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ABSTRACT 

Graph Databases are gaining popularity, owing to pervasiveness of 

graph data in social networks, physical sciences, networking, and 

web applications. A majority of these databases are based on the 

property graph model, which is characterized as key/value-based, 

directed, and multi-relational. In this paper, we consider the problem 

of supporting property graphs as RDF in Oracle Database. We 

introduce a property graph to RDF transformation scheme. The main 

challenge lies in representing the key/value properties of property 

graph edges in RDF. We propose three models: 1) named graph 

based, 2) subproperty based, and 3) (extended) reification based, all 

of which can be supported with RDF capabilities in Oracle Database. 

These models are evaluated with respect to ease of SPARQL query 

formulation, join complexities, skewness in generated RDF data, 

query performance, and storage overhead. An experimental study 

with a real-life Twitter social network dataset on Oracle Database 

12c demonstrates the feasibility of representing property graphs as 

RDF and presents a quantitative performance comparison of the 

proposed models. 
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1. INTRODUCTION 
Graph Databases are gaining popularity, owing to pervasiveness of 

graph data in social networks, physical sciences, networking, and 

web applications. A majority of these databases (such as Neo4j [6], 

DEX [7], InfiniteGraph [8]) are based on the property graph model 

[2].  

In a property graph, each vertex is identified with a unique identifier 

(unique within the graph). Each (directed) edge, identified with a 

unique identifier and labeled with a string, connects a source vertex 

to a destination vertex. A vertex or an edge may also be associated 

with a collection of key/value properties. Figure 1 shows a sample 

property graph, which is key/value-based, directed, and multi-

relational. 

 
Figure 1. A sample property graph. 

Property graph data is typically accessed through the de facto 

standard Blueprints Java API [3] or some proprietary query language. 

The query languages over property graphs (such as Cypher [14]) 

have typically focused on finding paths once the start node, or 

qualifying start nodes identified with certain key/values are specified. 

The edges themselves can be traversed by considering the associated 

key/value pairs. Throughout the paper, we use the words node and 

vertex interchangeably. 

In contrast, RDF [1] provides a way of specifying directed, labeled 

graphs. Each directed, labeled edge is represented by a triple: 

<subject, predicate, object> where the predicate is the label for a 

directed edge from the subject node to the object node. The use of 

quads, instead of triples, is becoming popular in practice and is 

included in the new W3C RDF1.1 Recommendation [33]. A quad 

extends a triple by allowing an optional named graph component and 

is represented as: <subject, predicate, object, graph>. Each of the 

components of a triple or a quad must be an RDF term. RDF terms 

can be of three types: Internationalized Resource Identifier (IRI), 

blank node, or literal. Restrictions on types of RDF terms that can be 

used in a component position are: 1) subject must be an IRI or a 

blank node; 2) predicate must be an IRI; 3) object must be an IRI, a 

blank node, or a literal; 4) graph, if present, must be an IRI or a blank 

node. 

RDF graphs are typically queried using the standard SPARQL query 

language [9, 16] by specifying a graph pattern, which returns 

matching subgraphs. Although pattern matching has been the 

primary focus, the W3C SPARQL 1.1 Recommendation has 

provided options for querying for paths using the property path 

construct.  

The RDF representation has been adopted by several graph databases 

including RDBMS-based RDF stores (such as Oracle Database 

Spatial and Graph Option [10], Openlink Virtuoso [11]) and native 

RDF stores (such as AllegroGraph [12], OntoText OWLIM [13]). 

Typically, most RDF stores, including Oracle, natively support 

standard entailment regimes (such as RDFS [4], OWL 2 RL [15]). 

On a cursory look, it appears that the property graph model is more 

general than RDF because key/values can be associated with both 

vertices and edges in the property graph model. In contrast, RDF 
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supports asserting datatype and object properties1 for resources (i.e., 

nodes or vertices), but does not allow directly asserting any 

properties for a specific edge, that is, for a triple itself.  For example, 

one may conclude that the edge properties since and 

firstMetAt shown in the sample property graph of Figure 1 are 

not expressible in the RDF representation.  

We argue, however, that a deeper look would show that RDF is fully 

capable of representing any property graph. Our specific goal is to 

enable RDF stores to become an alternate platform for storing and 

processing property graphs.  

The key benefits of supporting property graphs as RDF are: 

 RDF stores can benefit from the ability to associate key/value 

pairs with edges. 

 Semantically rich property graph applications can be developed 

that link with ontologies and domain-specific knowledge bases 

and exploit native inference capabilities. 

 Property graph data can easily be published as RDF linked data 

on the web. 

 RDF stores can serve as backend storage for large property 

graph datasets. Note that RDF stores have virtually no limit on 

scale of data and have already exhibited handling of a trillion 

triples [34], whereas graph databases rely on in-memory graph 

analysis engines and hence have limits on the graph sizes they 

can support (for example, Neo4j has a limit of 34 billion edges).  

 RDF stores are based on W3C RDF and SPARQL standards, 

and property graph users can benefit from this standardization.  

 Standards based RDF stores offer mature tools and products. In 

addition, RDBMS backed RDF stores such as Oracle have the 

advantage of built-in transactional support, which becomes 

available by default for property graph applications. 

The basic idea for supporting property graphs in RDF is to introduce 

edge-IRIs – IRIs to identify individual edges in a property graph. 

Specifically, we propose three schemes 1) named graph based, 2) 

subproperty based, and 3) (extended) reification [35] based, that use 

edge-IRIs in different ways for representing property graphs as RDF. 

All of these schemes can be supported with the capabilities of an 

RDF store (in our case, Oracle).  Furthermore, the proposed 

representations can be queried using standard SPARQL constructs. 

That is, the user does not have to learn yet another query language. 

Use of edge-IRIs in RDF allows more flexible modeling than 

property graphs because both datatype and object properties may be 

asserted for edge-IRIs. In property graphs, key/value properties for 

edges can only be scalars. RDF, in contrast, allows edges to be 

associated with object properties as well. That is, in property graph 

terms, a key/value can link an edge to another vertex. For example, 

in the property graph of Figure 1, the knows edge has a key/value 

pair firstMetAt/“MIT”, where the key’s value “MIT” is a 

scalar. An RDF graph model would let the value part be an IRI 

resource (a vertex), :MIT, which universally represents the resource. 

Although less expressive than RDF, property graph implementations 

do allow for a compact representation, since vertex and edge 

identifiers are local to a graph, and key/values can also be efficiently 

encoded. A characteristic that is often quoted as a criterion for 

property graph implementations, or for graph databases in general, is 

the notion of index-free adjacency. That is, every element contains a 

direct pointer to its adjacent elements and no index lookups are 

                                                                 

1 Note that datatype and object properties differ in that the range 

of the former is literals, whereas the range of the latter is resources 

(IRIs and blank nodes).  

necessary. Such pointers are useful for in-memory graph analysis, 

which typically is the case for most property graph implementations.  

As an alternative, one could consider directly storing graph data in 

relational tables. However, requiring a user to express graph oriented 

queries in SQL is cumbersome, so a graph oriented query language is 

necessary. The SPARQL syntax allows simpler query formulation 

for RDF data because it was designed with the assumption that the 

underlying store is a single table (or logical structure) with just four 

columns (considering quads). Specifically, use of variables or 

constants in any of the four positions of a triple-pattern, optionally 

enclosed in a GRAPH clause, implicitly identifies the column being 

referred to and multiple uses of the same variable specifies equi-join. 

SQL cannot provide such simple syntax because it was designed for 

the general case where multiple tables with many columns are being 

queried. As the number of equi-joins and use of constants increase in 

a query, the SQL query becomes increasingly complex to specify and 

difficult to read and understand. To see the relative simplicity of 

SPARQL queries, consider the following query that involves a 4-way 

join and uses 5 constants: find the company that John’s uncle works 

for. 

SPARQL query: 
PREFIX : <http://x/> .  

SELECT ?company WHERE { 

?x :name “John”   . ?x :hasFather ?f .  

?f :hasBrother ?b . ?b :worksFor ?company}  

SQL query (against a 3-column triples(sub, pred, obj) table): 
SELECT t4.obj company  

FROM triples t1, triples t2,  

     triples t3, triples t4  

WHERE t1.sub = t2.sub AND t2.obj = t3.sub AND 

      t3.obj =  t4.sub AND  

      t1.pred = ‘<http:/x/name>’ AND  

      t1.obj = ‘”John”’ AND  

      t2.pred = ‘<http://x/hasFather>’ AND     

      t3.pred = ‘<http://x/hasBrother>’ AND  

      t4.pred = ‘<http://x/worksFor>’; 

To demonstrate the feasibility of our proposed scheme for 

implementing property graphs on an RDF store, we evaluate the 

approach with a real-life Twitter social network dataset [23] on 

Oracle Database. 

The key contributions of the paper are as follows: 

 To the best of our knowledge, this is the first proposal to 

support storing property graphs as standard RDF and querying 

using standard SPARQL. The entire scheme can be supported 

with capabilities of an RDF store (e.g., Oracle Database). 

 Named graph based, subproperty based, and (extended) 

reification based schemes which have varying query 

performance and storage implications 

 The SPARQL query formulation and comparison of various 

schemes 

 An experimental evaluation of all the aspects with a real-life 

Twitter social network dataset  

Note that although we show evaluation of our proposal with RDF 

capabilities of Oracle, the proposed scheme is general enough to be 

supported on other RDF stores as well. 

1.1 Related Work 
In the wake of emerging applications such as social networks, and 

big data analytics, where fast graph traversal is required, graph 

databases have recently started to gain traction. Many graph 
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databases (Neo4j [6], DEX [7], InfiniteGraph [8]) for property 

graphs [2] have been introduced implementing the Blueprints API 

[3]. Graph traversal languages such as Cypher [14] and Gremlin [22] 

have also been implemented.  

Graph databases use indexless adjacency access to process graph 

traversal queries efficiently and are basically main-memory based. 

Some graph databases claim to be disk-based, but true indexless 

adjacency requires in-memory based access. There have been some 

studies to compare the performance of graph databases and RDF 

databases [20, 21]. While in-memory graph databases achieve 

impressive performance in graph traversal, especially in reachability 

queries, RDF databases show acceptable performance and perform 

better for data types other than string [21].  

RDF [1] related products (Oracle Spatial and Graph Option [10], 

Virtuoso [11], AllegroGraph [12], OWLIM [13]) have appeared 

much earlier and are quite mature. Unlike its property graph 

counterparts, RDF has a standard query language SPARQL [9, 16] 

and has the capability of inference based on standard rules [4, 5, 15]. 

The SPARQL language is declarative, which enables users to focus 

on specification and lets the task of optimal execution be left to the 

query engine. 

There have been efforts to incorporate graph traversal capability and 

support for edge attributes into RDF databases. One such effort is G-

SPARQL [19]. The authors try to use special symbols to distinguish 

graph attributes and path information from triple pattern queries. Our 

approach differs from their approach as standard SPARQL (that is, 

without any changes) can be used for querying both paths and 

attributes allowing  seamless merging of triple pattern queries with 

graph traversal capabilities, including handling of vertex and edge 

attributes. Our approach achieves the objective by reformulating the 

SPARQL query to handle property graphs. However, this 

reformulation is required only if the graph contains edge attributes.  

The rest of the paper is organized as follows. Section 2 introduces the 

key concepts, and provides qualitative evaluation of the proposed 

schemes. Section 3 describes how a property graph is supported 

using Oracle’s RDF capabilities. Section 4 describes a performance 

evaluation using a real-life Twitter social network dataset. Section 5 

provides further discussion of a couple aspects related to supporting 

property graphs in RDF, and Section 6 concludes the paper. 

2. KEY CONCEPTS 
This section presents the key concepts. 

2.1 Representing Property Graphs as RDF 
A Property Graph associates three pieces of information with an edge 

(besides the start and end vertices): a unique identifier, a label, and a 

possibly empty set of key/value pairs. RDF on the other hand 

associates only a single piece of information with an edge: a label 

called the predicate. Thus translating an edge in a Property Graph to 

an equivalent RDF representation requires more than just an edge (or 

triple) in RDF. 

We will consider the Property Graph of Figure 1 (excluding the 

knows edge and associated key/value) to illustrate three different 

ways of transforming it to an equivalent RDF graph (shown in Figure 

2). For each of these translations, we will show a SPARQL query to 

find “who follows whom since when?” 

Translation using reification: In order to accommodate the id, 

label, and the key/value pairs for an edge, reification in RDF can 

create a new resource pg:e3 (based on the edge 3) to represent the 

reified RDF statement “v1 follows v2”.  The pg:e3 is the subject 

of three triples, with predicates being rdf:subject, 

rdf:predicate and rdf:object, with values  pg:v1, 

rel:follows and pg:v2 respectively. 

SELECT ?xname   ?yname  ?yr WHERE { 

  ?r rdf:subject   ?x .   

  ?r rdf:predicate rel:follows .   

  ?r rdf:object    ?y . 

  ?r key:since     ?yr .  

  ?x key:name      ?xname .    

  ?y key:name      ?yname } 

Translation using unique RDF properties for edges: Id, label, and 

key/values for an edge can be modeled by creating a unique RDF 

property for each edge to represent the edge id, creating an RDF 

triple with that property as the predicate, associating the key/value 

pair with that property, and then making the property a subproperty 

of another property created based on the edge label. In this example, 

the unique property pg:e3 (based on edge 3) is created, an RDF 

triple <pg:v1, pg:e3, pg:v2> is created, and pg:e3 is made 

a subproperty of the property rel:follows (created from edge 

label “follows”), and two resources pg:v1 and pg:v2 

(corresponding to vertices with id 1 and 2) are the subject and object, 

respectively. 

SELECT ?xname ?yname ?yr WHERE {  

  ?x  ?p                ?y .  

  ?p  rdf:subPropertyOf rel:follows . 

  ?p  key:since         ?yr .  

  ?x  key:name          ?xname .    

  ?y  key:name          ?yname   } 

 

Translation using RDF named graphs: This alternative involves 

the use of quads (as opposed to triples) to create a unique named 

graph IRI for each edge. Then the label and the key/value properties 

of the edge are associated with the graph IRI. In this example, the 

property rel:follows (based on the edge label “follows”) and 

the RDF named graph IRI pg:e3 (based on edge id 3) have been 

used to create the quad: <pg:v1, rel:follows, pg:v2, 

pg:e3>, and the graph IRI pg:e3 has been associated with the 

key/value properties. 

Note that the triples representing edge key values have been included 

in the corresponding named graph to allow for clustering edge 

key/values with the corresponding edge. 

SELECT ?xname   ?yname   ?yr WHERE   { 

   GRAPH ?g {?x rel:follows   ?y . 

             ?g   key:since   ?yr }  

   ?x   key:name   ?xname .    

   ?y   key:name   ?yname   } 

 

For the rest of the paper, we only consider the subproperty based and 

named graph based approaches as they lead to compact storage and 

can be queried using simpler SPARQL graph patterns 

Discussion. Although, for reification and subproperty-based 

schemes, pg:v1 rel:follows pg:v2 can be implicitly 

derived, we propose to  have it explicitly asserted as a triple, thereby 

allowing traditional SPARQL (e.g., ?x rel:follows ?y) to be 

used for querying when no edge key values (such as key:since) 

are referenced. 
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Figure 2.  a) (Extended) Reification-based, b) RDF subproperty-based c) Named graph based representation of a property graph 

The proposed representation does blur the distinction 

between topology triples and KVs triples. Thus, for a 

predicate variable occurring in a SPARQL query, if the 

context does not provide sufficient information,  the 

isUri() and isLiteral() built-in functions can be used 

to distinguish between object and datatype properties (see 

Section 2.3 for details). The SPARQL 1.1 Update [36] defines 

an update language for RDF graphs. The simplicity of the 

RDF model dictates a DELETE and INSERT pattern for 

updates. The <subject, property, object, graph> quad forms a 

four part key, so any update basically creates a new quad. In 

terms of incremental DML operations, the key performance 

metric that distinguishes the three approaches is time taken to 

locate existing quads to delete, which is tied to query 

performance. We will consequently focus on query 

performance and leave a detailed study of DML performance 

for future work. 

2.2 Transforming Property Graphs to RDF 
This section describes the vocabulary used to transform a property 

graph to RDF. We assume property graph data is available in a 

representative relational schema consisting of Edges and ObjKVs 

tables. Figure 3 shows the relational representation of the property 

graph in Figure 1. 

 
Figure 3. A sample property graph in relational format. 

The vertices and edges map to RDF resources. For example, 

vertex 1 maps to <http://pg/v1> and edge 3 maps to 

<http://pg/e3>. Similarly, labels and keys get mapped to 

predicate IRIs. For example, label follows maps to 

<http://pg/r/follows> and key age maps to 

<http://pg/k/age>. No distinction is made between edge and 

node keys as a key may be common to an edge and a node. The 

namespace prefixes rel: and key: denote <http://pg/r/> 

and <http://pg/k/>, respectively. 

The value component is mapped to an RDF literal by taking the data 

type into account (e.g., value 23 mapped to 

"23"^^<http://www.w3.org/2001/XMLSchema#int>). 

Using the URIs and literals generated in this manner, RDF triples or 

quads, as appropriate, are generated for various schemes. 

2.3 Analysis of Various Schemes  
This section provides an analysis of the various ways a property 

graph can be transformed to and modeled as RDF triples or quads 

and then queried using SPARQL. 

Overview of PG-as-RDF models: The three RDF representations 

for property graphs illustrated in Section 2 differ based on how the id 

and label (type of relationship) of an edge in a property graph are 

modeled in RDF. To characterize them, we use the following 

notations:  

 The form b-i-r-d denotes a property graph edge with 

(unique) id i and label r connecting source vertex b to 

destination vertex d.   

 The symbols s, e, p, and o are used to denote the IRIs 

generated from b, i, r, and d, respectively (by augmenting 

them with some prefix and suffix strings). 

 The form e-s-p-o denotes an RDF quad with e as the named 

graph and -s-p-o denotes an RDF triple (i.e., not in a named 

graph). 

 The forms -n-K-V and -e-K-V denote RDF triples for 

key/value properties of a property graph vertex or an edge, 

respectively, where n, e, and K are IRIs generated from the 

vertex id, edge id, and key in a property graph, respectively, and 

V is an RDF literal corresponding to the value of a key/value 

property. 

Using the above notations, the three PG-as-RDF models can be 

described as follows (also summarized in Table 1): 

 RF: The traditional reification based approach (excluding the 

“rdf:type rdf:Statement” triple) represents b-i-r-d using the 

following three triples: -e-rdf:subject-s, -e-

StartVertex     Edge     Label       EndVertex 
 
1                       3          follows          2 

1                       4          knows           2 

Edges 

ObjKVs ObjId        Key         Type                  Value 

 

 
1               name         VARCHAR       Amy      

1               age            NUMBER            23 

...              ...               ...                         ... 

3              since          NUMBER         2007     

 

pg:v1 pg:v2 

rdf:subject rdf:object 

rel:follows 

rdf:predicate key:since 

pg:e3 

“Amy” 23 “Mira” 22 

key:age 
key:name 

2007 

rel:follows 

key:name 
key:age 

pg:v1 pg:v2 

rel:follows

s 

rdfs:subPropertyOf 
key:since 

“Amy” 23 “Mira” 22 

2007 

rel:follows 

key:age 

key:name 

key:name 
key:age 

pg:e3 
pg:e3 

pg:v1 pg:v2 

pg:e3 
pg:e3 

key:since 

“Amy” 23 “Mira” 22 

2007 

key:age 

key:name 

key:name 

key:age 

rel:follows

s 
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rdf:predicate-p, and -e-rdf:object-o. In addition, 

the triple -s-p-o is included as well to allow posing SPARQL 

property path queries. 

 NG: The named graph based approach represents b-i-r-d 

using a single RDF quad: e-s-p-o. Although not essential for 

the model, any KVs for the edge are placed in the same named 

graph e, for clustering of all the triples for the edge. 

 SP: The subproperty based approach represents b-i-r-d using 

the triples: -s-e-o and -e-rdfs:subPropertyOf-p. In 

addition, the (derivable) triple -s-p-o is included as well for 

the same reasons as in the RF case. 

Table 1. RDF representation for three models 

PG-as-RDF 

model 

RDF quads/triples for PG element type 

Topology edge EdgeKV  NodeKV 

RF   -e-rdf:subject-s 

  -e-rdf:predicate-p 

  -e-rdf:object-o 

  -s-p-o 

  -e-K-V -n-K-V 

NG e-s-p-o e-e-K-V -n-K-V 

SP   -s-e-o 

  -e-rdfs:subPropertyOf-p 

  -s-p-o 

  -e-K-V -n-K-V 

Special case: If a property graph has a vertex v with no KVs or 

inbound or outbound edges, then we use the following RDF triple for 

all the models: -v-rdf:type-rdf:Resource. 

Skewness in generated RDF data: RDF datasets generated for the 

PG-as-RDF models exhibit different characteristics compared to 

traditional RDF datasets. Relevant cardinalities of a property graph 

and those for the RDF datasets generated using the different PG-as-

RDF models are shown in Table 2. 

Table 2. Property graph vs. RDF cardinalities 

Property Graph cardinalities 

E edges (E1 of them with >=1 edge-KVs), V vertices,  

eKV edge-KVs, nKV node-KVs, eL distinct edge-labels (rel. types),  

eK distinct keys for edge-KVs, and nK distinct keys for node-KVs 

RDF cardinalities for models RF NG SP 

Named Graphs 0 E 0 

Obj-prop triples/quads 4 * E E (quads) 3 * E 

Data-prop triples (quads in NG) eKV+nKV 

Distinct sub/obj count V+E V+E1 V+E 

Distinct obj-properties eL+3 eL eL+E+1 

Distinct data-properties Distinct (eK UNION nK) 

Since the three PG-as-RDF models differ mainly in how they map a 

property graph edge into RDF, an important measure to examine is 

the count of object-property triples or quads. In the NG model, the 

mapping is straightforward because all four components of a 

property graph edge are accommodated in a single quad. On the other 

hand, for the RF and SP models, multiple triples are needed. Thus, 

the number of object-property triples are 4*E, E  (quads), and 3*E 

for the RF, NG, and SP models, respectively. (As we show later, this 

difference affects the number of joins in the SPARQL queries for 

accessing edges and their edge-KVs.) Note that if a property graph 

edge does not have any edge-KVs, then it is possible to represent it in 

RDF using just a single -s-p-o triple. We have not accounted for 

this optimization in the cardinalities shown in the Table 2. 

Several aspects of the generated RDF datasets have differences with 

respect to traditional RDF datasets: 1) In the NG model, the number 

of distinct named graphs, E, is same as the number of object-property 

quads. The proportion of one object-property quad per named graph 

is very low when compared to traditional RDF datasets. 2) In the SP 

model, the number of distinct object-properties, eL+E+1, is much 

larger than a typical RDF dataset. Also, the proportion of object-

property triples and distinct object-properties, 3*E / (eL + E 

+1), is less than 3. In contrast, LUBM datasets [25] have only a 

handful of distinct object properties and those are used for hundreds 

of millions or billions of triples. 

Although, among the three models, the NG model has the lowest 

storage cost in terms of number of triples/quads and number of 

distinct values, the NG model has a drawback if one wants to extend 

or augment the generated RDF data with traditional RDF data or 

combine data generated from multiple property graphs.  Consider an 

e-s-p-o RDF quad created for a property graph edge. If one wants 

to keep all the RDF generated from the property graph in a separate 

named graph g (probably because he/she wants to put the content 

from multiple property graphs and organize them into different 

named graphs), then the quads such as e-s-p-o generated for NG 

have to be inserted into quads g-s-p-o and the SPARQL graph 

patterns for querying will get complicated. The complication arises 

from presence of the triple -s-p-o in the named graph e as well as 

in the named graph g. 

SPARQL Query formulation for the PG-as-RDF models: We 

illustrate the mapping of property graph queries to SPARQL graph 

patterns using queries shown in Table 3.  

 

Property graph queries may be broadly divided into two categories 

based on whether or not a query accesses any edge-KVs. Queries that 

do not access edge-KVs can be expressed in SPARQL the same way 

regardless of whether we use the RF, NG, or SP scheme. This is due 

to the presence of -s-p-o triple (in RF and SP) or e-s-p-o quad 

(in NG) that represents each edge. Query Q1 shows an example of 

such a query. Queries that need to access edge-KVs, however, will 

differ for RF, NG, and SP schemes due to differences in how edge-

KVs are represented in each scheme. Query Q2 shows an example of 

such a query. 

 

An aspect of a property graph query that affects SPARQL query 

formulation, regardless of the use of RF, NG, or SP, is when only the 

KVs or only the outbound topological edges of a node need to be 

retrieved, but not both. To select only the intended triples, the use of 

a FILTER clause to check if the object component of triple is a literal 

(using isLiteral()) or if it is an IRI (using isIRI()) is needed. Queries 

Q3 and Q4 show the use of such filters. 

Rules for constructing SPARQL graph patterns for property graph 

queries may be formulated as follows: 

1. If a query needs access to an edge but not any of its edge-

KVs then the SPARQL graph pattern is quite simple.  

a) If the edge label is bound, then simply use a triple-pattern 

of the form ?x <label> ?y (see Q1).  

b) If the edge label is a variable (and the query does not want 

to retrieve node-KVs of the source vertices), then use 

Filter clause to restrict (see Q4). 

 

2. If an edge-KV is accessed, then for each different PG-as-RDF 

model we need to use the appropriate set of triple-patterns to 

access the edge resource first (see Q2). 
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3. If a node-KV needs to be accessed and  

a) the key is bound, then simply use a triple-pattern of the 

form ?x <key> ?V (see Q1 and Q3). 

b) the key is a variable, and the query does not want to 

retrieve outbound topological edges from the vertices, 

then the use of a Filter clause to impose that exclusion is 

needed (see Q3). 

Table 3. SPARQL graph patterns for property graph queries 

PG-

as-

RDF 

model 

SPARQL query graph pattern for  

property graph queries 

Q1. Get triangles (three edge cycles)  of  “follows” edges 

All {?x rel:follows ?y .  

  ?y rel:follows ?z . 

  ?z rel:follows ?x} 

Q2. Get vertex pairs and all KVs of edges with “follows” label 

RF {?e rdf:subject ?x; rdf:predicate rel:follows; rdf:object ?y . 

  ?e ?k ?V} 

NG {GRAPH ?e {?x rel:follows ?y . ?e ?k ?V}} 

SP {?x ?e ?y . ?e rdfs:subPropertyOf rel:follows . ?e ?k ?V} 

Q3. Get all KVs of vertices matching a given KV: name = “Amy” 

All {?x key:name “Amy” . 

  ?x ?k ?V FILTER isLiteral(?V)} 

Q4. Get source and destination vertices of all edges 

All {?x ?p ?y FILTER isIRI(?y)} 

 

As can be seen in Q2, if an edge is to be accessed along with edge-

KVs, then the number of joins is maximum in RF. Specifically, for 

each such edge, RF requires a 3-way join. Also, the storage cost is 

the highest for the RF model. For these reasons, in the rest of the 

paper we omit RF and focus on the NG and the SP models only. 

3.  SUPPORTING PROPERTY GRAPHS AS 

RDF IN ORACLE  
This section presents the relevant capabilities in Oracle RDF 

Semantic Graph and their use in supporting the PG-as-RDF models 

outlined in the last section. Note that although we show evaluation of 

our proposal with RDF capabilities of Oracle, the proposed scheme is 

general enough to be supported on other RDF stores as well. 

3.1 Oracle RDF capabilities 
Currently, Oracle has, among many others, the following RDF 

capabilities: 

 Allows creating one or more semantic models each of which 

can hold an RDF dataset (containing triples in a default 

(unnamed) graph and, optionally, quads in named graphs). 

Individual models or merges of multiple models can be 

independently queried. 

 Supports fast bulk load of RDF data supplied in N-Quads 

format into a semantic model. 

 Supports querying using SPARQL 1.1 directly from Java or 

from SQL using the SEM_MATCH table function. 

 Supports semantic network indexes (among the typical six 

combinations on triple s-p-o or 24 combinations in quad 

g-s-p-o) to improve the performance of SPARQL query 

processing. 

 Supports creation and querying of virtual semantic models 

defined as a UNION (or UNION ALL) of existing semantic 

models. 

3.2 What we will use 
We assume property graph data is available in relational format as 

described in Section 2.2.  The property graph data available in a 

relational table is converted into RDF with IRIs generated as 

discussed in Section 2.2 and triples and/or quads formed as discussed 

in Section 2.3. The resulting RDF data is loaded into a semantic 

model. This semantic model is then queried using SPARQL to 

perform property graph queries. 

Partitioned Storage for generated RDF: Often SPARQL queries 

may access only some of the various forms of RDF triples or quads 

(see Table 1) generated for a PG-as-RDF model. Thus, separating the 

storage of the triples or quads into different partitions based on the 

specific form, may lead to better query performance. In Oracle 

Database, one can create separate semantic models (as partitions in a 

partitioned table with local indexes) to store these different forms of 

triples.  

For example, one possible configuration could be to create three 

separate partitions: 1) edge quads or triples partition, 2) node-KV 

triples partition, and 3) the edge-KV triples (for SP, this would 

include the –s-e-o and –e-sPO-p triples as well). 

Node attributes can be converted naturally from property graph into 

RDF for both NG and SP models. However, for edges with edge 

attributes, NG models do not incur any additional storage overhead 

(except for their use of the fourth component). SP models need an 

anchor triple –e-sPO-p to associate the edge attributes with the 

edge.  Therefore, it would increase the number of triples proportional 

to the total number of edges. The storage overhead caused by these 

additional triples can be mitigated by the use of compression and 

partitioning schemes.  

Topology information, edge properties, and node properties can be 

kept in separate partitions to maximize compression on prefixes (:e 

:sPO) and (:e :k) for edge attributes and prefix (:s :k) for 

vertex attributes. Each partition in the current Oracle RDF store is 

implemented as a separate model.  Therefore, if more than one 

partition is accessed, a virtual model containing all those partitions is 

used. 

Table 4 shows the query type and forms of triples accessed. By using 

Oracle’s capability of querying individual semantic models 

(partitions) or a union of one or more semantic models, a user can 

choose the appropriate RDF dataset for each query.  

Table 4. Property graph query types   

Query Type Forms of quads/triples to be queried 

NG SP 

edge traversal,  

no edge-KV 

e-s-p-o 

 

  -s-p-o 

edge + edge-KV e-s-p-o 

e-e-K-V 

   -s-e-o 

 -e-sPO-p 

   -e-K-V 

Node-KV -n-K-V    -n-K-V 

For example, query Q1 in Table 3 (edge traversal only) may be posed 

against a single semantic model that holds the e-s-p-o (for NG) or 

the  -s-p-o triples (for SP). Similarly, for NG, query Q2 (edge + 

edge-KV) may be posed against the union of semantic models 
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holding the e-s-p-o triples and the e-e-K-V triples. For SP, the 

target dataset resides in a single partition. 

Indexing: SPARQL query processing in Oracle Database typically 

involves accessing only the indexes built on the semantic models; the 

tables are rarely accessed. Users may create any permutation of the 

following letters to specify the key for an index that he/she wants to 

build on a semantic model: S (subject), P (predicate), C (canonical 

object), G (named  graph), and M (semantic model). All of these 

columns hold numeric identifiers, not lexical values, because they are 

ID-based. M is included in any indexes that are built to allow 

identification of the partition of a table that holds the target semantic 

model. 

Although Oracle allows users to create indexes with any of the 

various permutations (with S, P, C, and G - ignoring M) as key, in 

practice only a few permutations are necessary. Two indexes are 

created by default on all the semantic models: (unique) PCSGM and 

PSCGM. If the RDF data uses named graphs (i.e., contains quads), 

then to allow access using named graphs one or both of the following 

two indexes are often necessary: GPCSM and GSPCM. Also, to 

allow subject-based access, the SPCGM or SCPGM index may be 

useful as well. 

Typically we have three categories of queries as shown in Table 4 

(and index use as shown in Table 5): 

 Edge traversal without filter on edge attributes: The index 

PCSGM may be used depending upon the triple pattern and only 

the topology partition will be accessed (see Q1). 

 Edge traversal with filter on edge attributes: The anchor triple 

<:e :sPO :p> needs to be used to get the edge attributes. 

The index PCSGM may be used, and only the edge KV partition 

is accessed (see Q2). 

 Vertex with attributes filter: No changes are required for 

filtering vertex attributes. The index PCSGM may be used, and 

the topology and vertex property partitions are accessed (see 

Q3) 

As seen from Table 5, most of the queries can be satisfied by using 

one of the five indexes. Note that for a selective pattern, an index 

range scan is used, and for and unselective filter, a full index scan is 

used in Oracle Database.  

For datasets that could fit in memory, the index blocks get cached in 

database buffers, and disk access can therefore be completely 

avoided after the initial load. Also, because indexes are local to a 

partition, partitioning data into multiple semantic models based on 

the forms of triples helps achieve better clustering and compression 

of index data and leads to optimal utilization of the database buffer 

cache. 

 
Table 5. Property graph query execution using indexes 

PG-as-RDF 

model 

SPARQL query graph pattern for  property 

graph queries and corr. index-based access plans 

Q1. Get triangles (three edge cycles)  of  “follows” edges 

NG, SP ?x rel:follows ?y. 

1: [P=rel:follows] PCSGM 

?y rel:follows ?z. 

2: [P=rel:follows and S=c1] PSCGM 

?z rel:follows ?x 

3: [P=rel:follows and C=s1 and S=c2] PCSGM 

Q2. Get vertex pairs and all KVs of edges with “follows” label 

NG GRAPH ?e {?x rel:follows ?y} 

1: [P=rel:follows] PCSGM 

GRAPH ?e {?e ?k ?V} 

2: [G=g1 and S=g1] GSPCM 

SP ?e rdfs:subPropertyOf rel:follows 

1: [P=rdfs:subPropertyOf and C=rel:follows] PCSGM 

?x ?e ?y 

2: [P=s1] PCSGM 

?e ?k ?V Filter isLiteral(?V) 

3: [S=s1] SCPGM (+filter) 

Q3. Get all KVs of vertices matching a given KV: name = “Amy” 

NG,SP ?x key:name “Amy” 

1: [P=key:name and C="Amy"] PCSGM 

 ?x ?k ?V Filter isLiteral(?V) 

2: [S=s1] SCPGM (+filter) 

4. Experimental Evaluation 
This section describes the experiments conducted to evaluate the 

performance of various schemes. A Twitter social network dataset, 

which uses the property graph model, has been converted to RDF 

using both the SP and NG schemes, and a series of queries against 

both schemes illustrates the relative performance of each approach.  

4.1 Experimental Setup 
All experiments were conducted on a Lenovo ThinkPad T430 

equipped with a dual-core Intel i5-3320M CPU, 8 GB of RAM and a 

120 GB OCZ Vertex2 SSD, and all experiments used Oracle 

Database 12c configured with the Oracle Spatial and Graph – RDF 

Semantic Graph option running on 64-bit Oracle Enterprise Linux 6.  

The goal of our experimental evaluation is to characterize the 

performance differences of the SP and NG schemes with respect to 

query execution time. Note that query execution time is critical for 

DML operations as well because triples/quads to be updated must be 

retrieved first. We also want to demonstrate that query execution 

times with these schemes are fast enough for interactive applications. 

An evaluation of the general scalability of Oracle RDF Semantic 

Graph is outside the scope of this paper (see [18] for general Oracle 

RDF Semantic Graph Performance). 

4.2 Property Graph Dataset Characteristics 
A Twitter social network dataset [23] (used in the discovery of social 

circles [24]) was chosen for experiments. It consists of 973 ego 

networks, where each ego network with ego a contains edges of type 

b follows c, which implicitly means a knows b and a 

knows c. These form the topological edges. Each node had zero or 

more features of the form @keyword or #tag. From these features, 

the node KVs n refs @keyword or n hasTag #tag were 

generated. The edge KVs were generated by taking the intersection 

of start node KVs with end node KVs, both for edges with follows 

and knows labels. For example, for edge e: a follows b, the 

{KVs of e}={KVs of a}∩{KVs of b}. The generated data 

characteristics are shown in Table 6. Among 76,245 nodes, 70,097 

nodes occur as subjects in the property graph. Also, the edge count is 

much smaller than the KV count. 
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Table 6. Twitter dataset characteristics 

 Nodes Edges Node KVs Edge KVs 

Count 76,245 1,796,085 1,218,763 3,345,982 

Figure 4 shows the out-degree and in-degree distribution by count. 

As expected, the in-degrees are generally higher than out-degrees as 

the same literal values are often shared between many KVs. 

The data characteristics show that it is a highly connected graph, 

which is a common characteristic of property graphs, and thus serves 

as a representative dataset for experimentation.  

 

Figure 4. Out-degree and in-degree distribution 

4.3 RDF Dataset Characteristics 
Table 7 shows the data characteristics for PG-as-RDF model triples. 

The first row of the table shows the core triples, which are present in 

both NG and SP models. The SP model has 3,592,170 more triples 

than NG model due to the addition of -e-sPO-p (1,796,085) and 

 -s-e-o (1,796,085) triples. 

Table 7. Transformed RDF dataset characteristics: triples 

 Edges KVs 

follows knows refs hasTag 

Triples 1,667,885 128,200 3,771,755 792,990 

NG 6,360,830 

SP 9,953,000  

Table 8 shows the number of distinct resources of each type. For 

both models, the number of subject IRI resources increases from 

70,097 to 1,019,549 and 1,866,182 respectively due to occurrence of 

either named graphs (for NG: e-e-K-V) or edge IRIs as subjects 

(for SP: -e-sPO-p). The increase is less for NG because it occurs 

only for edges with at least one or more edge KVs.   

Table 8. Transformed RDF dataset characteristics: resources 

 NG SP 

Subjects 1,019,549 

(70,097 + 949,452 )   

1,866,182 

(70,097 + 

1,796,085) 

Predicates 4 1,796,090 

(4 + 1 + 1,796,085) 

Objects  288,392 288,392 + 2 

Named Graphs 1,796,085   0 

Also, there is an increase in predicates in the SP model as each edge 

occurs as a predicate IRI (plus one for  rdf:subPropertyOf).  

The objects IRI counts are similar. The additional two for SP model 

corresponds to two properties rel:knows and rel:follows that 

occur in the object position for -e-sPO-p triples.  

4.4 Experiments 
This section presents a series of experiments that test the 

performance of 1) node-centric queries, 2) edge-centric queries, 3) 

aggregate queries and 4) graph traversal queries. These queries are 

similar to those in [17, 20] with the addition of edge key/value 

queries. Table 10 shows the queries used in our experiments. 

Table 9. Physical storage characteristics 

DB Object Size (MB) 

NG SP 

Triples Table 248 329 

Values Table 56 57 

PCSGM Index 259 398 

PSCGM Index 338 504 

GPSCM Index 366 NA 

SPCGM Index 358 506 

Total 1,625 1,794 

Database Configuration: The database was configured with a 

pga_aggregate_target of 2 GB and an sga_target of 4 

GB. Four semantic network indexes were created: PCSGM, PSCGM, 

SPCGM, GPSCM. In addition, an 

optimizer_dynamic_sampling level of 6 was used for 

EQ11a-e, while a level of 2 was used for all other queries. Loading 

the quads and triples for the NG and SP models took 5min 16 sec and 

6 min 01 sec respectively. 

Physical Storage Characteristics: The physical characteristics of 

the stored data using the NG and SP schemes are shown in Table 9. 

The increased number of rows (triples/quads) required to store the 

graph in the SP scheme is reflected in the larger size for each 

database object, but the total size needed is very similar for each 

scheme because the GPSCM index is not required in the SP scheme.  

Figure 5. Execution time for node-centric queries.  

Methodology: The reported query execution times were obtained by 

running the queries with SQL*Plus using the set timing on 

option. For each experiment, the queries were run once sequentially 

to warm up the database buffers, then the queries were run 

sequentially a second time to obtain the reported times. 

Experiment 1 – Node-centric Queries: This experiment tests the 

performance of EQ1 (find all nodes/edges that have tag 

“#webseries”), EQ2 (find all nodes that follow nodes with tag 

“#webseries”), EQ3 (find all 3-hop paths where each node has tag 

“#webseries”), and EQ4 (find all key/value pairs for nodes/edges 

with tag “#webseries”). The results of this experiment are shown in 

in Figure 5. All queries finish within 300 milliseconds, and there  
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Table 10. Queries for experimentation 

Query  Query Text Number of 

Results 

EQ1 SELECT ?n 

WHERE { ?n k:hasTag "#webseries" } 

251 

EQ2 SELECT ?nf 

WHERE { ?n k:hasTag "#webseries" . ?nf r:follows ?n } 

1,249 

EQ3 SELECT ?n4 

WHERE { ?n k:hasTag ?t . ?n r:follows ?n2 . ?n2 k:hasTag ?t . 

        ?n2 r:follows ?n3 . ?n3 k:hasTag ?t . ?n3 r:follows ?n4 . 

        ?n4 k:hasTag ?t FILTER (?t = "#webseries") } 

11,440 

EQ4 SELECT ?n ?k ?v 

WHERE { ?n k:hasTag "#webseries" . ?n ?k ?v FILTER (isLiteral(?v)) } 

3,011 

EQ5a SELECT ?n2 

WHERE { GRAPH ?g1 { ?n  r:follows ?n2 . ?g1 k:hasTag "#webseries" } } 

206 

EQ5b SELECT ?n2 

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows . ?p k:hasTag 

"#webseries" } 

206 

EQ6a SELECT ?n3 

WHERE { GRAPH ?g1 { ?n  r:follows ?n2 . ?g1 k:hasTag "#webseries" }  

        ?n2 r:follows ?n3 } 

13,012 

EQ6b SELECT ?n3 

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows . 

        ?p k:hasTag "#webseries" . ?n2 r:follows ?n3 } 

13,012 

EQ7a SELECT ?n4 

WHERE { GRAPH ?g1 { ?n  r:follows ?n2 . ?g1 k:hasTag "#webseries" }  

        GRAPH ?g2 { ?n2 r:follows ?n3 . ?g2 k:hasTag "#webseries"  }  

        GRAPH ?g3 { ?n3 r:follows ?n4 . ?g3 k:hasTag "#webseries"  } } 

11,440 

EQ7b SELECT ?n4 

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows . ?p k:hasTag 

"#webseries" . 

     ?n2 ?p2 ?n3 . ?p2 rdfs:subPropertyOf r:follows . ?p2 k:hasTag 

"#webseries" . 

     ?n3 ?p3 ?n4 . ?p3 rdfs:subPropertyOf r:follows . ?p3 k:hasTag 

"#webseries" } 

11,440 

EQ8a SELECT ?n2 ?k ?v 

WHERE { GRAPH ?g1 { ?n  r:follows ?n2 . ?g1 k:hasTag "#webseries" .  

                   ?g1 ?k ?v  FILTER (isLiteral(?v)) } } 

1,269 

EQ8b SELECT ?n2 ?k ?v 

WHERE { ?s ?p ?n2 . ?p rdfs:subPropertyOf r:follows .  

        ?p k:hasTag "#webseries" . ?p ?k ?v FILTER (isLiteral(?v)) } 

1,269 

EQ9 SELECT ?inDeg (COUNT(*) as ?cnt) 

WHERE { SELECT ?n2 (COUNT(*) as ?inDeg)  

        WHERE { ?n1 (r:knows|r:follows) ?n2 } 

        GROUP BY ?n2 } GROUP BY ?inDeg ORDER BY DESC(?inDeg) 

580 

EQ10 SELECT ?outDeg (COUNT(*) as ?cnt) 

WHERE { SELECT ?n1 (COUNT(*) as ?outDeg) 

        WHERE { ?n1 (r:knows|r:follows) ?n2 } 

        GROUP BY ?n1 } GROUP BY ?outDeg ORDER BY DESC(?outDeg) 

412 

EQ11a SELECT (COUNT(?y) as ?cnt) 

WHERE {<http://pg/n6160742> r:follows ?y } 

21 

EQ11b SELECT (COUNT(?y) as ?cnt) 

WHERE {<http://pg/n6160742> r:follows/r:follows ?y } 

900 

EQ11c SELECT (COUNT(?y) as ?cnt) 

WHERE {<http://pg/n6160742> r:follows/r:follows/r:follows ?y } 

52,540 

EQ11d SELECT (COUNT(?y) as ?cnt) 

WHERE {<http://pg/n6160742> r:follows/r:follows/r:follows/r:follows ?y } 

3,573,916 

EQ11e SELECT (COUNT(?y) as ?cnt) 

WHERE {http://pg/n6160742 

r:follows/r:follows/r:follows/r:follows/r:follows ?y} 

257,861,728 

EQ12 SELECT (COUNT(*) AS ?cnt) 

WHERE { ?x r:follows ?y . ?y r:follows ?z . ?z r:follows ?x } 

20,211,887 
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is no significant difference between the NG and SP approaches. 

These results are not surprising because each approach uses the 

same triples store node key/value pairs. In addition, these queries 

are evaluated with index-based nested loop join (NLJ), which 

tends to scale with result set size, so the additional triples stored in 

the SP approach have little effect on the query execution time. 

Experiment 2 – Edge-centric Queries: This experiment tests the 

performance of EQ5a/b (find all edges with tag “#webseries”), 

EQ6a/b (find all nodes that are endpoints of an edge with tag 

“#webseries” and find nodes that are followed by these nodes), 

EQ7a/b (find all 3-hop paths where each edge has tag 

“#webseries”), and EQ8a/b (find all edge key value pairs for 

edges with tag “#webseries”). The results of this experiment are 

shown in Figure 6. The results show that the NG approach 

performs better for queries involving multiple edge key/value pair 

accesses. The improved performance can be attributed to avoiding 

extra joins required to retrieve edge key/value pairs in the SP 

approach (i.e. three triples vs. two quads). The performance 

improvement is most obvious in query EQ7a/b due to a significant 

difference in number of joins. 

 

Figure 6. Execution time for edge-centric queries. 

Experiment 3 – Aggregate Queries: This experiment tests the 

performance of aggregate queries over the topological portion of 

the graph. The specific queries were EQ9 (find the distribution of 

node in-degree) and EQ10 (find the distribution of node out-

degree). The results are shown in Figure 7. Each query finishes in 

about 9 seconds for both approaches and there is no significant 

performance difference (< 100ms) between the two approaches, 

which is not surprising because the same quad (for NG: e-s-p-o) 

or triple (for SP: -s-p-o) structures are used to store the 

topological portion of the graph in both approaches.  

Experiment 4 – Graph Traversal Queries: This experiment 

investigated queries EQ11a – EQ11e (count all paths from a 

specific node ranging in length from 1 to 5). Figure 8 shows the 

results of this experiment plotted with a log scale. As expected, 

query execution time rises steeply as path length increases. This 

steep rise is a consequence of the exponential complexity of the 

path counting problem, as illustrated by the increase in number of 

paths found for each query. Nevertheless, over 250 million paths 

of length 5 were found in less than 4 minutes in both schemes.  

 

 
Figure 7. Execution time for aggregate queries. 

 
Figure 8. Execution time for graph traversal queries. 

In general, the NG approach performs slightly better than the SP 

approach for these path traversal queries. For the 3, 4 and 5 hop 

queries, the query optimizer chooses a hash join with a full table 

scan to access the probe table. In the NG approach, the triples 

table is smaller, which leads to faster full table scans. 

Experiment 5 – Triangle Counting Queries: This experiment 

investigated query EQ12 (count all follows triangles in the graph). 

The results of this experiment are shown in Figure 9. In both 

schemes, over 20 million triangles were found in just over 1 

minute: 61 seconds for NG and 65 seconds for SP. Once again, 

the query optimizer chooses a series of hash joins with full table 

scans, and the NG approach performs slightly better because of its 

smaller table size. 

 

 

Figure 9. Execution time for triangle counting queries. 
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4.5 Summary 
In general, the SP and NG schemes offer similar performance on a 

variety of graph queries. Our experiments show that the only 

significant performance difference occurs when accessing edge 

key/value pairs. In such cases, the NG approach performs better 

because fewer joins are required. In addition, the NG approach 

performs slightly better for large-scale path and triangle counting 

queries due to a smaller triples table size. 

5. Discussion 
This section discusses two aspects related to supporting property 

graphs as RDF. 

5.1 Path Queries in SPARQL 1.1  
The SPARQL query language is intended primarily for pattern 

(subgraph) matching rather than path traversal. SPARQL 1.1 

introduced property paths, which allow more concise expressions 

for some SPARQL basic graph patterns and provide the key 

capability of matching arbitrary length paths [16]. SPARQL 1.1, 

however, still lacks the ability to reference a path directly in a 

query (e.g., the ability to store the result of a property path query 

in a path variable). Without this ability, it is not possible to match 

an arbitrary length path and return the path itself or perform 

operations based on characteristics of the path, such as path 

length. Several researchers have proposed extensions of SPARQL 

that use special variables to reference matched paths to address 

this shortcoming, for example SPARQLeR [29], SPARQ2L [30], 

G-SPARQL [19]. Such extensions would effectively allow 

SPARQL to function as both a pattern matching and graph 

traversal language. 

5.2 Benefits of Modeling Property Graphs 

using RDF 
Using either of the models, once the data becomes available as 

RDF, there are a few interesting possibilities, which go beyond 

what one would normally do with property graphs. 

The predicate IRIs corresponding to edge label and keys in 

key/values could be mapped through 

owl:equivalentProperty assertions to properties from 

existing domain ontologies. Similarly, owl:sameAs , which 

already has a  heavy usage in linked data integration [26], can be 

used to map generated IRIs of resulting RDF data with existing 

linked data. Once such mapping is established, we can make use 

of existing OWL Inference Engines (such as the native inference 

engine of Oracle [27]) to pre-compute entailment that can 

semantically enrich the transformed RDF data thereby allowing us 

to do more interesting queries. This step would also make it easier 

and more useful to publish transformed property graph data as 

linked data. Note that one could argue that the native property 

graph data itself could be augmented in a similar fashion. 

However, this step is easier once the data is transformed to RDF 

due to readily available domain ontologies and numerous RDF 

datasets on the web [28]. 

Example - Linking Twitter Data with WordNet: Consider the 

Twitter social network dataset used for experiments in Section 4. 

We loaded the basic version of Wordnet RDF dataset that groups 

nouns, verbs, adjectives and adverbs into sets of cognitive 

synonyms (synsets), each expressing a distinct concept that is 

characterized by a word sense label [31].  

 

 

Figure 10. Linking Twitter data with community RDF 

datasets 

Among 33,422 distinct tags used in the sample Twitter data, we 

found occurrences of 5,993 proper words. Thus, a user can take 

advantage of the Wordnet ontology to do query term expansion, 

when searching on the :hasTag attribute as shown in query 

pattern below: 

  SELECT ?n  
 WHERE{?w rdfs:label ?label . 

       ?w wn:senseLabel "train"@en-us . 

       ?n k:hasTag  ?y 

   FILTER(STR(?y)=CONCAT("#",STR(?label)))}  

For the input word ‘train’, the query returns 6 results with 

‘#train’ ,  plus 13 extra results (2 with ‘#educate’, and 11 

with ‘#prepare’) due to the query term expansion made 

possible by Wordnet. 

Example – Linking Twitter Data with World Fact Book and 

Use of Inference: We also loaded the World Fact Book RDF 

dataset [32], which contains information on the history, people, 

government, economy, geography, communications, 

transportation, military, and transnational issues for all countries 

of the world. Among 33,422 distinct tags used in the sample 

Twitter data, we found occurrences of 199 proper locations. Thus, 

a user can use Fact Book properties about countries to perform 

node selection.  

Furthermore, the query processing can be accelerated by pre-

computing entailment of CIA Fact Book with Oracle’s native 

RDF/OWL Inference Engine. For example, using OWL2 RL 

entailment on the Fact Book ontology, we can infer that Mexico 

and Canada are neighbors to port ’Tampa’ using property 

chains. Furthermore, using Oracle user-defined rules capability, 

we can also infer a new :hasTagR property that directly links 

the node with ‘#Tampa’ tag to its neighboring countries (see 

Figure 10). The inferred edges can thus allow refining the filtering 

on node attributes.  

6. Conclusion and Future Directions 
The paper examined the problem of supporting property graphs as 

RDF using the capabilities in Oracle Database. Three models, 

namely, reification, named graph, and subproperty based, for 

representing property graphs in RDF were presented. All these 

models can be supported using RDF. Furthermore, standard 

SPARQL queries can be used to perform traversal in addition to 

accessing node and edge key/values.  

We demonstrated the feasibility of our approach by implementing 

the proposals in Oracle Database. An experimental study 

conducted using a Twitter social network dataset showed that the 

performance of various types of queries was reasonable. As 

node 

#train 

#Tampa 

:hasTag 

WordNet 

Fact Book 

Twitter Data 

USA 

CA 
Mexico 

Tampa 

:bndry 

:ports 
:nbr 

:hasTagR 

772



expected, the edge traversal queries accessing edge key/values 

took the longest time. The study also identified the current 

limitation of SPARQL, especially in property path queries, where 

length limits cannot be specified, and that could be a problem for 

large highly connected property graphs.  An alternative for such 

cases is to perform traversal procedurally similar to the approach 

of Gremlin [22]. 

Lastly, we identified the possibility of creating hybrid applications 

that go beyond just representing and querying property graphs by 

taking advantage of named graphs, OWL inference engines, and 

the use of global identifiers to publish as linked data. 
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