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ABSTRACT

The continuous and dynamic nature of data streams may lead a
query execution plan (QEP) of a long-running continuous query to
become suboptimal during execution, and hence will need to be al-
tered. The ability to perform an efficient and flawless transition to
an equivalent, yet optimal QEP is essential for a data stream query
processor. Such transition is challenging for plans with stateful bi-
nary operators, such as joins, where the states of the QEP have to
be maintained during query transition without compromising the
correctness of the query output. This paper presents Just-In-Time
State Completion (JISC); a new technique for query plan migration.
JISC does not cause any halt to the query execution, and thus allows
the query to maintain steady output. JISC is applicable to pipelined
as well as eddy-based query evaluation frameworks. Probabilistic
analysis of the cost and experimental studies show that JISC in-
creases the execution throughput during the plan migration stage
by up to an order of magnitude compared to existing solutions.

1. INTRODUCTION

The evolution of sensor capabilities has led to countless appli-
cations and systems that require continuous monitoring of data
streams. Examples include sensor networks, spatio-temporal
databases, and medical monitoring systems.

To support such continuous queries, data stream management
systems (DSMSs) have to consider settings in which queries are
increasingly complex, statistics are not always available, and data
is being streamed from distributed sources [1, 2] with changes in
arrival rates and value distributions. These settings render the tra-
ditional optimize-then-execute techniques inapplicable [1] since the
query execution plan of a long-running continuous query may be-
come suboptimal at any time during execution. This calls for new
techniques that can alter the QEP of a continuous query during its
execution, i.e., optimize-at-runtime.

Optimize-at-runtime plan transitions are particularly challeng-
ing for QEPs with stateful operators such as joins. The chal-
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lenge resides in how to perform the transition while maintaining
the execution state and without compromising the correctness of
the query output. Existing techniques for QEP adaptation rely on
either (1) avoiding operator states altogether, e.g., [3], or (2) ea-
gerly computing the execution state of the new plan at the time of
plan transition, e.g., the Moving State Strategy [4]. In the former
approach, avoiding operator states during normal execution allows
the transition to any new plan with minimum overhead. However,
since there are no intermediate states at any operator, intermediate
results have to be recomputed for each input tuple even if there is no
plan transition, which is expensive, especially in the case of multi-
ple joins. In the latter approach, when a plan transition is initiated,
the query execution is halted and then the states of the operators in
the new plan that are not in the old plan are computed all at once.
Computing these states is usually expensive and causes high output
latency until the execution is resumed with the new plan. This out-
put latency is not suitable for applications that require steady query
output, e.g., safety critical monitoring and real-time applications.
This approach is also not suitable for fast data streams as the input
buffers may get overflowed while the execution is halted until the
plan transition stage is complete.

Maintaining the states of the QEP after a plan transition with-
out halting the query execution, i.e., maintaining steady query out-
put, is challenging. In [4], the Parallel Track Strategy addresses
this challenge by running two plans in parallel (the old and new
plans). New tuples are processed in both plans as long as the old
plan has the old state entries. When the old state entries in the old
plan are replaced by new ones, the old plan is discarded. Although
the Parallel Track Strategy has minimal output latency, its execu-
tion throughput drops by 50% during plan migration; every tuple is
processed by both the old and new plans, i.e., it is processed twice,
until the old plan is discarded. Furthermore, since two QEPs are
running and each QEP produces its own output, duplicate elimi-
nation is required on top of the two QEPs to merge their outputs.
Other techniques based on the Parallel Track strategy have been
proposed in the literature (see [5, 6]). Unfortunately, these tech-
niques inherit the low execution throughput of the Parallel Track
Strategy during plan migration.

This paper introduces Just-In-Time State Completion (JISC);
a new technique for plan adaptation of continuous queries over
data streams. Instead of fully computing the missing states upon
plan transition or running two plans in parallel, JISC completes
the states of the new plan on-demand during execution, i.e., per-
forms lazy state migration. In highly dynamic environments
where the queries’ operators and streams have fluctuating selec-
tivities and arrival rates, overlapped plan transitions can happen
frequently. JISC’s lazy migration strategy enables avoiding perfor-
mance thrashing in such scenarios; as we show in the Related Work
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Section, this is an unsolved issue in all other existing techniques.

While ensuring the correctness of the query output, JISC does
not require the query execution to halt, i.e., JISC has minimal out-
put latency, and hence maintains steady query output. During nor-
mal operation (before or after a plan transition), JISC incurs almost
no overhead over the regular execution of the query. We should
note that JISC is applicable to pipelined as well as eddy-based
query evaluation frameworks.

The contributions of the paper are summarized as follows:

e We study the existing approaches for query plan adaptation
in DSMSs and highlight their drawbacks.

e We introduce JISC and show how it can be applied to left-
deep as well as bushy QEPs.

e We show how JISC can be applied to an eddy-based exe-
cution framework, e.g., STAIRs, and demonstrate how JISC
can enhance its performance.

e We study the performance of JISC analytically and prove a
sharp concentration law that governs its performance.

e We study the performance of JISC experimentally by com-
paring it to the state of the art.

The rest of the paper is organized as follows. Section 2 presents
the query execution model and defines the problem. Section 3 dis-
cusses the related work. Section 4 introduces JISC and explains
its details. Sections 5 and 6 study the performance of JISC both
analytically and experimentally. Section 7 concludes the paper.

2. PRELIMINARIES

This paper focusses on the efficiency of query execution during
a plan transition. However, we do not address the actual conditions
that trigger a plan transition; which is an orthogonal issue. We refer
the reader to the literature , e.g., [7, 8, 9, 10]), for more details on
this issue. In the rest of this section, we present the execution model
and define the problem.

2.1 Execution Model

We assume that a query is compiled into a binary tree-structured
plan of pipelined operators, where each operator is aware of its
parent, as well as its left and right operators. Although they can
be addressed in a similar manner, n-ary operators, e.g., MJoin [11,
1] are not discussed in this paper. In the case of unary operators,
only a parent and a child operators exist. In the case of leaf oper-
ators, e.g., stream-scan, only a parent operator exists. We assume
that all operators are push-based (as in [12]), i.e., each operator
sends its output tuples directly to the next (parent) operator in the
pipeline, and there is an input queue for each operator to buffer
the tuples. Tuple load shedding may occur when tuples overflow
the input buffers. However, this issue is orthogonal to the issues
addressed in this paper.

To simplify the presentation of the paper, we first study the prob-
lem of plan transition with respect to join operators. In Section 4.7
we show how the techniques presented in the paper can be applied
to other operators, e.g., set-difference.

For equi-joins, we employ symmetric hash join [13, 1]. When a
tuple appears at either input of the operator, it is inserted into the
hash table of that stream, then the opposite hash table is probed. If
a match is found, the corresponding join-tuple is added to the join-
state and is passed to the next operator. Figure 1 gives a left-deep
plan employing symmetric hash join for the query (R X S) X T'.

Since hash joins are applicable only to equi-joins, we use a
nested-loops join for general theta joins. If a query requires equi-
joins between a set of streams and general theta-joins between an-
other set, we form a hybrid plan, with a mix of nested-loops and
hash joins [7].
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Figure 1: A left-deep plan with two symmetric hash joins.

Sliding Windows

Because of the endless nature of data streams, sliding windows are
usually specified in the query to have a bound on its focus of in-
terest. For sliding windows, query execution remains essentially
the same except that when the window slides, tuples that become
outside the window have to be deleted from the join operator data
structures [1]. For correctness, a removed tuple from a state has to
be traced throughout the whole execution pipeline in a bottom-up
fashion, removing (e.g., as in the case of a join) or possibly adding
(e.g., as in the case of set difference) all the corresponding state
entries at all the upper operators. For more details on how sliding
windows are maintained, the reader is referred to [14, 15, 16].

2.2 Problem Definition

Query plan adaptation is the process of dynamically transferring
the query execution from an old (suboptimal) plan to a new (opti-
mal) plan. It has to guarantee that exactly the same output is pro-
duced for the same input, with or without a transition. For long-
running continuous queries, once the current query execution plan
is detected to be suboptimal, transition to a new optimized plan
should take place during execution, i.e., optimize-at-runtime.

In this paper, we address a key challenge in optimizing plan tran-
sitions at runtime, namely transferring the execution to the new plan
without halting it, i.e., keeping a steady query output, while incur-
ring minimum execution overhead.

When a plan transition takes place, binary operators, e.g., joins,
need special handling as they embed states. Otherwise, the correct-
ness of the execution is compromised. Consider a query that joins
the streams R, S, T, and U. Assume that a transition from the plan
((RX S)XT) XU to the plan ((S X T') X R) X U takes place
(See Figure 2). The join-state ST does not exist in the old plan,
but exists in the new plan. The join-state ST is needed to correctly
execute the query. However, upon transition, state S7" is empty.
Unless the join-state ST is computed for the new plan, there is a
risk of losing output tuples as well as producing incorrect output
tuples. We illustrate these risks by the following three scenarios:

1. Consider the scenario in which a tuple, say r, from R should
join with tuples, say s, ¢, and u, from S, T', and U, respec-
tively. Before plan transition, only s, ¢, and u have arrived
and have been processed through the old plan. Right af-
ter plan transition, r is received. The join operator (S X
T) X R probes State ST checking if a joined pair from S
and T that can join with r exists. Since State ST is empty,
nothing is found. The output corresponding to the quadruple
(r, s,t,u) is missed.



Figure 2: Transition from an old QEP ((R X S) X T') X U to
anew QEP ((S X T) X R) X U. The join-state ST is empty in
the new QEP right after the transition because the join S X T’
does not exist in the old plan.

2. Consider the scenario in which the quadruple, say (r, s, t, u),
is already part of the answer before plan transition. Then,
right after plan transition, the window of .S slides such that s
is outside the window, so the quadruple (r, s, t, u) should no
longer be part of the query answer. The join operator S X T'
probes State ST to see if a joined pair related to s exists.
Since State ST is empty, nothing is found and no further
action is propagated up the pipeline. The output related to
that window slide is missed. The quadruple (7, s, ¢, u) is still
part of the answer of the query (State RSTU) although it
should not.

3. Consider the scenario in which a tuple, say r, from R that
should join with tuples, say s, ¢, and u, from S, T and U,
respectively. Before plan transition, only 7, s, and ¢ have ar-
rived, and have been processed through the old plan. Right
after plan transition, the window of S slides such that s is
outside the window. Thus, the quadruple (7, s, t,w) should
not be produced as output, even if u arrives. The join opera-
tor S X T probes its State ST to see if a joined pair related
to s exists. Since State ST is empty, nothing is found and
no further action is propagated up the pipeline. Thus, State
RST will have an invalid state entry related to the r, s, and
t. When wu arrives, it probes State RST and finds the invalid
state entry for (r,s,t). As a result, a wrong output corre-
sponding to the quadruple (r, s, t, u) is produced.

We clearly see from the above scenarios how plan transition is
challenging for QEPs with binary operators. Unless careful mi-
gration of states is performed, losing output tuples or producing
incorrect output tuples can happen.

3. RELATED WORK

In this section, we discuss state-of-the-art techniques for query
plan adaptation of continuous queries in DSMSs.

3.1 Binary-State Avoidance

CACQ [3] introduces a mechanism for continuous query execu-
tion that supports plan transition. In CACQ, there are no intermedi-
ate (binary) states since pipelining of operators is simply avoided.
Instead, all query operators are connected through an eddy oper-
ator [17] that acts as a router for the tuple flow through the QEP.
In other words, each tuple can have its own plan. Whenever the

routing decision changes, the eddy operator is notified, and sim-
ply routes tuples according to the new plan. CACQ splits a binary
join into two unary operators called SteMs (State Modules) [18].
Thus, a join tree is broken down into multiple SteMs (one per input
stream). Upon reception of a tuple from any stream, that tuple is
joined across all the SteMs of all the other streams until it emerges
as output or else disqualifies.

Since the eddy is the next operator of every SteM, every tuple
passes through the eddy as many times as it qualifies a join. This
leads to a drop in the execution throughput by nearly half of its
value compared to a normal pipelined mode. Moreover, CACQ
introduces a per-tuple overhead as each tuple maintains a bit-vector
that represents the progress of the tuple throughout the execution,
i.e., which operators have been processed and which are remaining.

While CACQ consumes no computation at the time of plan tran-
sition, the use of SteMs without storing any intermediate results is
inefficient during normal operation (i.e., when no plan transition
takes place). More specifically, consider the QEP ((R X S) X
T) X U in Figure 2a. Assume that a tuple from R joins with a
tuple from S and a tuple from 7, but the joining tuple from U has
not arrived yet. Since CACQ has no join-state, the arrival of a new
tuple from U will trigger three joins with the SteMs of R, S, and
T. However, if the join-state RS7T is kept as in Figure 2a, only
one join will be needed with the join-state RST. This difference
becomes significant when the number of joins in the QEP is large.

3.2 Moving State Strategy

To avoid the large number of joins in CACQ, the Moving State
Strategy [4] has been proposed. Given a normal QEP, once a plan
transition is triggered, the execution halts altogether. Any miss-
ing states in the new plan are computed and then normal execution
proceeds with the new plan.

Similarly, in [19], within the eddy framework, the STAIR opera-
tor uses intermediate join states as in the Moving State Strategy. A
STAIR operator encapsulates the join-state that typically would be
stored inside the join operators. In particular, each join operator is
replaced by two STAIRs that interact with the eddy directly. These
two STAIRs are called duals of each other. Executing queries using
STAIRs is similar to that of symmetric join operators. Instead of
routing a tuple to a join operator, the eddy performs an insert into
one STAIR, and a probe into its dual (i.e., opposite).

Both the Moving State Strategy and STAIRs employ a greedy
state migration policy that eagerly migrates state once routing de-
cisions change, ignoring the cost of state migration. Both strategies
share the following drawbacks:

e Both strategies require the execution to stop until the states
in the new plan are computed, and hence cannot maintain
steady query output.

e Since both strategies require the execution to stop, overflow
in the main-memory buffers of the input data streams is likely
to occur during plan migration, especially for streams with
high arrival rates.

o In highly dynamic environments Both strategies can result
in suboptimal performance for two reasons: (1) the query
engine might thrash by performing too many migrations in
response to fluctuating selectivities, and (2) a large state mi-
gration can happen at the end of query execution, with no
subsequent payoff, e.g., if the migrated states end up being
not used by any of the upcoming tuples.

Our proposed technique, JISC, avoids these drawbacks by main-
taining steady query output and computing the missing states on
demand, i.e., performing lazy migration.



3.3 Parallel Track Strategy

The Parallel Track Strategy [4] achieves query plan adaptation
without halting the query execution. Once a plan transition is trig-
gered, the old and new execution plans run simultaneously, i.e., all
new tuples are processed through both plans. Duplicate elimina-
tion is performed at the root operator combining both plans [4].
The old plan is discarded when it contains only new entries in its
states. Other techniques, namely [5, 6], combine the Moving State
and Parallel Track strategies. While these techniques achieve some
gains compared to the standard Parallel Track strategy, they inherit
its drawbacks, which we highlight below:

e Since new tuples get processed twice during the plan tran-
sition stage, the execution throughput drops by 50%. This
drop may continue for a long time (until all old entries are
replaced by new ones). This is especially true for execu-
tion plans that involve large numbers of operators with large
numbers of state entries.

e The need for duplicate elimination increases the execution
overhead.

e The cost for detecting when to discard the old plan is high.
Each operator in the old plan periodically checks if all the
old tuples have been purged from its state. This check is
repeated until the old plan is discarded, and hence introduces
significant overhead.

e In highly dynamic environments where overlapped plan tran-
sitions can occur, multiple (more than two) QEPs can be si-
multaneously executing, and hence the performance of the
query execution can severely degrade. In addition, the cost
of duplicate elimination will multiply.

Our proposed technique, JISC, employs a single QEP for both
the old and new plans, and hence avoids the above drawbacks.

4. JUST-IN-TIME STATE COMPLETION

We introduce Just-In-Time State Completion (JISC); a new tech-
nique for plan adaptation of continuous queries over data streams.
JISC is applicable to both pipelined and eddy-based execution
frameworks. Upon plan transition, JISC does not cause any halts
to the execution in order to migrate the states from the old to the
new plan, and thus maintains a steady query output. Instead of fully
computing the missing states upon plan transition or running two
execution plans in parallel, JISC incrementally completes the states
during execution on an as-needed basis. States are completed on-
demand, i.e., whenever a binary operator in the new plan requires a
state entry that is missing, only that state entry is computed, hence
the name Just-In-Time State Completion.

When a plan transition takes place, JISC classifies the states of
the new plan into incomplete and complete according to the follow-
ing definition. Figure 3 illustrates some query plan transitions and
the corresponding incomplete and complete states.

DEFINITION 1. During a plan transition, a state in the new plan
is complete if it exists in the old plan, otherwise, it is incomplete.

JISC tries to use work that has been already performed in the old
plan. On the one hand, a state in the old plan that exists in the new
plan is copied to the new plan and marked as complete, e.g., State
RST in Figure 3a is copied to the plan in Figure 3d. On the other
hand, a state in the old plan that does not exist in the new plan is
discarded, e.g. State R.S in Figure 3a is discarded in Figure 3d.

JISC is progressive in nature, i.e., as tuples are processed, the
entries of an incomplete state are incrementally completed. Once
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Complete

Figure 3: Complete vs. Incomplete States. (a) Old plan. (b),
(¢), and (d) Some possible new plans. In (d) for example, State
RST is complete because it exists in the old plan, while State
ST is incomplete because it does not exist in the old plan.

all the entries of an incomplete state are completed, that state is
marked complete (refer to Section 4.3 for details).

We illustrate how states are completed incrementally. For illus-
tration, we use symmetric hash join with a join attribute, say ID.
Assume that a join at node, say j, has two child operators, say jr,
and jr. Assume further that jz, is incomplete. When a tuple, say
t, reaches j coming from jr, the join at j probes the opposite state
(i.e., the hash table of j1). Assume that the joining tuple is not
found in jr’s state. Since jr, is incomplete, only the entries in jz,
that correspond to the tuples that join with ¢ need to be completed.
State completion of the entries corresponding to ID in j;, starts at
the highest operator with a complete state that lies in the underlying
subtree below jr,. Whenever any of the probed states is incomplete,
state completion for the designated ID can be triggered recursively.
State completion for ID’s entry propagates upwards and stops at the
operator at which it was initiated, i.e., at jr..

For example, consider the QEP in Figure 3b, a new tuple, say
r, from Stream R causes a probe to the incomplete State UT'S,
which triggers a state completion. This state completion starts from
the state of Stream .S (the highest complete state under the subtree
of UTS). If r joins with S, State UT is probed. Since UT is
incomplete, state completion will be invoked recursively to start
from the state of U and continues upwards (completing states U1’
and UT'S) until it stops at UT X S. At this moment, it is guaran-
teed that the entries corresponding to 7 are complete in State UT'S.
Hence, the join can proceed normally. As another example, con-
sider the QEP in Figure 3c, a tuple, say t, from Stream 7" causes
a probe to the incomplete state SRU, which initiates state com-



Procedure 1 JISC Join

Terms: tuple: Tuple to be joined. oppstOp: Opposite operator.
highestComp: Highest operator with complete state in the subtree
of oppstOp.

1: if (oppstOp.state.contains(tuple.join Attr)) then

2:  joinState.add(joinTuples)

3:  parent.process(joinTuples)

4: else

5:  if (tuple.isF'resh and oppstOp.state.isIncomplete) then
6: completeState(tuple, highestComp, oppstOp)

7: if (oppstOp.state.contains(tuple.joinAttr)) then
8: joinState.add(joinTuples)

9: parent.process(joinTuples)
10: end if
11: end if
12: end if

Procedure 2 CompleteStateBT (recursive state completion for bushy trees)

Terms: tuple: Tuple whose corresponding entries will be completed.
oppstOp: Opposite operator. highestComp: Highest operator with
complete state in the subtree of oppositeOp.

1: if (oppositeOp.state.contains(tuple.join Attr)) then

2:  joinState.add(joinTuples)

3:  parent.process(joinTuples)

4: else

5: if (oppositeOp.state.isIncomplete) then

6: completeState BT (tuple, highestComp, oppositeOp)
7: if (oppositeOp.state.contains(tuple.join Attr)) then
8: joinState.add(joinTuples)

9: parent.process(joinTuples)
10: end if
11: end if
12: end if

pletion. This state completion starts from the state of Stream U
that probes State RS and finds it complete. State completion will
continue upwards (completing only State SRU), then stops at the
operator (S X R) X U.

The above procedure for recursive state completion is general
and applies to the left-deep as well as bushy query evaluation
pipelines (QEPs). A left-deep QEP has an additional property that
can be utilized to further simplify state completion. Mainly, the
states of all the inner streams, i.e., the right branches are complete.
Only the left branches (the outers of the joins) can be incomplete.
Therefore, for state completion, we can pick the highest node from
among the left branches in the left deep QEP that is complete and
move upwards. Notice that we can always find a complete state
in any branch since the states of the leaf nodes are always com-
plete. Therefore, we can eliminate the recursion steps for left deep
QEPs. Refer to Figure 3b for illustration. When a new tuple from
Stream R arrives and causes a probe to the incomplete State UT'S,
we can start directly from State U since it is the highest state in
the left branch of the left deep tree that is complete. Then, we
move upwards while probing the states of the opposite operators
and completing the states until reaching State UT'S.

Procedure 1 gives pseudo-code for JISC when applied for sym-
metric hash join. The flag i sFresh in Line 5 helps avoid recheck-
ing for the state of an incomplete tuple multiple times, e.g., when
that tuple is not part of the join result. Section 4.4 explains this
issue further. Procedures 2 and 3 give pseudo-code for state com-
pletion for bushy and left-deep QEPs, respectively. JISC invokes
either procedure according to the type of QEP involved.

4.1 Safe Plan Transition

In JISC, a state in the old plan that also exists in the new plan is
copied to the new plan. However, a state in the old plan that does

7

Procedure 3 CompleteStateLDT (state completion for left-deep trees)

Terms: tuple: Tuple whose corresponding entries will be completed.
startOp: Operator at which state completion should start. stopOp:
Operator at which state completion should stop.

currentOp < startOp.parent

—

2: while (true) do
3:  if (leftOp.state.contains(tuple.join Attr) and
rightOp.state.contains(tuple.join Attr)) then

4 currentOp.joinState.add(joinTuples)

5 tuple < joinTuples

6: else

7 return

8: end if

9: if (currentOp = stopOp) then
10: return
11: else
12: currentOp < currentOp.parent
13: end if

14: end while

not exist in the new plan is discarded. The process of discarding
states is critical to the correctness of query execution, hence, the
question: “When is it safe to discard the states of the old plan?”.

As mentioned in Section 2, we assume that each operator in the
QEP has an input queue that buffers the tuples. If the state of an op-
erator is discarded while there are tuples at its input queue, correct-
ness of the execution of the whole query is compromised. Consider
for example the QEP in Figure 3a. The join operator (R X S) X T’
(with State RST) has an input queue, say g, that contains tuples
with the join schema of R X S, that are supposed to join with
Streams 7" and U. As discussed in Section 2, States RST, T', and
U are essential for the correct processing of the tuples in g. If a
plan transition to the QEP in Figure 3b is to take place, State RST'
will be discarded. Moreover, according to the new join order, States
T and U will be replaced with States S and R, respectively. This
means that the tuples in g will not have the states necessary for
correct processing.

To solve the above problem, JISC does not switch the execution
to the new plan and discard any states until all the tuples in the in-
put queues are completely processed through the old plan. Once a
plan transition is decided, the input queues to all the query opera-
tors are cleared, i.e., all the tuples that are received before a plan
transition is decided are processed through the old plan, and are
pushed up the QEP until they reach the output. Afterwards, the
old plan is discarded, and processing with the new plan takes place.
Then, tuples that are received after the plan transition are processed
through the new plan. This also means that each input tuple is pro-
cessed only once, either in the old plan or in the new plan, which
guarantees that JISC is duplicate-free.

Note that the buffer-clearing phase described above does not
cause any output delays since during that phase tuples that are re-
ceived before the plan transition are processed through the old plan.
Immediately after the buffer-clearing phase, tuples that are received
after the plan transition are processed through the new plan. Thus,
the output latency is always minimal. It should also be noted that
the buffer-clearing phase is also necessary for the correctness of
the Moving State Strategy [4]. In other words, both JISC and the
Moving State Strategy share this phase once a plan transition is de-
cided. The main difference between the two strategies is that after
the buffer-clearing phase, the Moving State Strategy computes all
the states of the new plan in a greedy manner, leading to significant
output latency. On the other hand, JISC employs a lazy approach
by computing the states of the new plan only on-demand, leading
to minimal output latency.



4.2 Handling Sliding Windows

As discussed in Section 2.1, for sliding windows, tuples that are
outside the window have to be deleted from the states inside the
operators. In a regular execution pipeline, i.e., where there is no
plan adaptation, the removal of the state entries corresponding to a
tuple, say ¢, starts at the hash table of the stream of ¢, then goes up
the pipeline to the next join state. If a join-state entry corresponding
to ¢ is found, it is removed, and then the removal propagates to
the next operator, and so on. This removal process continues until
no join-state entry corresponding to ¢ is found, i.e., no match, or
when the root operator is reached. In JISC, we follow a similar
procedure for clearing the states related to a window slide, except
that if the join-state is incomplete, the removal process continues
up the pipeline, regardless of finding a match in the join-state. This
is illustrated in the example to follow.

Recall the third scenario presented in Section 3 for the plan tran-
sition in Figure 2 in which a tuple, say r, from Stream R should join
with tuples, say s, ¢, and u, from Streams S, T" and U, respectively.
Before plan transition, only 7, s, and ¢ have arrived, and have been
processed through the old plan. Right after plan transition, the win-
dow of Stream S slides such that s is outside the query window. As
aresult, the quadruple (7, s, t, u) should not be produced as output,
even if u arrives. The join operator S X T probes its join-state
ST to see if a joined pair from S and 7" related to s exists. Since
the join-state ST is empty, nothing is found. However, the removal
action is propagated up the pipeline because ST is an incomplete
state. Hence, the join-state RST will remove the state entry related
to r, s, and t. Now, when u is received, it probes State RST" and
does not find any (invalid) state entries that match, and no wrong
output is produced.

4.3 State Completion Detection

One important issue is how to efficiently detect that an incom-
plete state has become complete and mark it as such. A similar is-
sue arises in the Parallel Track Strategy [4] to detect when it is safe
to discard an old plan. The Parallel Track Strategy forces each oper-
ator in the old plan to periodically check if all old tuples have been
purged from its state. This check is applicable to JISC as well, but
is costly, especially for execution plans that involve a large number
of operators with possibly a large number of state entries.

We introduce a more efficient solution by keeping an integer
counter at each binary operator with an incomplete state. When
a transition takes place, the counter’s value is initialized according
to one of the following cases:

e Case 1: If both the left and right operators have complete
states, e.g., State RS in Figure 3c, the counter is initialized
to be the smaller of the number of distinct values of the join
attribute inside the left or the right operators’ states.

e Case 2: If either the left or right operator has an incomplete
state, e.g., State SRU in Figure 3c, the counter is initialized
to be the number of distinct values of the join attribute inside
the complete state, e.g., number of distinct values in State U
in Figure 3c.

e Case 3: If both the left and right operators have incomplete
states, e.g., as what can happen in a bushy plan, the counter’s
value is meaningless.

For left-deep QEPs, the right operator is a stream-scan operator
that always has a complete state, so, either Case 1 or Case 2 holds.
Whenever the missing join state entries in an incomplete state that
correspond to a join attribute value in the left or the right value
are computed, the counter is decremented accordingly. When the
counter’s value reaches zero, the state is declared complete.
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For bushy QEPs, JISC initializes the counter if either Case 1
or Case 2 holds. For Case 3, JISC detects that a state is com-
plete whenever the states of both its right and left operators get
completed. By get completed, we mean that the state was in-
complete right after a plan transition and was incrementally com-
pleted through the state completion procedures. Leaf joins apply
the counting technique (as in Cases 1 and 2) to detect state comple-
tion. Notice that, in a leaf join, one of the children is necessarily
a scan operator which has a complete state. When a leaf join-state
gets completed, it notifies its parent. The parent checks if both of
its children have complete states, and if this is the case it marks its
state as complete and recursively notifies its parent.

4.4 Avoiding Repeated Computations

Consider the plan transition in Figure 2b. Assume that a tuple,
say r1, is received from Stream R that has the join attribute value
v. The join operator at the root probes State UT'S to find a match-
ing tuple for r;. Since UT'S is incomplete, state completion is
triggered and the corresponding state entries for v are computed
at States UT and UT'S. Assume that after this step, UT'S is still
incomplete, i.e., not all state entries have been computed. Assume
further that another tuple, say 72, is received from Stream R, and
has the same join attribute value v. Since UT'S is still incomplete,
the corresponding state entries for v would be computed again at
States UT" and UT'S. However, the computations for completing
States UT and UT'S are exactly the same for both r1 and 72 be-
cause both tuples have the same join attribute value. Hence, unless
additional measures are taken, repeated computations would occur
for ra.

To avoid these repeated computations, JISC attempts to compute
the state entries that correspond to a certain join attribute value at
most once. An attempt to compute the state entries that correspond
to a certain join attribute value, say v, happens the first time a tu-
ple having the join attribute value v is received after the transition
takes place. Once this tuple is processed, the status of further tuples
received later having the same attribute value v is switched from
fresh to attempted. Thus, JISC classifies the received tuples based
on their join attribute values according to the following definition:

DEFINITION 2. A tuple is said to be fresh if no other tuple hav-
ing its join attribute value is received after plan transition. Other-
wise, the tuple is said to be attempted.

The process of completing the state for a tuple having the at-
tribute value v will happen at most once, regardless of the states
being complete or not. The check for the per-tuple flag isFresh
(Line 5 in Procedure 1) prevents repeated computations for tuples
that have corresponding complete state entries at all states, even if
some states are incomplete.

The information according to which the tuples are classified into
fresh or attempted is available at the state (hash table) of the stream.
In addition, JISC records the timestamp of the most recent plan
transition. Once a tuple is received from a stream, the hash table
of that stream is probed (O(1) CPU time) to check if another tu-
ple having the same join attribute has been received after the most
recent plan transition.

As discussed in Section 4.2, for sliding windows, a state-clearing
tuple related to a window slide propagates up the pipeline and if an
incomplete join-state is reached, the tuple continues to propagate
regardless of finding a match in the join-state. As an optimization,
we apply this state-clearing technique only for fresh tuples. An
attempted tuple is guaranteed to have complete state entries at all
the operators and thus is allowed to propagate up the pipeline only
if a match is found in the join-state.



4.5 Overlapped Plan Transitions

JISC is a lazy plan migration strategy, i.e., JISC completes the
states only as needed. This means that a new plan transition might
occur while the effect of a previous plan transition is not cleared,
i.e., not all states have been completed. If Definition 1 is to be
directly applied in case of overlapped plan transitions, erroneous
query output can occur.

Consider the scenario in Figure 4, in which a plan transition hap-
pens (from Plan (a) to Plan (b)) and State ST in Plan (b) is declared
incomplete according to Definition 1. During the processing of the
new incoming tuples, a new plan transition (from Plan (b) to Plan
(c)) takes place before all the incomplete states get completed. If
Definition 1 is to be applied again, State ST in plan (c) will be de-
clared complete although it is not. This can lead to incorrect output
tuples as discussed in Section 2.2.

Figure 4: Transition from plan (b) to plan (c) takes place while
State ST is still incomplete. If Definition 1 is to be directly
applied, State ST in plan (c) will be declared complete although
it is not.

To solve this problem, JISC declares a state in the new plan as
complete only when it is also complete in the old plan. If a state in
the new plan exists in the old plan, but is incomplete in the old plan,
then it will remain incomplete in the new plan. Thus, according to
the scenario in Figure 4, State ST in plan (c) will be declared in-
complete and hence will avoid the incorrect output tuple scenarios.

4.6 Applying JISC to STAIRs

A close look at STAIRs [19] reveals that it is actually the same
as the Moving State Strategy when applied to eddies. When a plan
transition takes place, STAIRs eagerly computes the states of the
new plan by performing the Promote and Demote operations on all
state entries. However, the cost of the Promote and Demote oper-
ations can be amortized across the whole execution by performing
these operations in an on-demand basis. Thus, JISC can be applied
to the eddy framework (i.e., STAIRS) as follows. When a plan tran-
sition happens, Demote operations are performed to all the states in
the new plan that do not exist in the new plan, i.e., these states are
discarded. The states of the STAIR operators in the new plan are
classified into complete and incomplete according to Definition 1.

When a tuple, say ¢, probes a STAIR operator with an incomplete
state, ¢ is routed to the highest STAIR with a complete state in the
underlying logical subtree in the logical plan. This is equivalent to
the Promote operation of the state entry corresponding to ¢. State
completion detection of a STAIR follows a similar procedure as in
a regular execution pipeline. A STAIR’s state is declared complete
when all its state entries are promoted.

79

4.7 JISC with Other Operators

By definition, a unary operator’s state, e.g., U in Figure 3b is
always complete. Aggregators, e.g., groupby’s, are unary operators
which have no issues during a plan migration. For instance, if a
count is maintained on top of the QEPs of Figure 2, it will not be
affected by a plan transition; according to Definition 1, the root of
the QEP always has a complete state. Thus, the main issue during a
plan transition is to carefully handle the states of binary operators.
So far, we have introduced JISC for join operators only. Below, we
briefly explain how JISC can be applied to other binary operators.

In general, all binary operators share the same operational mech-
anism as they rely on the existence of the states of the left and right
operators as well as their own states. The only difference is in
the semantics of each operation. Unlike join operators in which
tuples are always added to the join state, a tuple received at a set-
difference operator may be removed from the set-difference state.
For instance, consider the set-difference operator R — .S that re-
trieves the tuples in Stream R that do not exist in Stream S. On
the one hand, a received tuple from Stream /S is then used to probe
the set-difference state. If a match is found, then the matched tu-
ple is removed from the set-difference state. On the other hand, a
received tuple from Stream R is used to probe the state of S. If no
match is found, then the tuple is added to the set-difference state.

Applying JISC to a QEP with set-difference operators is straight-
forward; the same conditions for safe plan transition and state com-
pletion detection apply. However, according to the logic of the set-
difference operator, if a tuple received from an inner stream probes
an incomplete state, it is forwarded up the pipeline (instead of down
as in joins) until it hits the first complete state. This way, it gets
cleared from the operator states in a way similar to handling slid-
ing windows as in Section 4.2.

For illustration, consider a left-deep QEP (((A— B) —C) — D)
that migrates to (((A — D) — B) — C). Upon plan transition,
according to Definition 1, States AD and ADB are incomplete
while State ADBC is complete. A received tuple from D probes
the set-difference state AD which is incomplete, so the tuple gets
forwarded up the QEP until it reaches the first complete state, i.e.,
ADBC in this case. Similarly, a received tuple from B probes
State AD B which is incomplete, so the tuple gets forwarded up
the QEP until it reaches State AD BC'. Notice that tuples received
from the outer stream, i.e., A probe State D which is complete
because it is a unary operator.

5. ANALYSIS OF JISC

Although JISC aims at computing the missing states of an opera-
tor, JISC does not add any memory overhead, except for the counter
that is used for state completion detection, which is a simple inte-
ger per operator. JISC does not allocate any additional memory to
complete the states of an operator; it just keeps adding the missing
states until an operator eventually functions as if in a regular QEP.
Thus, we need to analyze only the execution time of JISC.

5.1 Benefits of Lazy Migration
5.1.1 Steady Query Output

The overall execution time of the Moving State Strategy [4] is
close to that of JISC. The difference between the two techniques
is in the latency of the output. JISC has minimal output latency
because it employs a lazy migration strategy, and hence maintains
steady query output. In contrast, the Moving State Strategy em-
ploys an eager migration strategy by computing all the missing
(incomplete) states of the new plan all at once. If all the streams
have the same sliding window sizes, say w, the state recomputation



step of the Moving State Strategy takes O(w™) time units, where
h is the height of the QEP tree (see [4] for more details). Similar
numbers can be deduced for STAIRs if the Promote and Demote
operations are eagerly performed upon plan transition. For both
techniques, during the plan transition stage, the execution is sus-
pended, leading to the drawbacks highlighted in Section 3.2.

5.1.2 Thrashing Avoidance

In addition to maintaining steady query output, the on-demand
strategy of state computation employed by JISC leads to several
advantages over the state of the art plan migration techniques. Con-
sider a dynamic scenario in which the selectivities of the operators
in the QEP keep fluctuating, leading to multiple successive plan
transition decisions. In this case:

o The Parallel Track Strategy will keep running multiple (more
than two) QEPs, and hence the performance of query execu-
tion can severely degrade. In addition, the cost of duplicate
elimination will multiply.

e The Moving State Strategy will perform many migrations.
In each migration, all the states of the new QEP are eagerly
computed without necessarily being used. Thrashing will oc-
cur. A huge effort will be consumed in these computations
with no subsequent payoff.

JISC avoids the above problems by computing the missing states
on demand, i.e., performing lazy migration (refer to Section 4.5).

5.2 Throughput During a Transition Stage

Consider the plan transition in Figure 5 in which there is a change
in the order of the joins with streams R and .S. The upper and lower
subtrees remain the same. According to Definition 1, both subtrees
have complete states at all their operators, and only one incomplete
state exists at the join operator of .S.

complete

States are all
complete

Figure 5: A transition to a plan that has two unchanged sub-
trees with complete states at all operators.

Since CACQ does not store any state, all intermediate results
(join states) do not exist and have to be recomputed for every input
tuple. For the Parallel Track Strategy, the execution will proceed
with both the old and new plans as long as there are old entries
in the old plan. However, since the subtree is unchanged, many
redundancies occur in computing the states of the unchanged sub-
trees. JISC avoids this redundancy by detecting that all the states
in the unchanged subtrees are complete, and hence require no ad-
ditional work. This, in turn, implies a potentially open-ended gain
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in the performance of JISC compared to CACQ and the Parallel
Track Strategy, as the complete subtrees can have an arbitrarily
large number of operators and arbitrarily large window sizes.

It is clear that JISC achieves good performance gains when the
plan transition results in less number of incomplete states. The
question that we address now is: “What is the average number of
complete states that can result after a plan transition?” Consider
the plan transition in Figure 6. According to Definition 1, the mid-
dle subtree will have incomplete states, while the upper and lower
subtrees will have complete states. Observe that the number of
incomplete states depends on the position of the streams that ex-
changed positions in the QEP, e.g., streams R and S in Figure 6.

States are all
complete

Complete

Incomplete.

States are all
incomplete

Figure 6: An arrangement of complete/incomplete states right
after a typical plan transition.

In a data streaming environment, operator selectivities are esti-
mated before query execution. Query execution starts with a QEP
that has the operators ordered based on these estimates. In par-
ticular, the QEP is set to have the most selective operators (joins)
at the bottom of the plan, i.e., joins in the new plan are somehow
inversely sorted according to their estimated selectivities. Since
these estimates can be far from reality, during execution, the query
optimizer decides to switch the order of some joins based on the
runtime feedback.

Without loss of generality, we consider pairwise join exchanges,
i.e., only two streams exchange positions in the QEP, e.g., the joins
of streams R and S in Figure 6. A set of join exchanges of any
size can be mapped to a set of pairwise join exchanges. Assume a
left-deep QEP with n operators, joining n + 1 streams. We label
the streams in a bottom-up fashion with the labels {1,2,3,...,n},
with the streams of the leaf join having the same label, {1}, as we
are assuming symmetric hash join. We also label each internal node
(representing an operator), with the label of its right child (stream),
and think of the labels as “positions" up the chain.

Our key insight in the remaining of the analysis is that the posi-
tions of the streams to be swapped are usually close. In other words,
the probability that a stream at the top of the plan is swapped with
a stream at the bottom of the plan is usually very low. The reason
is that the initial setup of the QEP is based on selectivity estimates



that are usually not too far from the reality. Even if there is some in-
accuracy in these estimates, this inaccuracy may affect the order of
the operators that are not too far from each others, otherwise there
must be fatal error in the estimates. Even if there are fatal errors in
the estimates, or if the initial positions are chosen at random, after
a warm-up sequence of plan transitions, the QEP will be stable and
the positions to be swapped during further execution will be close.

Assume that the positions of the streams that exchange positions
are chosen at random, say I and J, where I < J. Here “ran-
dom” refers to a triangular probability distribution, that diminishes
proportionately according to the difference J — I. We choose this
distribution to coincide with the insight discussed above. In other
words, for a pair (%, j), with ¢ < 7,

Prob(I =i,J =j) = —— X am, (1)
J—1
where the proportionality factor must be
1
n= ], 2
@ n-H,—n 2

where H, = >_"_, 1/ris the n'" harmonic number [20].

The number of incomplete states is J — I (refer to Figure 6,
where positions I and J represent the positions of streams R and S
in the new plan, respectively). Thus the number of complete states,
say C, is

Cp=n—(J—1I). 3)

PROPOSITION 1.

_2nH, —-3n+1
E[Cn] = 2H, -2 '
2n?H, — 5n? 4+ 6n —2H, — 1
Var[C),] = 2(H, — 172 .
Proof.
E[C,] = n— Y (j—i)Prob(I=4,J=j)
1<i<j<n
. . an
= n— > G-
1<i<j<n J

_ n_an@.

The mean formula follows as given after simplification. The vari-
ance is

Var[C,] = Var[J -]
= Z (j —i)* Prob(I =i, J = j)
—(B[J - 1))
- 1<§<n(j - Z) e ai <2>

2
o n?—1 a2 n
- 6H.,—6  "\2)
The variance in the form given follows after some cancellations.
O
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PROPOSITION 2. Asn — oo,

n 1

ElCp]=n- 2Inn +O(H)’
n? n?

Var[cn} o 611171 +O(ln2n)'

Proof. This asymptotic approximation ensues after using the
well known asymptotic relation H, = Inn + v + O(1/n), where
v is Euler’s constant 0.577215665.... O

The variance is not too large, which gives us a concentration law.

PROPOSITION 3.

Cn P
n

Proof. Let € > 0 be fixed. By Chebyshev’s inequality [21], we
write

Prob{|cn - E[C’”” > 5} S V%gc’n]

Replace ¢ by € E[C},], and write the inequality as

C’n Var[Cn] 1
Prob{| —1|>ef < o =0() 0.
POOUEC,] T TS S EEC)? nn
Hence % — 1 converges in probability to O (that is, % N

E[Cy]

1). We also know that — 1. Multiplying the latter two
convergence relations, we get the result; see [21] for this type of
manipulation. O

The result shows that there is high probability for C,, the num-
ber of complete states, to stay near n. That is, when we move to
an alternative plan via JISC, most of the states are complete, and
only little work is needed to complete a few (a sublinear number
of) incomplete states. Thus, JISC is robust.

6. EXPERIMENTAL STUDY

In this section, we study the performance of JISC compared to
CACQ [3], STAIRs [19], as well as the Moving State and the Par-
allel Track Strategies [4]. Since JISC adds no memory overhead
(cf. Section 5), except for the counters used for state completion
detection, our main performance measure is the execution time.

We implemented the Eddies, SteMs, and CACQ techniques as
in [22, 17, 18, 23, 3, 19]. We also implemented the Moving State
and Parallel Track Strategies as in [4]. All implementations are in
Java. Experiments were conducted on a machine running Windows
7 with Intel Core2 Duo CPU at 2.1 GHz and 4 GB of main memory.

We generate QEPs with different numbers of joins. We uni-
formly generate the data and uniformly distribute it across the dif-
ferent streams. For instance, after generating 10 million tuples for
a QEP with 10 streams, each stream’s share would be around 1 mil-
lion tuples. Unless stated otherwise, the window size correspond-
ing to each stream is 10,000 tuples.

6.1 Performance during a Transition Stage

In the following experiments, we measure the execution time of
the different plan migration strategies during the migration stage.
We force a plan transition while executing the queries after pro-
cessing 10 million tuples. To have a consistent comparison among
the strategies, we process tuples until the old plan of the Parallel
Track Strategy is discarded, i.e., the migration stage ends. Then,
we process the same tuples using both JISC and CACQ. We mea-
sure the execution time each strategy takes to process these tuples.



Figure 7 gives the performance of the three strategies during the
plan migration stage for different queries with different numbers
of joins. In this experiment, we address the best case for JISC, in
which the new plan has only one incomplete state as illustrated in
Figure 5. JISC has the best performance, especially for plans with
large number of joins, in which the speedup reaches an order of
magnitude compared to the Parallel Track Strategy.
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Figure 7: Performance during the plan migration stage (best
case). (a) Running time. (b) speedup.

Figure 8 gives the result of a similar experiment for JISC’s worst
case scenario, i.e., when the transition results in all the states of
the new plan being incomplete. Notice that the speedup of JISC
decreases compared to that of Figure 7 due to the overhead of state
completion. The performance of both CACQ and the Parallel Track
Strategy is the same in Figures 8 and 7 because both strategies do
not differentiate between a complete and an incomplete state.
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Figure 8: Performance during the plan migration stage (worst
case). (a) Running time. (b) speedup.

6.2 Overhead During Normal Operation

The following experiment illustrates how JISC performs during
normal operation of a query (before or after a plan transition), i.e.,
when all the states are complete. We generate a plan with 20 joins.
We execute 10 million tuples on JISC as well as a plan with pure
symmetric hash joins. This is equivalent to comparing JISC with
the Parallel Track Strategy, since, during normal operation, only
one plan will be running in the Parallel Track Strategy. We also
compare JISC to CACQ by processing the same tuples.

Figure 9 gives the performance of the three strategies during nor-
mal operation. JISC introduces minimal overhead to the symmetric
hash join plan. Moreover, JISC is nearly twice as fast as CACQ be-
cause, in the latter, each tuple gets processed by the eddy operator
as many times as for the join operators.

6.3 Latency

In this experiment, we measure the time it takes from the moment
a plan transition is triggered until the first output tuple is produced,
i.e., the output latency. In JISC, the output latency is negligible
compared to that of the Moving State strategy. In the latter, execu-
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Figure 9: Performance during normal operation. (a) JISC vs.
Symmetric Hash Join (Parallel Track Strategy). (b) JISC vs.
CACQ.

tion completely stalls until all the states of the new plan are com-
puted, and hence the latency is very high especially for QEPs with
nested-loops joins. Figure 10 ((a) for hash join and (b) for nested-
loops join) gives the output latency of both JISC and the Moving
State Strategy at different window sizes in log-scale for a QEP of 20
joins. QEPs with higher numbers of joins were experimented and
produce similar performance figures. Furthermore, similar perfor-
mance figures can be obtained for the output latency of STAIRs as
it applies a greedy state migration policy.

80 5,000
70 | —*use 4.500

4,000

—e—JISC
60 - —&—Moving State Strategy

—A— Moving State Strategy

Latency (sec)
=N W s U
ISR IR-I-IR-)

.

Latency (sec)
LG
wu o
(=] o
o o

o
L

o
[SEIRS

QS O O O O O
s N @ QQ QQ O r\/e 00 QQ 00 00
AR »@Q QQQQQ A ,\900
(a) Window Size > (b) Window Size

Figure 10: Output latency due to a plan transition. (a) QEP of
hash joins. (b) QEP of nested-loop joins.

It is clear from Figure 10 that JISC has minimal output latency.
The output latency for the Moving State Strategy is relatively low
for QEPs of hash joins, i.e., it is in the order of seconds even for
large window sizes. However, for QEPs of nested-loops joins (i.e.,
for general theta joins), the output latency is very high. For exam-
ple, in Figure 10, for window sizes of 100,000 tuples, the latency is
about 4600 seconds (76 minutes). If the figure is extrapolated for
window sizes of 1,000,000 tuples, the latency will be in the order
of hours and days. Due to this latency, the Moving State Strategy
(and similarly for STAIRS) is not suitable for applications that re-
quire frequent plan transitions (applications involving streams with
fluctuating selectivities and stream rates).

6.4 Frequency of Plan Transition

In the following experiments, we show the effect of varying the
frequency of plan transition on the performance of JISC. We gen-
erate a QEP with 20 joins. We force plan transitions at different
frequencies, i.e., we force a plan transition every 1, 2, .. ., 10 mil-
lion tuples. We generate 20 million tuples so that a plan transition
occurs at least twice for all frequencies. Figures 11 and 12 give
the execution times when the plan transitions result in incomplete
states at all operators (worst case) and in only one incomplete state
just below the root operator (best case), respectively.

Figures 11 and 12 illustrate that JISC achieves higher throughput
than both CACQ and the Parallel Track Strategy at any plan tran-
sition frequency. Since CACQ operates the same way irrespective
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of plan transition, it is not affected by the plan transition frequency.
The parallel Track Strategy achieves the worst performance when
the rate of plan transition is high (every 1 or 2 million tuples). The
reason is that the old plan is not discarded along with the needed
duplicate elimination component on top of both the old and new
plans. Notice that JISC achieves lower throughput at high plan
transition rates because the incomplete states never get completed,
and require additional processing. From Figures 11 and 12, it is
clear that CACQ and the parallel Track Strategy have almost the
same performance. However, the slope of the the curve for JISC’s
execution time is lower in Figure 12 due to the existence of many
complete states that do not require overhead.

7. CONCLUSIONS

JISC is a new technique for plan adaptation of continuous queries
over data streams. It is applicable to both pipelined and eddy-based
QEPs. During plan transition, JISC maintains steady query output
in contrast to existing plan adaptation techniques that can exhibit
significant output latencies. Maintaining steady query output is es-
sential for applications that require continuous monitoring or real
time response.

JISC employs a lazy state migration strategy that computes the
missing states in the new QEP on-demand in a single QEP. In
highly dynamic scenarios where the queries and streams have fluc-
tuating selectivities and arrival rates, overlapped plan transitions
are imminent. The lazy migration strategy enables JISC to avoid
performance thrashing, which is a vital issue in all other existing
techniques.

A key property of JISC is that during plan transition, it de-
tects the unchanged parts of the QEP and avoids recomputing their
states. Our probabilistic analysis demonstrates that the number of
operators with unchanged states in the new QEP is usually close to
the total number of operators. For that reason, JISC outperforms
existing techniques that also maintain steady query output, e.g., the
Parallel Track Strategy, leading to performance gains during a plan
migration stage that can reach up to an order of magnitude.
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APPENDIX
Correctness of JISC

For JISC to be valid, it has to guarantee that the output correspond-
ing to an input tuple is the same whether the plan changes or not.
In this section, we provide a proof of correctness for JISC.

Before we proceed with the proof, we note that in JISC, the po-
sition at which a tuple enters the new plan relative to the position
at which it should have entered the old plan does not affect the way
the tuple is processed. What really affects the processing of a tuple
are the following two factors: (1) whether the tuple probes a com-
plete or an incomplete state (according to Definition 1), (2) whether
the tuple is a fresh or an attempted tuple (according to Definition 2).
We illustrate this fact by the following scenarios.

Consider the plan-transition in Figures 3a (old plan) and 3b (new
plan). Since all the intermediate states are incomplete, any fresh tu-
ple that enters the new plan at any height (except the root operator)
requires state completion. For example, consider a fresh tuple from
Stream S that enters the new plan (Figure 3b) at Height 2, i.e., the
second join in the pipeline from the bottom. That same tuple would
have entered the old plan (Figure 3a) at Height 1, i.e., the lowest
join in the pipeline from the bottom. In this case, state completion
for that tuple is required since it probes an incomplete state in the
new plan. However, consider the plan-transition in Figures 3a (old
plan) and 3c (new plan). A tuple from Stream U enters the old plan
at Height 3. When a fresh tuple from Stream R enters the new plan
at Height 2, which is lower, no state completion is required, since
it probes a complete state.

We prove that JISC is Complete, i.e., does not miss any valid
output tuple, Closed, i.e., does not produce any invalid output tu-
ple, and Duplicate-free, i.c., every valid output tuple is produced
exactly once. The proofs assume that all the binary operators in a
query execution pipeline are joins that are executing Procedure 1.
Refer to Definitions 1 and 2 for the terms complete, incomplete,
fresh, and attempted.

THEOREM 1. After a query plan-transition takes place, for any
input tuple, JISC does not miss any output that would have been
produced if the transition does not take place.

PROOF. Assume a tuple, say t, is received, and would result
in the output 0,4 if the current execution plan does not change.
Assume that a plan-transition takes place and the output 0,55 i
missed (i.e., is not produced as output). At the point ¢ enters the
pipeline, the state of the opposite operator is probed (Line 1). Exe-
cution proceeds with one of the following cases:

e Case 1: If the opposite state is complete, the state entries cor-
responding to ¢ will be found, and joined tuple(s) will pass to
the next operators until the output 0.,,:s5s is produced.

e Case 2: If the state of the opposite operator is incomplete
and t is fresh, the state entries corresponding to ¢ will not
be found and will be completed (Line 6) and then ¢ will be
able to join (Lines 7 and 8). The joined tuple(s) will pass to
the next operators until the output 0,55 is produced. More-
over, all the states of the intermediate joins will have complete
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entries corresponding to the join attribute value of ¢, so that
the next received tuples having the same join attribute value
(i.e., attempted tuples) will require no further state comple-
tion overhead.

e Case 3: If the state of the opposite operator is incomplete
and t is attempted, the state entries corresponding to ¢ will be
found, even if the state is incomplete. Since t is attempted, it
is guaranteed to have complete state entries at all the interme-
diate joins after the first tuple having its join attribute value
(i.e., fresh tuple) is processed as in Case 2. Thus, the joined
tuple(s) will pass to the next operators until the output 0.miss
is produced.

From Cases 1, 2, and 3, we conclude that the assumption that
Omiss 1S missed is invalid. Thus, JISC does not miss any valid
output tuple, i.e., JISC is complete. []

THEOREM 2. After a query plan-transition takes place, for any
input tuple, JISC does not produce any output tuple that would not
result if the transition does not take place.

PROOF. Assume an update tuple, say ¢, is received, and does
not result in any output tuples if the current execution plan does not
change. Assume that a plan-transition takes place and the output
Owrong 18 produced.

Since there should be no output tuple produced if the transition
does not take place, at some point (join operator) in the pipeline,
t should not join. At that point, ¢ is checked with the state of the
opposite operator and nothing is found. Execution proceeds with
one of the following cases:

e Case 1: If the state of the opposite operator is complete, then
execution stops, and 0w rong is not produced.

e Case 2: If the state of the opposite operator is incomplete and
t is attempted, then execution stops (since the corresponding
state entries are guaranteed to exist as discussed in the above
proof), and 0. rong is not produced.

e Case 3: If the state of the opposite operator is incomplete and
t is fresh, state completion is applied (Line 6), but nothing is
added to the state of the opposite operator. This is because
Procedures 2 or 3 add state entries to the join-state only when
the join succeeds (Lines 1 and 7 in Procedure 2, or Line 3
in Procedure 3). Thus, ¢ will not join (Line 7 in Procedure 1
returns false), and 0.wrong is not produced.

From Cases 1, 2, and 3, we conclude that the assumption that the
output oy rong is produced is invalid. Thus, JISC does not produce
any invalid output tuple, i.e., JISC is closed. [

In JISC, once a plan-transition is decided, the input queues to all
the query operators have to be cleared, i.e., all the tuples that are
received before a plan-transition is decided have to be processed
through the old plan, and pushed up the QEP until they reach the
output. This way, a tuple is allowed to be processed by an oper-
ator at most once. Afterwards, the old plan is discarded, and the
new plan takes place. Then, tuples that are received after the plan-
transition are processed through the new plan. This means that ev-
ery input tuple is processed only once, either in the old plan, or in
the new plan. Thus, the tuple’s corresponding output should appear
at most once, i.e., with no duplication. This argument leads to the
conclusion that JISC is duplicate-free, as the following Theorem
states.

THEOREM 3. Before or after a query plan-transition takes
place, JISC does not produce any output more than once.



