pr(¬C∗(X,Y )) ≥ Pr(¬C∗(X,Y ′)),

for all Y ′ ⊇ Y,X ∩ Y ′ = ∅, which implies that

Pr(¬C∗(Si, C∪)) ≥ Pr(¬C∗(Si, Ci)),

as, clearly,Ci ⊇ C∪ (andSi ∩ C∪ = ∅). Furthermore, notice that⋃
i C

∗(Si, C∪) is a valid cut fromS∪ to C∪. Hence, based on the
same argumentation as above, the following holds:

Pr(¬C∗(S∪, C∪)) ≥ Pr(¬
⋃

i C
∗(Si, C∪)).

Finally, the probability that none of the arcs in the union ofmultiple
cuts exists is lower-bounded by the product of the probability that
any single arc in the union cut does not exist, that is:

Pr(¬
⋃

i C
∗(Si, C∪)) ≥

∏

i

Pr(¬C∗(Si, C∪)).

In summary, based on the above results, we have:

Pr(¬C∗(S∪, C∪))︸ ︷︷ ︸
1−Uout(S∪,C∪)

≥ Pr(¬
⋃

i C
∗(Si, C∪)) ≥

≥
∏

i

Pr(¬C∗(Si, C∪)) ≥
∏

i

Pr(¬C∗(Si, Ci))︸ ︷︷ ︸
1−Uout(Si,Ci)

,

which implies thatUout(S∪, C∪) ≤ 1 −
∏

i(1 − Uout(Si, Ci)).
The lemma follows.

Based on the above lemma, we can now provide the ultimate
condition to be ensured for having no false negatives outside C∪.
As formally stated in Theorem 3, such a condition is expressed as
1−

∏
i∈[1..k](1− Uout(Ci ∩ S,Ci)) < η.

THEOREM 3. LetS be a set of source nodes and{C1, · · · , Ck}
be a set of clusters inT such thatCi ∩ S 6= ∅, for all i, and
{Ci ∩ S}ki=1 forms a partition ofS. Let alsoC∪ denote the union
set

⋃
i Ci. It holds that:

1−
∏

i

(1− Uout(Ci ∩ S,Ci)) < η ⇒ R(S, t) < η,

for all t ∈ C∪.

PROOF. For each nodet ∈ C∪, we have

R(S, t) ≤ Rout(S,C∪) ≤ Uout(S,C∪) ≤

1−
∏

i

(1− Uout(Ci ∩ S,Ci)) < η. (from Lemma 1)

The optimization problem we are interested in can now be pre-
cisely characterized.

PROBLEM 2 (MULTIPLE-SOURCECANDIDATE GENERATION).
Given anRQ-tree index T and a set of source nodesS, select
a set of clusters{C1, . . . , Ck} of T so that, for the union set
C∪ =

⋃k
i=1 Ci, the following holds:

(i) S ⊆ C∪;

(ii) 1−
∏

i(1− Uout(Ci ∩ S,Ci)) < η;

(iii) |C∪| is minimum.

The above problem can be solved by using a dynamic-
programming algorithm withO(|S|n log n) max-flow computa-
tions. However, such an exact algorithm may be too slow in prac-
tice. For this purpose, we introduce next a faster greedy heuristic.

Heuristic multiple-source candidate generation.The idea of our
heuristic is to perform a number of bottom-up traversals ofT in
parallel, one for eachs ∈ S. Similar to the single-source case, each
traversal proceeds along the path that connects the nodes to the root
of T . Traversals are performed in a round-robin way and terminate
when the following condition is met. LetCi denote the current
cluster inT that encloses nodesi at a certain point of the traversals,
for all si ∈ S (note that any two nodessi, sj ∈ S can be enclosed
by the same clusterCi = Cj ). Our procedure stops when it reaches
theminimum-sizedunion setC∪ =

⋃
i Ci for which condition (ii)

of Problem 2 is satisfied, i.e.,1−
∏

i(1−Uout(Ci ∩ S,Ci)) < η.
The final candidate setC∗ corresponds to the union setC∪ of the
last clusters reached by the traversal.

Running time. The running time analysis of the (heuristic)
multiple-source candidate generation roughly follows theanalysis
of the single-source case. We need to performO(|S| log n) max-
flow computations—contrast to theO(|S|n log n) max-flow com-
putations required by the exact method, andO(|S| log n) computa-
tions ofUout. The overall time complexity is thereforẽO(|S|ñm̃).

5. QUERY PROCESSING: VERIFICATION
Though guaranteed not to miss any true positive, the candidate

setC∗ generated according to our candidate-generation strategies
may still contain false positives, i.e., nodest for whichR(S, t) <
η. To filter as many of such false positives as possible out of
C∗, we propose two verification methods: one method is more
suited for precision, while the other method guarantees better re-
call. Moreover, the two proposed methods allows for trading-off
between accuracy and efficiency in a different way. The high-
precision method is in general very fast, while the efficiency of
the high-recall method can easily be tuned (at a price of lower ac-
curacy) by playing with a parameter (i.e., the number of samples).

Next we describe the proposed verification methods. Both ver-
ifications take as input the candidate set eventually generated by
candidate generation. As a result, there is no distinction between
single- and multiple-source verification.

5.1 Verification based on a lower bound on re-
liability

The first verification method we propose exploits a lower bound
onR(S, t), for any source node setS and a nodet /∈ S. The idea
is that if the lower bound is≥ η, then one can safely conclude that
t belongs to the solution set.

Several lower bounds on (two-terminal) reliability have been
defined in the context of device networks, including Kruskal-
Katona bound, polynomial-based, edge-packing-based, andcutset-
enumeration-based bounds [10,11,14,29]. However, these bounds
require extensive computations to be performed on the entire net-
work (their time complexity is typically in the order ofO(nk), with
k ≥ 2, or even more). We recall that our lower bound needs to be
exploited during online query evaluation, thus it must be extremely
efficient. For this purpose, we derive a novel and simpler lower
bound, denotedLR(S, t), that is based on the concept ofmost-
likely pathfrom S to t, and has the advantage of being really fast.
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DEFINITION 3 (MOST-LIKELY PATH ). Given a set of nodesS
and a nodet /∈ S, the most-likely pathP∗(S, t) from S to t is
defined as

P∗(S, t) = argmax
P∈P(s,t),

s∈S

∏

a∈P

p(a), (4)

whereP(s, t) denotes the set of all paths froms to t.

The following theorem states that the desired lower boundLR

corresponds to the probability of the most-likely path.

THEOREM 4. Given a set of source nodesS and a nodet /∈ S,
it holds thatR(S, t) ≥ LR(S, t) =

∏
a∈P∗(S,t) p(a). Here, a

denotes an arc on the pathP∗(S, t).

PROOF. By definition,R(S, t) is the probability thatat least one
pathfrom a nodes ∈ S to t exists. Hence,R(S, t) is larger than or
equal to the probability thatany single pathfrom somes ∈ S to t
exists, that is,

R(S, t) ≥
∏

a∈P

p(a), for all s ∈ S and allP ∈ P(s, t).

Therefore, we have

R(S, t) ≥ max
P∈P(s,t)

s∈S

∏

a∈P

p(a) =
∏

a∈P∗(S,t)

p(a),

which proves the theorem.

Based on the lower boundLR, the verification step simply con-
sists in keeping only those nodest ∈ C∗ such thatLR(S, t) ≥ η.
This way, we guarantee perfect precision.

The lower boundLR is computed by a shortest-path computation
on a weighted graph derived fromG by assigning to each arca ∈ A
a weight− log(p(a)). An important observation here is that, the
shortest-path computation can be limited to the subgraphG̃ of G
induced by the candidate setC∗, and this is the main reason behind
the high efficiency of the proposed lower bound. The motivation
is that our candidate-generation step ensures that all nodes outside
the candidate set have reliability from the query sourcesS less than
η. Hence, all paths passing through nodes not inC∗ are guaranteed
to have reliability less thanη too and can thus be safely discarded,
as the verification method would anyway keep only those nodes
whose most-likely path fromS has probability≥ η.

5.2 Sampling-based verification
Our second verification method performsMC-sampling to es-

timate the reliability of the candidate nodes, and thereby improves
the recall of the lower-bounding-based verification. Unlike existing
sampling methods [13, 20], sampling here is performed on a small
subgraph of the input uncertain graph, i.e., the subgraph induced
by the candidates only. We combineMC-sampling with a breadth
first search (BFS) from the query set, and thus restrict our sam-
pling method only inside the subgraph induced by the candidates.
As a result, even though less efficient than lower-bounding-based
verification, this sampling-based verification is still very fast and
outperforms the baselines by an order of magnitude in efficiency
(Section 7). This is indeed possible by the intrinsic characteristics
of our RQ-tree index, which allows to significantly reduce the size
of the subgraph where sampling is applied. One may note that,
when sampling over the subgraph induced by the candidate set, the
contribution of the paths passing through nodes not in the candidate
set is ignored. Since all non-candidate nodes have reliability from
the source set less thanη, a path from the source set to a candidate
node that goes through non-candidate nodes also have very small

reliability as compared toη, and thus it does not significantly affect
the reliability values of candidates.

Our sampling-based verification improves upon the recall ofthe
lower-bound-based verification. As a side effect, it (slightly) de-
creases precision (not perfect anymore, but still very high, i.e., in
the [0.95, 1] range) and the efficiency. Another nice feature of
sampling-based verification is that the number of samples can be
used as a knob to tradeoff between efficiency and accuracy

5.3 Running time
As stated in Section 5.1, the lower-bound-based verification

strategy only needs to focus on the subgraphG̃ of G induced by
the candidate setC∗. According to the reasoning reported in Sec-
tion 4.2, the number of nodes and arcs ofG̃ are upper-bounded
by ñ andm̃, respectively. The lower-bounding-based verification
strategy requires to compute the probability of the most-likely path
from the source node setS to each node in the candidate set. This
can be accomplished with a shortest-path distance computation in
G̃ from the source setS, which can be carried out by a simple
variant of the standard Dijkstra’s algorithm where the distance vec-
tor is initialized with the set source nodesS rather than a single
source node. The time complexity of this Dijkstra variant remains
clearly unchanged with respect to the standard algorithm, therefore
the time complexity of the lower-bounding-based verification strat-
egy isÕ(m̃+ ñ).

The sampling-based verification, on the other hand, requires to
compute all nodes that are reachable from source setS in ev-
ery deterministic graph sampled from subgraphG̃ induced by the
candidate setC∗. This can be accomplished by BFS in time
O(K(m̃+ ñ)) time,K being the number of samples.

In Table 2 we summarize the time complexities of the vari-
ous phases of the proposed query-processing strategy. It can be
noted that, overall, our query processing ranges fromÕ(ñm̃) time
(single-source, lower-bounding-based verification), toÕ(|S|ñm̃+
K(m̃ + ñ)) time (multiple-source, sampling-based verification).
In all cases, however, as̃n andm̃ are very small in practice (see
Section 7), the efficiency of our query processing is very high.

6. BUILDING THE RQ-TREE INDEX
In this section, we provide the guidelines for building the hierar-

chical structure of ourRQ-tree indexT . We note that:

1. TheRQ-tree should be equally effective for any reliability-
search query, regardless of the source set. Intuitively, this is
achieved by partitioningT ’s clusters intobalancedchildren.

2. A very small height ofT is not desirable, for example, think
about the extreme case where the height ofT is 1 (which
arises when the branching factor ofT is n): such anRQ-
tree would be completely useless for our query processing
strategy. Within this view, we keep the height ofT of rea-
sonable size by fixing the branching factor ofT to a small
number, i.e.,2 for simplicity.

3. Finally, for each clusterC in T , and for each nodes ∈ C, we
require forRout({s}, C) to be as small as possible, since this
would reduce the size of the set produced during candidate
generation.

Based on above requirements, we develop the following method
for building anRQ-tree indexT . First, according to requirements
1) and 2), we perform a (recursive)balanced bi-partitionof each
non-leaf cluster inT . Requirement 3), instead, provides the basis
for the specific criterion to employ for defining each bi-partition.
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Table 2:RQ-tree: query-processing time complexity.

candidate verification total
generation lower bound MC-sampling lower-bound verification MC-sampling verification

single-source Õ(ñm̃) Õ(m̃+ ñ) O(K(m̃+ ñ)) Õ(ñm̃) Õ(ñm̃+K(m̃+ ñ))

multiple-source Õ(|S|ñm̃) Õ(|S|(m̃+ ñ)) O(K(m̃+ ñ)) Õ(|S|ñm̃) Õ(|S|ñm̃+K(m̃+ ñ))

Particularly, for any clusterC in T , the ideal desideratum would
be to minimize the single outreach probabilities of each subsetS ⊆
C, which is clearly unaffordable. Within this view, we first derive
an upper bound that is general for the outreach probabilities of all
subsets of nodes in a specific cluster, and then we search for the
balanced bi-partition that minimizes this upper bound. Note that
the upper bound provided here differs from theUout upper bound
derived in Theorem 1, because the latter is instead specific for a
given set of source nodes. The expression of this general upper
bound, denoted byUout, is formalized in Theorem 5.

THEOREM 5. Given a clusterC, for all sets of source nodes
S ⊆ C, it holds that Rout(S,C) ≤ Uout(C) = 1 −∏

(u,v):u∈C,v/∈C(1− p((u, v))).

PROOF. By definition,1−Rout(S,C) corresponds to the prob-
ability that no nodess ∈ S can reach any nodet outside
C. In this respect, consider all outgoing arcs ofC, i.e., those
arcs that connect a node inC with a node outsideC. The
probability that none of these arcs exists is a lower-bound for
1 − Rout(S,C). As a result, it holds that1 − Rout(S,C) ≥∏

(u,v):u∈C,v/∈C(1 − p((u, v))), or, equivalently,Rout(S,C) ≤

1−
∏

(u,v):u∈C,v/∈C(1− p((u, v))).

Based on the above reasoning, we next formalize the optimiza-
tion problem to be recursively solved for generating a bi-partition
of various clusters inT . The objective is to partition any given
clusterC ∈ T into two clustersC1 andC2 such that (i) Uout(C1)
andUout(C2) are simultaneously minimized, and (ii) C1 andC2

have roughly the same size. Note that minimizingUout(·) is equiv-
alent to maximizing1−Uout(·), thereby our requirements are fully
captured as follows:

PROBLEM 3 (BUILD -RQ-TREE). Given a clusterC ∈ T ,
partition C into two clustersC1, C2 that maximize

(1−Uout(C1))(1−Uout(C2))

|C1|
+
(1−Uout(C1))(1−Uout(C2))

|C2|
.

As shown in Theorem 6, Problem 3 is equivalent toMIN -RATIO-
CUT [33]. As a result, Problem 3 isNP-hard.

THEOREM 6. Problem 3 isNP-hard.

PROOF. We prove the theorem by a reduction fromMIN -RATIO-
CUT. We construct a weighted (deterministic) grapĥG con-
taining the same nodes and arcs asG. We assign to each arc
a in Ĝ a weightw(a) = − log(1 − p(a)), and we makeĜ
undirected by ignoring the directness of the arcs. Given two
node setsNi, Nj ⊆ N , let A(Ni, Nj) denote the set of all
arcs in Ĝ betweenNi to Nj . Solving MIN -RATIO-CUT on
Ĝ finds a bi-partition{N1, N2} of the node setN that min-
imizes 1

|N1|

∑
a∈A(N1,N2)

w(a) + 1
|N2|

∑
a∈A(N1,N2)

w(a), or,

equivalently, that maximizes 1
|N1|

∏
a∈A(N1,N2)

(1 − p(a)) +
1

|N2|

∏
a∈A(N1,N2)

(1 − p(a)) = 1
|N1|

(1 − Uout(N1))(1 −

Uout(N2)) +
1

|N2|
(1− Uout(N1))(1− Uout(N2)).

Algorithm 2 BuildRQtree

Input: an uncertain graphG = (N,A, p)
Output: anRQ-tree indexT
1: C← {N}, T ← {C}
2: repeat
3: C

′ ← ∅
4: for all C ∈ C s.t. |C| > 1 do
5: build Ĝ = (N̂ , Â, w), whereN̂ = C, Â = {(u, v) | (u, v) ∈

A, u ∈ C, v ∈ C}, andw(a) = − log(1− p(a)), for all a ∈ Â

6: {C1, C2} ←METIS (Ĝ)
7: C′ ← C′ ∪ {C1, C2}
8: end for
9: C← C

′, T ← T ∪ {C}
10: until C = ∅

In principle, one of the existing approximation algorithmsfor
MIN -RATIO-CUT [4] can be employed to solve ourBUILD -RQ-
TREE problem. But the main issues of this approach are thatMIN -
RATIO-CUT is hard to approximate (the best known approximation
factor is polylogarithimic), and, more importantly, the existing ap-
proximation algorithms are typically inefficient. Hence, we depart
from solutions having approximation guarantees and approach the
problem heuristically. Specifically, in our implementation we use
the well-knownMETIS algorithm [22], whose validity in terms of
both accuracy and efficiently has been widely attested. The details
of our RQ-tree building strategy are reported in Algorithm 2.

Index building time. Given a clusterC in T , let nC andmC

denote the number of nodes and arcs in the subgraph of the input
uncertain graphG identified by the nodes inC, respectively. Com-
puting a bi-partition ofC by means of theMETIS algorithm takes
O(nC + mC) time. RunningMETIS on all clusters of any single
level ofT takesO(

∑
C(nC +mC)). As all clusters in any single

level ofT forms a partition of the whole set of nodes inG, the latter
is equivalent toO(n +m). The number of levels (height) ofT is
O(log n), as ourRQ-tree index building strategy guarantees forT
to be a balanced tree. As a result, the overall time complexity of
building anRQ-tree index isO((n+m) log n).

Index storage space. As explained above, the height ofT is
O(log n). Each level ofT contains a partition of the whole set
of nodes inG, thus each node inG is stored exactly one time for
each level. Hence, the overall storage space required by anRQ-
tree index isO(n log n).

7. EXPERIMENTAL RESULTS
We present experiments to assess the performance of our

RQ-tree-based reliability-search methods. We evaluate: index
time/space performance (Section 7.2), query-processing accuracy
and efficiency (Section 7.3), pruning power ofRQ-tree (Sec-
tion 7.4), performance with varying source set sizes (Section 7.5),
and scalability (Section 7.6). Furthermore, as an example of real-
world application, we show how ourRQ-tree index can signifi-
cantly improve upon the efficiency of the hill-climbing algorithm
[23] used in theinfluence-maximizationproblem (Section 7.7).

The code is implemented in C++ and the experiments were per-
formed on a single core of a100GB, 2.50GHz Xeon server.

542



Table 3:Dataset characteristics.
Dataset # Nodes # Arcs

DBLP (µ = 2) 684 911 4 569 982

DBLP (µ = 5) 684 911 4 569 982

DBLP (µ = 10) 684 911 4 569 982

Flickr 78 322 20 343 018

BioMine 1 008 201 13 445 048

Last.FM 6 899 24 144

WebGraph 10 000 000 174 918 788

NetHEPT 15 235 62 776

7.1 Settings
Datasets.We involve five real-world datasets, each representing a
directed uncertain graph (Table 3 and Figure 3).

DBLP (http://www.informatik.uni-trier.de/
~ley/db/). The dataset is a subset of the popular co-authorship
network used in [20, 28]. Here, the arc probabilities express the
strength of the collaboration between the two incident authors.
Particularly, in [20, 28], the probabilities derive from anexpo-
nential cdf of meanµ to the number of collaborations; hence, if
two authors collaboratedc times, the corresponding probability
is 1 − exp−c/µ. We considerµ ∈ {2, 5, 10} in our experiments.
Keeping fixed the collaborations, higher values ofµ generate
smaller probabilities (see Figure 3).

Flickr (http://www.flickr.com). Flickr is a popular online
community, where users share photos, and participate in common-
interest groups. We borrowed the dataset from [28], where the
probability of the edge between any two users is computed assum-
ing homophily, the principle that similar interests indicate social
ties. In particular, [28] uses as a measure of homophily the Jaccard
coefficient of the interest groups that the two users belong to.

BioMine. This is a recent snapshot of database of the BIOMINE
project [30], which is a collection of biological interactions. The
graph is directed, and with probability associated to the arcs quan-
tifying the strength of the interaction [30].

Last.FM (http://www.last.fm). Last.FM is a music web
site, where users listen to their favorite tracks, and communicate
with each other based on their music preferences. We crawleda
local network of Last.FM, and formed a directed graph by connect-
ing two users if they communicated at least once. The probability
on each arc(u, v) corresponds to theinfluenceprobability ofu on
v, where “influence” is interpreted according to its meaning in the
influence-maximization context [23]. Following a number ofworks
on influence maximization [12, 17, 23], the probability on any arc
corresponds to the inverse of the out-degree of the node fromwhich
that arc is outgoing.

WebGraph(http://webgraph.dsi.unimi.it). This is the
uk-2007-05 web graph data [9]. For our experiments, we use a
subset containing10M pages and175M hyperlinks. LikeLast.FM,
the probability of the various arcs are “influence” probabilities.

NetHEPT(http://www.arXiv.org). This graph is created
from the “High Energy Physics - Theory” section of the e-print
arXiv with papers from1991 to 2003. Like DBLP, two authors are
connected by directed arcs if they co-authored at least once. This
graph was used in [12] for the influence-maximization task with
constant arc probabilities (0.5).

Competing methods. We evaluate the performance of ourRQ-
tree by focusing on both the verification strategies proposed in Sec-
tion 5. Particularly, we hereinafter denote byRQ-tree-LB the vari-
ant involving lower-bounding-based verification, and byRQ-tree-
MC the variant involving (Monte-Carlo-)sampling-based verifica-
tion. We compare bothRQ-tree-LB and RQ-tree-MC with the
following baselines:
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Figure 3:Cumulative distribution of arc probabilities.

MC-Sampling. We consider a Monte-Carlo-sampling method [13]
running on the whole graph. We deriveK deterministic graphs by
sampling the input uncertain graph according to arc probabilities.
Note that the sampling is performed online, i.e., combined with a
BFS from the source set, in order to improve its efficiency. Even-
tually, all nodes that are reachable in at leastηK sampled graphs
form the answer to the reliability-search query. Such a baseline has
time complexityO(K(m + n)).

RHT-Sampling. This method was proposed in [20] as a fast al-
ternative to Monte-Carlo sampling for the two-terminal-reliability
problem with an additional distance threshold.3 Thus, in order to
answer our reliability-search queries, it needs to be runn times, ev-
ery time using a different node in the graph as target node, and the
distance threshold set asd, the diameter of the uncertain graph. Fol-
lowing [20], the time complexity of a single execution ofRHT is
O(nd), hence, when used for reliability search, its complexity be-
comesO(n2d). For this purpose, even being faster than MC sam-
pling for two-terminal reliability, RHT-sampling performs worse in
the reliability-search task.

Given its quadratic complexity, we were able to obtain results for
RHT in reasonable time only on our smallest datasets, i.e.,Last.FM
andNetHEPT(on larger graphs such asBioMineandFlickr, RHT
could not finish in one day). We report such results in Table 4,
where it can be evinced that our methods drastically outperform
RHT: up to 2 (RQ-tree-MC) and 6 (RQ-tree-LB) orders of mag-
nitude faster.

In the remainder of this section we focus on the larger datasets,
thus leaving theRHT baseline out of the comparison.

Query workload and parameter setting. For single-source
queries, we select a node uniformly at random. For multiple-source
queries, we select uniformly at random a set of nodes from a sub-
graph of the original graph. We vary the diameter of the subgraph
from 2 to 6, as these are typical distance values on most real-world
graphs (small-world phenomenon), while, as the number of query
nodes is usually small (up to few tens), we vary the cardinality of
the query set from2 to 20. All results are averaged over100 sets of
nodes, while the probability thresholdη is varied from0.4 to 0.8.

For all sampling methods, i.e., the baselines and ourRQ-tree-
MC, we observed accuracy convergence on all datasets with a num-
ber of samplesK around1 000. This is roughly the same number
observed in [20, 28]. Hence, we setK = 1000 for all sampling
methods.

Accuracy assessment criteria. Computing the exact answer to
our reliability-search queries is computationally infeasible due to
the size of our datasets. Hence, to measure accuracy of the pro-
posedRQ-tree-based methods, we use the answer computed by
MC-Sampling as a proxy. This is a reasonable choice asMC-
Sampling is an unbiased estimator, thus running it for a sufficiently
large number of times, its answer is expected to converge to the real
answer with high probability.

3We use the code provided by the authors of [20].
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Table 4:Comparison betweenRQ-tree and RHT-sampling baseline using
smaller graphs: query-processing time (sec). On larger graphs such as
BioMine and Flickr, RHT-sampling baseline does not finish in one day.
Thus, for larger graphs, we compareRQ-tree with onlyMC-sampling.

Last.FM NetHEPT
η RHT [20] RQ-tree-MC RQ-tree-LB RHT [20] RQ-tree-MC RQ-tree-LB

0.4 6.21 0.1 0.008 2 353 15.97 0.010
0.6 6.21 0.08 0.007 2 353 15.96 0.008
0.8 6.21 0.08 0.006 2 353 15.64 0.006

Table 5:RQ-tree statistics and index building time.
time (sec) size (MB) height # clusters

DBLP (µ = 5) 1 855 123 14 735 424
Flickr 1 649 118 11 80 726
BioMine 2 890 203 15 1 040 750

We assess accuracy usingprecisionand recall. Denoting byT
the node set outputted by any selected method and byT ∗ the node
set produced byMC-Sampling, we define precision as|T∩T∗|

|T |
and

recall as|T∩T∗|
|T∗|

. Hence, precision and recall ofMC-Sampling are
always 1, so we avoid to report them.

7.2 Indexing performance
We report the basic statistics about theRQ-tree index in Table

5. It can be observed that the offline index building time is quite
modest for all datasets: for instance, building the index onBioMine
(1M nodes and13M arcs) takes about50 minutes. The space re-
quirement is contained as well: onBioMine our index takes ap-
proximately only 200 MB.

7.3 Query-processing performance
We now focus on the online query-processing phase of our meth-

ods. In Table 6 we show precision, recall and query-processing
time of our RQ-tree-LB and RQ-tree-MC, as well as theMC-
Sampling baseline, on three larger datasets; we also report these
measurements on different versions ofDBLP where the arc prob-
abilities are varied. Specifically,DBLP2, DBLP5, andDBLP10in
Table 6 refer to DBLP graphs withµ = 2, 5, 10, respectively.

The accuracy behavior (in terms of precision and recall) of the
proposed methods perfectly conforms the design principlesof the
two methods:RQ-tree-LB achieves perfect precision, whileRQ-
tree-MC achieves very high recall (≥ 0.95). It is worth notic-
ing that the recall ofRQ-tree-LB is however reasonably high as
well: up to 0.96, and 0.81 on average. This attests the validity of
the lower bound proposed in Section 5.1. In general, the recall of
RQ-tree-LB increases asη increases. This is due to the lower-
bounding verification method, which is based on the most-likely
path between source and target nodes: higher probability thresh-
olds leads to tighter lower bounds. Moreover,RQ-tree-MC ex-
hibits very high precision too: always≥ 0.95.

We also observe that the recall ofRQ-tree-MC does not re-
ally depend on arc probabilities in the three variants of theDBLP
dataset. The recall ofRQ-tree-LB instead is clearly increasing as
arc probabilities decrease. This is due to theRQ-tree-LB verifica-
tion method, which considers the most-likely path between source
and target nodes as a lower bound, and the smaller the probabilities
the tighter the lower bound.

As far as running times, both our methods are evidently faster
than theMC-Sampling baseline.RQ-tree-LB is even 3–5 orders
of magnitude faster. Due to its improved accuracy,RQ-tree-MC is
generally slower thanRQ-tree-LB, as expected, but it still guaran-
tees a significant speed-up of at least one order of magnitude.

In addition,RQ-tree-MC andMC-Sampling exhibit improved
efficiency with smaller arc probabilities inDBLP. This is because

the smaller the arc probabilities, the smaller the number ofarcs
in the various sampled graphs. However, alsoRQ-tree-LB gets
faster as the arc probabilities get smaller, as this impliessmaller-
sized candidate sets. Indeed, the running time of bothRQ-tree-
MC andMC-Sampling is higher onBioMine, which complies with
the higher arc probabilities exhibited by such a dataset (Figure 3).

7.4 Pruning power of theRQ-tree index
We next provide an insight into the properties of the proposed

RQ-tree index, particularly focusing on its pruning capabilities.
Here we provide evidence of the filtering guaranteed by theRQ-
tree-candidate-generation phase, with a twofold goal in mind: we
evaluate the pruning power ofRQ-tree and, as side effect, the
tightness of the upper bound proposed in Section 4.1 which the
RQ-tree-candidate-generation phase relies on. We define the two
following metrics:

• Height ratio: the ratio of the number of clusters traversed
during candidate generation over the total height of theRQ-
tree;

• Candidate ratio: the ratio of the candidate-set size, over the
total number of nodes in the graph.

Clearly, the smaller the above measurements, the higher theprun-
ing guaranteed byRQ-tree.

In Figure 4 we report height ratio and candidate ratio onDBLP
(all the three variants),Flickr, andBioMine. Both height ratio and
candidate ratio remain quite small, i.e., in the[0.4, 0.6] range on
average, meaning that almost half of nodes are pruned on aver-
age. The ratios are never higher than0.75, being even less than 0.2
(height ratio) and less than 0.05 onDBLP10. These results confirm
the usefulness of theRQ-tree in terms of pruning, as well as the
effectiveness of the proposed upper bound. We also note thatboth
the height ratio and the candidate ratio decrease with higher η, as
higherη leads to smaller answer sets and thus better pruning.

As a further insight into the candidate-generation phase, we also
provide in Figure 4 evidence about (i) precision (defined as|T∩T∗|

|T |
,

whereT is the set produced by theRQ-tree candidate generation
and T ∗ is theMC-Sampling answer set), and (ii) running time
of the candidate generation. It can be observed that the precision
improves as the probability threshold increases and the arcproba-
bilities decrease, e.g., precision is0.75 for η = 0.8 in DBLP with
µ = 5. However, in many cases the precision is around (or even
below) 0.5, meaning that half of the candidates are not part of the
final solution, thus confirming the need for verification. Running
times, instead, are decreasing with smaller arc probabilities and
larger probability thresholds.

7.5 Performance varying the source-set size
We next analyze the performance of theRQ-tree index for

multiple-source queries. For the sake of brevity, here we focus
only on theRQ-tree-LB variant. Table 7 reports query-processing
results onDBLP with µ = 5 andη = 0.6. The table reports recall
of our overall query-processing method, precision of the candidate
generation phase, height ratio, and query-processing time. We vary
both query-set size (2, 5, 10, and20) and query diameterd, i.e.,
the diameter of the subgraph (of the original uncertain graph) from
which the queries are randomly selected (d = 2, 4, and6). Note
that, as the query diameter or the number of query nodes increases,
it is more likely that the smallest cluster containing all the query
nodes is close to the root of theRQ-tree, thus resulting in lower
pruning/efficiency. Therefore, an interesting direction for future
work is to improve the indexing strategy so to provide higherprun-
ing capacity as the cardinality of the source set increases.
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Table 6:RQ-tree: precision, recall, and query-processing time (sec) over various datasets (single-source queries).

precision recall query-processing time (sec)
RQ-tree-MC RQ-tree-LB RQ-tree-MC RQ-tree-LB RQ-tree-MC RQ-tree-LB MC

η=0.4η=0.6η=0.8 η=0.4η=0.6η=0.8 η=0.4 η=0.6η=0.8 η=0.4 η=0.6η=0.8 η=0.4η=0.6η=0.8 η=0.4η=0.6η=0.8 all η
DBLP2 0.95 0.98 0.98 1 1 1 0.95 0.96 0.98 0.52 0.75 0.76 152.94 145.72 141.802.5 0.82 0.68 8 114
DBLP5 0.96 0.99 0.99 1 1 1 0.99 0.99 1 0.75 0.87 0.91 43.01 40.48 36.831.5 0.6 0.6 588.15
DBLP10 0.96 0.99 0.99 1 1 1 0.97 0.97 0.99 0.89 0.91 0.96 38.7 36.15 33.1 1.4 0.57 0.57 76.77
Flickr 0.97 0.98 0.98 1 1 1 0.98 0.99 0.99 0.76 0.79 0.83 60.23 58.6 54.750.21 0.2 0.17 114.29

BioMine 0.95 0.96 0.97 1 1 1 0.97 0.98 0.98 0.77 0.81 0.85 6 062 5 417 4 974 1 0.5 0.5 25 608
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Figure 4:RQ-tree pruning power: height ratio, candidate ratio, candidate-generation precision, and candidate-generation time (sec).

Table 7:RQ-tree-LB query-processing results onDBLP (µ = 5, η = 0.6), varying the size of the set of query nodes (first column) andthe diameter (d) of
the subgraph from which these nodes were picked.

# nodes
recall precision (candidate generation) height ratio RQ-tree-LB runtime (sec) MC runtime (sec)

d = 2 d = 4 d = 6 d = 2 d = 4 d = 6 d = 2 d = 4 d = 6 d = 2 d = 4 d = 6 d = 2 d = 4 d = 6

2 0.85 0.86 0.82 0.65 0.61 0.55 0.40 0.41 0.44 0.60 0.60 0.67 1 201 1 377 1 417
5 0.82 0.85 0.82 0.60 0.45 0.24 0.40 0.57 0.81 0.61 0.87 2.50 2 498 3 063 3 137
10 0.82 0.81 0.81 0.55 0.37 0.17 0.40 0.80 0.87 0.60 2.35 3.32 5 077 5 155 5 470
20 0.76 0.76 0.75 0.55 0.17 0.13 0.45 0.93 0.95 0.71 3.41 4.20 7 102 7 200 7 457

Table 8:Scalability analysis using single-source queries withη = 0.6 on
theWebGraphdataset.

indexing query proc.
# nodes, # arcs size height # clusters (sec) (sec)

1M, 15M 62 MB 17 1 202 754 1 221 0.11
3M, 50M 177 MB 18 3 410 221 7 312 0.13
5M, 81M 421 MB 19 5 810 934 11 273 0.17
7M, 122M 813 MB 21 9 570 259 25 315 0.21
10M, 175M 1 220 MB 21 11 758 022 37 146 0.27

7.6 Scalability
We analyze the scalability of ourRQ-tree on WebGraph. For

this experiment, we consider subgraphs of the originalWebGraph
with a number of nodes1M, 3M, 5M, 7M, and10M, respectively.
The corresponding index building space and time, as well as the
query-processing time, are reported in Table 8. We observe that the
index time increases polynomially with the number of nodes in the
graph, while the query time is linear in the size of the graph.Such
results assess the high scalability of ourRQ-tree.

7.7 Application: Influence Maximization
The influence-maximizationproblem [23], whose primary ap-

plication is viral marketing, has received a great deal of atten-
tion over the last decade. It requires to find a setS of k nodes
that maximize theexpected spread, i.e., the expected number of
nodes that would be infected by a viral propagation started in S.
The independent cascade model[23] is a widely used propagation
model: according to which the expected spread can be formulated
asσ(S) =

∑
t∈A R(S, t).

The problem of finding a setS of k nodes that maximizes
σ(S) is hard. However, thanks to the submodularity ofσ(S), the
Greedy algorithm that iteratively adds toS the node bringing the
largest marginal gain in the objective function provides(1− 1

e
) ap-

proximation guarantee [23]. Unfortunately, finding the maximum-
marginal-gain node requires to solve a#P-complete reliability
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Figure 5: Exploiting RQ-tree in the influence-maximization problem:
comparison to the MC-based baseline in terms of expected spread and run-
ning time (sec) onLast.FM(left) andNetHEPT(right)

problem. Hence, existing approaches usually apply sampling (e.g.,
Monte Carlo) to estimate the best seed node at each iterationof
theGreedy algorithm. Next, we show how the classicGreedy al-
gorithm can exploit ourRQ-tree-LB method, thus achieving high
speed-up and paying almost nothing in terms of accuracy.

At each iteration, given the current set of nodesS, theGreedy
algorithm needs to find the nodew ∈ N \ S that maximizes∑

t∈A R(S ∪ {w}, t). We use a histogram-based method to ex-
ploit our RQ-tree. We fix a few probability threshold values in
ascending order, i.e.,η1 < η2 < . . . < ηp. Let f(S, ηi) denote
the size of the reliability-search setRS(S, ηi): we compute the ex-
pected spread ofS asf(S, ηp)ηp+[f(S, ηp)−f(S, ηp−1)]ηp−1+
. . .+ [f(S, η2)− f(S, η1)]η1.

We compare theGreedy algorithm coupled with Monte-Carlo
sampling (1 000 samples), and the same algorithm equipped with
RQ-tree-LB: the results onLast.FMandNetHEPTare reported in
Figure 5 (we focus only on our smallest datasets to allow MC-based
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Greedy to terminate in reasonable time). For accuracy evaluation,
we measure the expected spread of the node set outputted by the
two competing methods via Monte-Carlo sampling. We observe
that the two methods achieve roughly the same expected spread,
while, as far as running time, employingRQ-tree-LB leads to at
least one order of magnitude of speed-up.

8. RELATED WORK
Reliability is a classic problem studied in device networks. A

number of variants to the problem have been defined, including
two-terminal reliability [32], all-terminal reliability[31], andk-
terminal reliability [18], and many solutions have been proposed,
either exact (see [3] for a survey) or approximate [13, 21, 23]. Ap-
proximate solutions, in particular, have mainly involved (Monte-
Carlo) sampling methods [13, 23]. More recently, the problem
has been studied in the context of more general types of un-
certain graphs, such as social networks and biological networks
[20,28,34], as well as in the context of clustering [27]. Particularly,
Jin et al. [20] deal with distance-constrained reliabilityqueries, i.e.,
they ask for the probability that any two nodes have distanceno
greater than a user-defined threshold.

However, all existing works on reliability fall into the class of
reliability detection, whose goal is to determine the probability of a
certain reliability event. In this work we study a novel typeof relia-
bility problem, that isreliability search. A problem that is closer to
reliability search than the above ones is the problem of threshold-
based probabilistic reachability [34], which consists in determining
if two nodes are connected with probability higher than a thresh-
old. But, like the problem in [20], the input there is a pair ofnodes;
hence, applying the methods in [34] to our reliability search would
lead to quadratic (thus unaffordable) time complexity.

Further research on reliability has concerned the definition of
polynomial-time upper/lower bounds to reliability problems [7,10,
11, 14, 24, 29]. We have already discussed in Section 4.1 and 5.1
how the bounds proposed in this work differ from the existingones.

9. CONCLUSIONS
In this paper we studied reliability search, a novel reliability

problem for uncertain graphs. We definedRQ-tree, a novel in-
dex that allows for answering online reliability-search queries ef-
ficiently and effectively, as confirmed by an extensive experimen-
tal evaluation conducted on real-world datasets:RQ-tree provides
one order of magnitude efficiency gain forMC-sampling by its
own, while our overallRQ-tree-based methods outperform ex-
isting sampling methods up to five orders of magnitude in effi-
ciency, while also exhibiting precision and recall usually≥ 0.95
and≥ 0.75, respectively.

Our experiments show that the performance ofRQ-tree can be
further improved when the arc probabilities get higher and/or the
size of the source set increases. Thus, a natural direction for future
work is to improve the indexing strategy in order to handle better
multi-source reliability-search queries and higher arc probabilities.
We also plan to study the theoretical properties of the proposed
upper and lower bounds, as well as consider the case where arc
probabilities are not independent.
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