
Querying Graph Databases with XPath

Leonid Libkin
University of Edinburgh
libkin@inf.ed.ac.uk

Wim Martens
Universität Bayreuth

wim.martens@uni-
bayreuth.de

Domagoj Vrgoč
University of Edinburgh

domagoj.vrgoc@ed.ac.uk

ABSTRACT

XPath plays a prominent role as an XML navigational lan-
guage due to several factors, including its ability to express
queries of interest, its close connection to yardstick database
query languages (e.g., first-order logic), and the low com-
plexity of query evaluation for many fragments. Another
common database model — graph databases — also requires
a heavy use of navigation in queries; yet it largely adopts a
different approach to querying, relying on reachability pat-
terns expressed with regular constraints.

Our goal here is to investigate the behavior and applicability
of XPath-like languages for querying graph databases, con-
centrating on their expressiveness and complexity of query
evaluation. We are particularly interested in a model of
graph data that combines navigation through graphs with
querying data held in the nodes, such as, for example, in a
social network scenario. As navigational languages, we use
analogs of core and regular XPath and augment them with
various tests on data values. We relate these languages to
first-order logic, its transitive closure extensions, and finite-
variable fragments thereof, proving several capture results.
In addition, we describe their relative expressive power. We
then show that they behave very well computationally: they
have a low-degree polynomial combined complexity, which
becomes linear for several fragments. Furthermore, we in-
troduce new types of tests for XPath languages that let them
capture first-order logic with data comparisons and prove
that the low complexity bounds continue to apply to such
extended languages. Therefore, XPath-like languages seem
to be very well-suited to query graphs.

Categories and Subject Descriptors

F.4.1 [Mathematical logic and formal languages]: Math-
ematical logic; H.2.3 [Database management]: Lan-
guages—Query Languages

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1598-2/13/03 $15.00.

General Terms

Theory, Languages, Algorithms

Keywords

XPath, Graph Databases, data values

1. INTRODUCTION
Managing graph-structured data has been an active topic
over the past few years; there are multiple existing systems,
both proprietary and open-source, and there is a growing
body of research literature on graph databases (see, e.g., a
survey [5]). There are numerous uses in modern applica-
tions whose data structure is naturally represented as graphs:
for instance, RDF triples are typically viewed as edges in la-
beled graphs [27, 33, 37] and so are connections between
people in social networks [21, 39, 40]. The Semantic Web
and social networks are often cited as the key application
areas of graph databases, but there are many others such
as biology, network traffic, crime detection, and modeling
object-oriented data.

When it comes to querying graph databases, one can, of
course, ask standard relational queries, for instance, about
information on people in a social network. What makes
graph databases different, however, is the ability to ask
queries about their topology, essentially looking for reach-
ability patterns and, more generally, subgraph patterns [11,
21, 20]. A basic building block for such queries is typically a
regular path query, or an RPQ, that selects nodes connected
by a path described by a regular language over the labeling
alphabet [19]. Extensions of RPQs with more complex pat-
terns, backward navigation, relations over paths, and mixing
labels and data in nodes have been studied extensively too
[1, 6, 7, 11, 12, 18, 32].

Over the past decade, navigational queries have been studied
in depth in a different framework extending the relational
model, namely in XML. Most formalisms for describing and
querying XML crucially depend on its path language XPath
[44]. The goal of XPath is seemingly very similar to the goal
of many queries in graph databases: it describes properties
of paths, taking into account both their purely navigational
properties and data that is found in XML documents. The
popularity of XPath is largely due to several factors:

129

• it defines many properties of paths that are relevant for
navigational queries;

• it achieves expressiveness that relates naturally to yard-
stick languages for databases (such as first-order logic,
its fragments, or extensions with some form of recur-
sion); and

• it has good computational properties over XML, no-
tably tractable combined complexity for many frag-
ments and even linear-time complexity for some of
them.

In view of these desirable properties, it is natural to ask
whether XPath-like languages can achieve the right balance
of expressiveness and complexity of query evaluation in the
context of graph databases. This is the question we address
in this paper.

There appear to be two ways to use XPath as a graph
database language. The first possibility is to essentially stick
to the idea of RPQs and use XPath to describe paths be-
tween nodes. While XPath on words with data is well under-
stood by now [9, 22], this idea has a significant drawback:
in the presence of data, evaluating RPQs quickly becomes
intractable [32], ruling out XPath as an add-on to RPQs.

A different approach is to apply XPath queries to the entire
graph database, rather than paths selected by RPQs and sim-
ilar queries. This is the approach we pursue. To a limited ex-
tent it was tried before. On the practical side, XPath-like lan-
guages have been used to query graph data (e.g., [13, 26]),
without any analysis of their expressiveness and complexity,
however. On the theoretical side, several papers investigated
XPath-like languages from the modal perspective, dropping
the assumption that they are evaluated on trees, for instance,
[2, 35]. In fact, this was mainly done in the context of semi-
structured data and preceded much of XPath investigation in
the XML literature. The focus of papers such as [1, 2, 35]
is primarily on static analysis (containment) and, in general,
the settings disregard data values in graph databases.

Thus, our goal is to investigate how XPath-languages can
be used to query graph databases. In particular, we want
to understand both the navigational querying power of such
languages, and their ability to handle navigation and data to-
gether in graph databases. In this investigation, we can take
advantage of the vast existing XML literature on algorithmic
and language-theoretic aspects of XPath.

Of course there is no such thing as the XPath: the language
comes in many shapes and flavors. To start with, languages
can talk about purely structural properties of documents, or
they can add tests based on data values carried by docu-
ments. We have the same dichotomy for graph databases: in
fact most earlier formalisms dealt with navigational queries
[7, 11, 18, 19], but more recently extensions to data values
have been looked at [20, 32].

The second key parameter is the expressiveness of naviga-
tional querying. The basic language one usually starts with
is core XPath [16, 25]. It can also come in several versions,
and what we use as the basic language here is essentially an

adaption of Core XPath 2.0 [16] to graph databases. The rea-
son behind it is the equivalence of the language to first-order
logic, the yardstick language for relational databases (and
we shall extend the equivalence to graph databases). For re-
stricting expressiveness, we shall look at positive fragments
(again, as is common in the XPath literature). For giving the
language more power, we look at adding the transitive clo-
sure operator, obtaining an analog of regular XPath [12, 14,
16] which itself has close connections to PDL [28].

Flavor of the languages. We use several versions of XPath-
like languages for graph databases. Like XPath (or closely
related logics such as PDL and CTL∗), they have node tests
and path formulae, and as the basic axes they use letters from
the alphabet labeling graph edges. For instance, a∗ · (b−)∗

finds pairs of nodes connected by a path that starts with a-
edges in the forward direction, followed by b-edges in the
backward direction. The reader familiar with conjunctive
RPQs will immediately recognize one in this expression, but
the expressiveness of languages we consider is not limited to
such queries. Formulae may include node tests: for instance,
a∗[c] · (b−)∗ modifies the above expression by requiring that
the node where the a-labels switch to b-labels also has an
outgoing c-edge. And crucially, node tests can refer to data
values and have XPath-like conditions over them. For in-
stance, the expression a∗[=5] · (b−)∗ checks if the data value
in that intermediate node is 5, and a∗[〈a = b〉] ·(b−)∗ checks
if that node has two outgoing edges, labeled a and b, to nodes
that store the same data value.

We define several versions of XPath for graph databases.
The core language is denoted by GXPathcore and the analog
of regular XPath by GXPathreg. We augment them by differ-
ent types of tests on data values, such as testing for constant
values (like [=5]), or for comparisons of data values at the
end of paths (like [〈a = b〉]).

Summary of the results. We start by studying the expres-
sive power. The first set of results concerns with pure navi-
gational power (no data-value comparisons). It turns out that
GXPathcore captures precisely FO3, first-order logic with
3 variables, like its analog (core XPath 2.0) on trees. The
difference, though, is that on graphs FO 6= FO3, but on
trees the two are the same. The proof establishes connection
with relation algebra [43] which was recently studied in con-
nection with pure navigational querying of graph databases,
but from a rather different angle (see [23, 24] which consid-
ered relative expressiveness of fragments of relation algebra
based on sets of operators).

Note that on trees there is another way of capturing FO,
by means of conditional XPath [36], which adds the until-
operator. We show that on graphs the analog of conditional
XPath goes beyond FO.

When we move to GXPathreg, we show that the positive
fragment of it captures precisely the nested regular expres-
sions [38], proposed as the navigational mechanism for
SPARQL. This further confirms the usefulness of XPath for
graph querying. Full GXPathreg is more expressive and cor-
responds to a fragment of the transitive closure logic. We
also show that it is incompatible with other graph languages

130

such as RPQs and several of their extensions.

With data value comparisons, we show that adding the two
types of node tests described above increases expressive-
ness and we provide the exact comparisons of the power of
language fragments with different types of tests. Even the
strongest tests do not give GXPathcore the power to capture
FO3 with data value comparisons, but we produce a differ-
ent type of tests that elevate the language to the full power of
FO3. These were introduced in [32]: an example of such a
test is a=, selecting a-labeled edges between nodes with the
same value.

We then move to the study of the complexity of XPath lan-
guages. We further extend them with numerical path formu-
lae: for instance, an,m, for n < m, says that two nodes are
reachable by a path of as whose length is between n and m.
These comparisons, proposed in the SPARQL recommenda-
tions [29], do not affect expressiveness, but they can make
expressions much more succinct [33].

We show that the complexity of all XPath languages on
graphs inherits nice properties from XPath on trees, due to
the ‘modal’ nature of the language: the combined complex-
ity is always polynomial. Even more, it is always a low-
degree polynomial. In fact, the query complexity is linear
for all the fragments we consider. The data complexity is
not worse than quadratic for navigational GXPathreg and lin-
ear for its positive fragments. With data comparisons added,
data complexity becomes quadratic (or better) again. When
numerical path formulae are added, the data complexity is
not worse than cubic.

The main conclusion is that XPath-like languages over graph
databases should not be overlooked due to the combination
of their expressiveness and low complexity of query evalua-
tion.

Remark. Many ideas behind XPath came from logics ini-
tially designed for arbitrary labeled transition systems, for
instance PDL and CTL∗. So, in a way, adapting XPath to
graph databases, whose underlying model is, in essence, la-
beled transition systems, may look like going back to the
origins. Nonetheless, this is not quite so, and there are in-
deed results to show that are specifically tailored to the graph
database context.

To start with, we concentrate on graphs that carry data: this
is crucial in the database scenario, but is generally disre-
garded in verification and model checking. Handling data
has been studied extensively in the XPath context, so we can
combine both model-checking techniques for navigational
features with XPath techniques for handling data. Some of
the features, such as counting, are specifically added in re-
sponse to SPARQL recommendations.

The second distinction is that there is a mismatch between
features naturally required by logics of programs and by
logics for querying graph data. Even though an occasional
fragment of an XPath-like language may coincide with an
existing logic (e.g., PDL is what becomes navigational path-
positive graph XPath in our classification), most of the time

we concentrate on languages that do not have precise coun-
terparts on the program logic side.

Organization. We define graph databases in Section 2. In
Section 3 we introduce our XPath-like languages. In Section
4 we study their expressive power, and in Section 5 we inves-
tigate their complexity. In Section 6 we introduce new data
tests that go beyond those present in XPath and study their
expressiveness and complexity. Concluding remarks are in
Section 7. Due to space limitations, most proofs are only
sketched here.

2. PRELIMINARIES

We first describe graph databases. We assume a model in
which edges are labeled by letters from a finite alphabet
Σ and nodes can contain data values from a countably in-
finite set D (for instance, attributes of people in a social net-
work). For simplicity of notation only, we assume a single
data value per node, as is often done in modeling XML with
data trees [42]. This is not a restriction at all, as different
attributes can be added by adding extra outgoing edges with
specified labels (again, in the same way as data trees model
XML documents).

DEFINITION 2.1 (DATA GRAPHS). A data graph (over
Σ and D) is a triple G = 〈V,E, ρ〉, where:

• V is a finite set of nodes;

• E ⊆ V × Σ× V is a set of labeled edges; and

• ρ : V → D is a function that assigns a data value to
each node in V .

When we deal with purely navigational queries, i.e., those
not taking into account data values, we refer to graph 〈V,E〉,
omitting the function ρ. We write Ea for the set of a-labeled
edges, i.e., Ea = {(v, v′) | (v, a, v′) ∈ E}.

A path from node v1 to vn in a graph is a sequence

π = v1a1v2a2v3 . . . vn−1an−1vn (1)

such that each (vi, ai, vi+1), for i < n, is an edge in E. We
use the notation λ(π) to denote the label of path π, i.e., the
word a1 . . . an−1 ∈ Σ∗.

Navigation languages for graph databases.

Most navigational formalisms for querying graph databases
are based on regular path queries, or RPQs [19], and their
extensions. An RPQ is an expression of the form x

L→ y,
where L is a regular language over Σ (typically represented
by a regular expression or an NFA). Given a Σ-labeled graph
G = 〈V,E〉, the answer to an RPQ as above is the set of
pairs of nodes (v, v′) such that there is a path π from v to v′
with λ(π) ∈ L.

Conjunctive RPQs, or CRPQs [18] are the closure of RPQs
under conjunction and existential quantification. Formally,

131

they are expressions of the form

ϕ(x̄) = ∃ȳ
n∧
i=1

(zi
Li−→ ui), (2)

where all variables zi, ui come from x̄, ȳ. The semantics
naturally extends the semantics of RPQs: ϕ(ā) is true in G
iff there is a tuple b̄ of nodes such that, for every i ≤ n, every
pair vi, v′i interpreting zi and ui is in the answer to the RPQ

zi
Li−→ ui.

These have been further extended, for instance, to 2CRPQs
that allow navigation in both directions (i.e., the edges can
be traversed both forwards and backwards [11]), U2CRPQs
that allow unions, or to extended CRPQs, in which paths
witnessing the RPQs zi

Li−→ ui can be named and compared
for relationships between them, defined as regular or even
rational relations [7, 6].

3. XPATH-LIKE LANGUAGES FOR
GRAPHS

We follow the standard way of defining XPath fragments
[10, 12, 22, 25, 36, 16] and introduce some variants of graph
XPath, or GXPath, to be interpreted over graph databases.
As usual, XPath formulae are divided into path formulae,
producing sets of pairs of nodes, and node tests, produc-
ing sets of nodes. Path formulae will be denoted by let-
ters from the beginning of the Greek alphabet (α, β, . . .) and
node formulae by letters from the end of the Greek alphabet
(ϕ,ψ, . . .).

Since we deal with data values, we need to define data tests
permitted in node formulae. There will be two kinds of them.

1. Constant tests: For each data value c ∈ D, we have
two tests =c and 6=c. The intended meaning is to test if
the data value in the current node equals to, or differs
from, constant c.
The fragment of GXPath that uses constant tests will
be denoted by GXPath(c).

2. Equality/inequality tests: These are typical XPath
(in)equality tests of the form 〈α = β〉 and 〈α 6= β〉,
where α and β are path expressions. The intended
meaning is to check for the existence of two paths, one
satisfying α and the other satisfying β, which end with
equal (resp., different) data values.
The appropriate fragment will be denoted by
GXPath(eq). If we have both constant tests and
equality tests, we denote resulting fragments by
GXPath(c,eq).

Next we define expressions of GXPath. As already men-
tioned in the introduction, we look at core and regular ver-
sions of XPath. They both have node and path expressions.
Node expressions in all fragments are given by the grammar:

ϕ,ψ := > | test | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉

where test is one of the permitted data tests defined earlier,
and α is a path expression.

The path formulae of the two flavors of GXPath are given
below. In both cases a ranges over Σ.

Path expressions of Regular graph XPath, denoted by
GXPathreg, are given by:

α, β := ε | _ | a | a− | [ϕ] | α · β | α ∪ β | α | α∗

Path expressions of Core graph XPath denoted by
GXPathcore are given by:

α, β := ε | _ | a | a− | a∗ | a−∗ | [ϕ] | α ·β | α∪β | α

We call this fragment “Core graph XPath”, since it is natural
to view edge labels (and their reverse) in data graphs as the
single-step axes of the usual XPath on trees. For instance,
a and a− could be similar to “child” and “parent”. Thus, in
our core fragment, we only allow transitive closure over nav-
igational single-step axes, as is done in Core XPath on trees.
Note that we did not explicitly define the counterpart of node
label tests in GXPath node expressions to avoid notational
clutter, but all the results remain true if we add them.

Finally, we consider another feature that was recently pro-
posed in the context of navigational languages on graphs
(such as in SPARQL 1.1 [29]), namely counters. The idea
is to extend all grammars defining path formulae with new
path expressions

αn,m

for n,m ∈ N and n < m. Informally, this means that we
have a path that consists of some k chunks, each satisfying
α, with n ≤ k ≤ m.

When counting is present in the language, we denote it by
#GXPath, e.g., #GXPathcore.

Given these path and node formulae, we can combine
GXPathcore and GXPathreg with different flavors of node
tests or counting, starting with purely navigational fragments
(neither c nor eq tests are allowed) and up to having both c
and eq tests. For example, #GXPathreg(c,eq) is defined by
mutual recursion as follows:
α, β := ε | _ | a | a− | [ϕ] | α · β | α ∪ β | α | α∗ | αn,m
ϕ,ψ := ¬ϕ | ϕ ∧ ψ | 〈α〉 | =c | 6=c | 〈α = β〉 | 〈α 6= β〉

with c ranging over constants.

We define the semantics with respect to a data graph G =
〈V,E, ρ〉. The semantics JαKG of a path expression α is a set
of pairs of vertices and the semantics of a node test, JϕKG,
is a set of vertices. The definitions are given in Figure 1. In
that definition, by Rk we mean the k-fold composition of a
binary relation R, i.e., R ◦ R ◦ . . . ◦ R, with R occurring k
times.

Remark. Note that each path expression α can be trans-
formed into a node test by the means of 〈α〉 operator. In
particular, we can test if a node has a b-successor by writing,
for instance, 〈b〉. To reduce the clutter when using such tests
in path expressions, we shall often omit the 〈〉 braces and
write e.g. a[b] instead of a[〈b〉].

132

Path expressions
JεKG = {(v, v) | v ∈ V }
J_KG = {(v, v′) | (v, a, v′) ∈ E for some a}
JaKG = {(v, v′) | (v, a, v′) ∈ E}

Ja−KG = {(v, v′) | (v′, a, v) ∈ E}
Jα∗KG = the reflexive transitive closure of JαKG

Jα · βKG = JαKG ◦ JβKG
Jα ∪ βKG = JαKG ∪ JβKG

JαKG = V × V − JαKG
J[ϕ]KG = {(v, v) ∈ G | v ∈ JϕKG}

Jαn,mKG =
⋃m
k=n(JαKG)k

Node tests
J〈α〉KG = π1(JαKG) = {v | ∃v′ (v, v′) ∈ JαKG}
J¬ϕKG = V − JϕKG

Jϕ ∧ ψKG = JϕKG ∩ JψKG
Jϕ ∨ ψKG = JϕKG ∪ JψKG

J=cKG = {v ∈ V | ρ(v) = c}
J6=cKG = {v ∈ V | ρ(v) 6= c}

J〈α = β〉KG = {v ∈ V | ∃v′, v′′ (v, v′) ∈ JαKG, (v, v′′) ∈ JβKG, ρ(v) = ρ(v′)}
J〈α 6= β〉KG = {v ∈ V | ∃v′, v′′ (v, v′) ∈ JαKG, (v, v′′) ∈ JβKG, ρ(v) 6= ρ(v′)}

Figure 1: Semantics of Graph XPath expressions with respect to G = 〈V,E, ρ〉

Basic expressiveness results.

Some expressions are readily definable with those we have.
For instance, Boolean operations α ∩ β and α − β with the
natural semantics are definable. Indeed, α − β is definable
as α ∪ β, and intersection is definable with union and com-
plement. So when necessary, we shall use intersection and
set difference in path expressions.

Counting expressions αn,m are definable too: they abbre-
viate α · · ·α · (α ∪ ε) · · · (α ∪ ε), where we have a con-
catenation of n times α and m − n times (α ∪ ε). Thus,
adding counters does not influence expressivity of any of the
fragments, since we always allow concatenation and union.
However, counting expressions can be exponentially more
succinct than their smallest equivalent regular expressions
(independent of whether n and m are represented in binary
or in unary) [33]. We will exhibit a query evaluation al-
gorithm with polynomial-time complexity even for such ex-
pressions with counters represented in binary.

We next give three examples of GXPath expressions to illus-
trate what sort of queries one can ask using these languages.

1. The expression (a[b])∗ will simply give us all pairs
(x, y) of nodes that are connected by a path of the fol-
lowing form:

x y
a a

b b b
. . .

That is, x and y are connected by an a∗ labelled path
such that each node on the path also has an outgoing
b-labelled edge. (Nodes that are different in the picture
do not have to be different in the graph.)

2. The expression 〈aa∗ 6= bc−〉 will give us all nodes x
such that there are nodes y and z, reachable by aa∗
and bc− respectively, with different data values. For
example in the graph given in the following image the
nodes x1 and x2 will be selected by our query, while
x3 will not.

1

x1

2x2

1

2

3

1

x3

a b

a
a

b b

a
c

3. The expression 〈(a[=5] · (a[=5])∗) ∩ ε〉 will extract
all the nodes x such that there is a cycle starting at x
in which each edge is labelled by a and each node has
the data value 5. In particular the node x will have data
value 5. Note that this example illustrates how we can
define loops using GXPath.

As another observation on the expressiveness of the lan-
guage, note that we can define a test 〈α = c〉, with the se-
mantics {v | ∃v′ (v, v′) ∈ JαKG and ρ(v′) = c}, by using
the expression 〈α[=c]〉.

Another thing worth noting is that node expressions can be
defined in terms of path operators. For example ϕ ∧ ψ is
defined by the expression 〈ε[ϕ] · ε[ψ]〉, while ¬ϕ is defined
by 〈ε[ϕ]〉.

133

Complement and positive fragments.

In standard XPath dialects on trees, complementation oper-
ators are not included and one usually shows that languages
are closed under negation. This is no longer true for arbitrary
graphs, due to the following.

PROPOSITION 3.1. Neither α nor α − β is definable in
GXPathreg without complement on path expressions.

The proof is an immediate consequence of the following ob-
servation. Given a data graph G, let V1, . . . , Vm be sets of
nodes of its (maximal) connected components (with respect
to the edge relation

⋃
a∈ΣEa). Then a simple induction on

the structure of the expressions of GXPathreg without com-
plement on path expressions shows that for each expression
α, we have JαKG ⊆

⋃
i≤m Vi × Vi. However, both path

complementation α and path difference α − β violate this
property.

In what follows, we consider fragments of our languages that
restrict complementation and negation. There are two kinds
of them, the first corresponding to the well-studied notion of
positive XPath.

• The positive fragments are obtained by removing ¬ϕ
and α from the definitions of node and path formulae.
We use the superscript pos to denote them, i.e., we
write GXPathpos

core and GXPathpos
reg .

• The path-positive fragments are obtained by removing
α from the definitions of path formulae, but keeping
¬ϕ in the definitions of node formulae. We use the
superscript path-pos to denote them, i.e., we write
GXPathpath-pos

core and GXPathpath-pos
reg .

4. EXPRESSIVE POWER OF LANGUAGES
The goal of this section is to analyze the expressiveness of
various XPath-like formalisms for graph databases that we
introduced. We start with navigational features and then an-
alyze languages that handle data comparisons. Additional
analysis of expressiveness is given in Section 6 where we
extend languages with more powerful comparisons of data.

4.1 Expressiveness of navigational languages
We provide three types of analysis of expressiveness of nav-
igational features of dialects of graph XPath:

• We compare them with FO, fragments and extensions.
The core language will capture FO3. This is similar
to a capture result for trees [36]; the main difference
is that on graphs, unlike on trees, this falls short of
full FO. We also provide a counterpart of this result for
GXPathreg, adding the transitive closure operator.
• We compare them with commonly used graph lan-

guages, such as nested regular expressions [38] and
CRPQs (and relatives). We identify a fragment of
GXPathreg that captures nested regular expressions,
but show that generally, XPath flavors are incompat-
ible with CRPQs and their extensions.

• We look at the analog of conditional XPath [36] which
captures FO over trees and show that, in contrast, over
graph databases, it can express queries that are not FO-
definable.

4.1.1 Comparisons with FO and relatives

To compare expressiveness of GXPath fragments with first-
order logic, we need to explain how to represent graph
databases as FO structures. Since all the formalisms can ex-
press reachability queries (at least with respect to a single
label), we view graphs as FO structures

G = 〈V, (Ea, Ea∗)a∈Σ〉
where Ea = {(v, v′) | (v, a, v′) ∈ E} and Ea∗ is its
reflexive-transitive closure.

Recall that FOk stands for the k-variable fragment of FO,
i.e., the set of all FO formulae that use variables from a fixed
set x1, . . . , xk. As we mentioned, on trees, the core fragment
of XPath 2.0 was shown to capture FO3. We now prove that
the same remains true without restriction to trees.

THEOREM 4.1. GXPathcore = FO3 with respect to both
path queries and node tests.

Proof sketch. The idea behind this proof is to use the char-
acterization of FO3 in terms of relation algebras [43]. These
are algebras of binary relations over some domain V and
are closed under composition of relations, complementation
(over V 2), union and reverse relation. We start with a base
set A1, . . . , An of binary relations over V and interpret the
operations in a standard way. We shall be using relation al-
gebras over V whose base relations are those in the FO vo-
cabulary, i.e., the Eas and the Ea∗s.

We can then show that, for each FO3 formula F (x, y) with
free variables x and y (in the vocabulary of the Eas and
Ea∗s), there is a path expression αF of GXPathcore such
that (a, b) ∈ JαF KG iff G |= F (a, b). This is done by going
through relation algebra (with base binary relationsEa, Ea∗ ,
for a ∈ Σ) and showing that such an algebra is equivalent
with path expressions of GXPathcore over the class of graphs
whereEa∗ is the reflexive transitive closure ofEa. The other
direction is actually much simpler as we only have to give a
translation from GXPathcore formulas to FO3 formulas.

Note that going through relation algebra works only for for-
mulas with two free variables. To show that every for-
mula F (x) with a single free variable is equivalent to a
GXPathcore node test we can define F ′(x, y) as (x = y) ∧
F (x), and find an equivalent path expression αF ′ . Then we
simply set ϕF := 〈αF ′〉 to get the node expression equiva-
lent to F . 2

Not all results about the expressiveness of XPath on trees
extend to graphs. For instance, on trees, the regular frag-
ment with no negation on paths (i.e., the path-positive frag-
ment) can express all of FO [36]. This fails over graphs:
GXPathreg fails to express even all of FO2 when restricted
to its path-positive fragment (i.e, the fragment that still per-
mits unary negation).

134

PROPOSITION 4.2. There exists a binary FO2 query that
is not definable in GXPathpath-pos

reg .

Proof sketch. The idea is to observe that path-positive frag-
ments of GXPath cannot define the universal binary relation
on an input graph. The query not definable in GXPathpath-pos

reg
is then the one saying that there are at least two nodes in a
given graph. 2

We now move to GXPathreg and relate it to a fragment of
FO∗, the parameter-free fragment of the transitive-closure
logic. The language of FO∗ extends the one of FO with a
transitive closure operator that can be applied to formulas
with precisely two free variables. That is, for any FO for-
mula F (x, y), the formula F ∗(x, y) is also an FO∗ formula.
The semantics is the reflexive-transitive closure of the se-
mantics of F . That is, G |= F ∗(a, b) iff a = b or there is a
sequence of nodes a = v0, v1, . . . , vn = b for n > 0 such
that G |= F (vi, vi+1) whenever 0 ≤ i < n.

By (FO∗)k we mean the k-variable fragment of FO∗. Note
that when we deal with FO∗ and (FO∗)k, we can view
graphs as structures of the vocabulary (Ea)a∈Σ, since all the
Ea∗s are definable, and there is no reason to include them in
the language explicitly.

Over trees, regular XPath is known to be equal to (FO∗)3

[14]. The next theorem shows that over graphs, these logics
coincide as well.

THEOREM 4.3. GXPathreg = (FO∗)3.

Proof sketch. The containment of GXPathreg in (FO∗)3 is
done by a routine translation.

To show the converse, we use techniques similar to those
in the proof of Theorem 4.1: we extend (FO∗)3 and rela-
tion algebra equivalence to state that relation algebra with
the transitive closure operator has equal expressive power
to (FO∗)3 over the class of all labeled graphs. For this one
can simply check that the inductive proof from [4] can be ex-
tended by adding two extra inductive clauses. Namely, when
going from relation algebra to FO3 we simply state that ex-
pressions of the form R∗ are equivalent to F ∗R(x, y), where
FR is the formula equivalent to R. In the other direction
we simply state that F ∗(x, y) is equivalent to (RF (x, y))∗.
Here by RF (x, y) we denote the expression equivalent to
F (x, y), when the variables are used in that particular or-
der. After that one verifies that the correctness proof of [4]
applies. 2

What about the relative expressive power of GXPathcore and
GXPathreg? For positive fragments, known results on trees
(see [16]) imply the following.

COROLLARY 4.4. GXPathpos
core (GXPathpos

reg .

We shall later see that the strict separation applies to full lan-
guages. This is not completely straightforward even though
GXPathcore is equivalent to a fragment of FO, since the lat-
ter uses the vocabulary with transitive closures. This makes

it harder to apply standard techniques, such as locality, di-
rectly. We shall see how to establish separation when we
deal with conditional XPath in Section 4.1.3.

4.1.2 Comparisons with path queries

Our next goal is to compare the expressiveness of XPath
formalisms for graphs with that of other established for-
malisms. We start with nested regular expressions,
which have been proposed as a navigational mechanism of
SPARQL for querying RDF data [38]. After that we look at
traditional languages such as RPQs, CRPQs, and relatives.

Nested regular expressions. These expressions, abbrevi-
ated as NRE, over a finite alphabet Σ extend ordinary regu-
lar expressions with the nesting operator and inverses [38].
Formally they are defined as follows:

n := ε | a | a− | n · n | n∗ | n+ n | [n]

where a ranges over Σ.

Intuitively NREs define binary relations consisting of pairs
of nodes connected by a path specified by the NRE. When
interpreted on a data graphG the relations are defined induc-
tively as follows:

JεKG = {(v, v) | v ∈ V }
JaKG = {(v, v′) | (v, a, v′) ∈ E}

Ja−KG = {(v, v′) | (v′, a, v) ∈ E}
Jn · n′KG = JnKG ◦ Jn′KG

Jn+ n′KG = JnKG ∪ Jn′KG
Jn∗KG = the reflexive transitive closure of JnKG
J[n]KG = {(v, v) | ∃v′ such that (v, v′) ∈ JnKG}.

As expected, GXPathreg is strictly more expressive than
NREs. However, we show that NREs do capture the pos-
itive fragment of GXPathreg.

THEOREM 4.5. GXPathpos
reg = NRE (GXPathpath-pos

reg .

Proof sketch. To show that NREs are strictly weaker, con-
sider a path formula α = a[¬〈b〉]. Then one can prove
by induction that over the graph below, every NRE has a
nonempty answer.

b

b

v v′

a

a

This of course gives us the desired result, since JαKG = ∅.
2

Comparison with CRPQs. We will show that XPath-
like formalisms are incomparable with CRPQs and sim-
ilar queries in terms of their navigational expressiveness.
The simple restriction, GXPathpos

reg , is not subsumed by

135

CRPQs. In fact it is not even subsumed by unions of two-
way CRPQs (which allow navigation in both ways). On the
other hand, CRPQs are not subsumed by the strongest of
our navigational languages, GXPathreg.

THEOREM 4.6. CRPQs and GXPath fragments are in-
comparable:

• GXPathpos
reg 6⊆ CRPQ (even stronger, there are

GXPathpos
reg queries not definable by U2CRPQs);

• CRPQ 6⊆ GXPathreg.

Proof sketch. The first item follows from Theorem 4.5
and the fact that U2CRPQs cannot simulate certain NRE
queries [8]. To see the second item, we first show that for ev-
ery GXPathreg expression e there exists an L3

∞ω formula Fe
equivalent to it. Recall that by L3

∞ω we mean the infinitary
first-order logic that uses only three variables (i.e. extension
of FO3 with infinite conjunctions and disjunctions). This is
done by a standard induction on GXPathreg expressions with
variable reuse, see, e.g., [31].

Consider now two graphs,K3 andK4, with all edges labeled
a. It is well know that they cannot be distinguished by L3

∞ω
since the duplicator has a winning strategy in the 3-pebble
game on them. However, they can be distinguished by a
CRPQ ϕ(x, y) that states the existence of nodes z and u and
all possible a-edges between x, y, z, u except self-loops. 2

On the other hand, the positive fragment of GXPathcore can
be captured by unions of two-way CRPQs.

PROPOSITION 4.7. GXPathpos
core (U2CRPQ.

4.1.3 Conditional GXPath

It was shown in [36] that to capture FO over XML trees,
one can use conditional XPath, which essentially adds the
temporal until operator. That is, it expands the core-XPath’s
a∗ with (a[ϕ])∗, which checks that the test [ϕ] is true on an
a-labeled path. Formally, its path formulae are given by:

α, β := ε | _ | a | a− | a∗ | a−∗ | (a[ϕ])∗ | (a−[ϕ])∗ |
[ϕ] | α · β | α ∪ β | α

We refer to this language as GXPathcond. We now show that
the FO capture result fails rather dramatically over graphs:
there are even positive GXPathcond queries not expressible
in FO.

THEOREM 4.8. There is a GXPathpos
cond query not ex-

pressible in FO.

Note that the standard inexpressibility tools for FO, such as
locality, cannot be applied straightforwardly since the vo-
cabulary of graphs already contains all the transitive closures
Ea∗ ; in fact this means that in GXPathpos

cond the query asking
for transitive closures of base relations is trivially definable,
even though it is not definable in FO over the Eas. So the
way around this is to combine locality with the composi-
tion method: we use locality to establish a winning strategy

for the duplicator in a game that does not involve transitive
closures, and then use composition to extend the winning
strategy to handle transitive closures.

Proof sketch. We consider graphs over alphabet {a, b, s, t},
with s, t being labels used to mark nodes between which we
shall test reachability. We are interested in the following
property P : from a node with an incoming s-edge to the
node with an outgoing t-edge, there is an a-path such that
each node on the path has a b-successor.

We then exhibit two families of graphs, Gm1 and Gm2 , over
the usual graph vocabulary, so that for each m we have
G1
m ≡m G2

m (i.e., the duplicator has a winning strategy in
the usual m-round game), and all the G1

ms have property P ,
and G2

ms do not. To do so, we use Hanf-locality and the
property that Hanf-locality, with a sufficiently long radius
(≥ 3m), implies the ≡m relation (cf. [31]).

We then extend graphsGm1 andGm2 with a single new node v
that has a-edges to and from every other node. Then a com-
position argument shows that the m-round winning strategy
of the duplicator extends to the m-round winning strategy in
the game on extended graphs viewed as structures in the vo-
cabulary that includes all the transitive closures. Basically,
the duplicator follows the original game onGm1 andGm2 , and
if the spoiler plays the new added node in one graph, then the
duplicator responds with the added node in the other graph.
What makes it work as a strategy in the extended vocabu-
lary is that in the expanded graphs the interpretations of the
transitive closures are easy: Ea∗ is the total relation and no
other relation Ex has a path of length 2. This implies that
the property P is not FO-definable even in the expanded vo-
cabulary.

But note that P is definable in GXPathcond by s(a[b])∗[t].
So assuming GXPathcond ⊆ FO we get a contradiction. 2

We can now fulfill our promise and establish separation be-
tween GXPathcore and GXPathreg. Since GXPathcore ⊆ FO
and we just saw a conditional (and thus regular) GXPath
query not expressible in FO, we have:

COROLLARY 4.9. GXPathcore (GXPathreg.

4.2 Expressiveness of data languages
By coupling the basic navigational languages – GXPathcore
and GXPathreg – with various possibilities of data tests,
such as no data tests, constant tests, equality tests, or both,
we obtain eight languages, ranging from GXPathcore to
GXPathreg(c,eq). Recall that adding counting does not af-
fect expressiveness, only the complexity of query evaluation.

The question is then, how do these fragments compare to
each other? Basically, each fragment is of the form L(t),
where L is the navigational language and t is the set of al-
lowed data tests. We next show that there are no unexpected
interdependencies: that is, L(t) is strictly less expressive
than L′(t′) iff:

1. L ⊆ L′ (in other words, L = L′ or L = GXPathcore
and L′ = GXPathreg),

136

2. t ⊆ t′; and
3. at least one of the above inclusions is strict (i.e., either
L = GXPathcore and L = GXPathreg, or t (t′).

Formally, we state the following.

THEOREM 4.10. The relative expressive power of graph
XPath languages with data comparisons is as shown below:

GXPathcore

GXPathcore(c) GXPathcore(eq) GXPathreg

GXPathcore(c,eq) GXPathreg(c) GXPathreg(eq)

GXPathreg(c,eq)

Here a line upwards means that the fragment is strictly con-
tained in the other, while the lack of the line means that the
fragments are incomparable.

Proof. The result follows from Corollary 4.9 (for naviga-
tional fragments) and the following two observations which
show that c tests and eq tests are not mutually definable.
Namely, take an alphabet Σ containing letter a. Let c be a
fixed data value. Then:

• There is no GXPathreg(eq) expression equivalent to
the GXPathcore(c) query qc := (= c).
• There is no GXPathreg(c) expression equivalent to the

GXPathcore(eq) query qeq := 〈a = a〉.

For the first item, simply take two single-node data graphs
G1 and G2, with G1’s single node holding value c, and G2

holding a different value c′. Hence, JqcKG1 selects the only
node of G1, while JqcKG2 = ∅. However, a straightforward
induction on the structure of expressions shows that for ev-
ery GXPathreg(eq) query e we have JeKG1 = JeKG2 .

For the second item assume that there is an GXPathreg(c)
expression ex equivalent to qeq. Take any three pairwise
distinct data values x, y, z that are different from all the con-
stants appearing in ex and let G1 and G2 be as below:

x

v1

y z

x

v1

y y

v2 v3v2 v3

a a a a

G1 G2

One can show by straightforward induction on
GXPathreg(c) expressions e that use only constants

appearing in ex that JeKG1 = JeKG2 . Thus, qeq cannot be a
GXPathreg(c) expression, since JqeqKG1 6= JqeqKG2 .

Note that this also shows that GXPathcore (GXPathcore(c)
and GXPathcore (GXPathcore(eq). 2

We saw that for navigational features, core graph XPath cap-
tures FO3. The question is whether this continues to be so in
the presence of data tests. First, we need to explain how to
describe data graphs as FO-structures to talk about FO with
data tests.

Following the standard approach for data words and data
trees [42], we do so by adding a binary predicate for testing
if two nodes hold the same data value. That is, a data graph is
then viewed as a structureG = 〈V, (Ea, Ea∗)a∈Σ,∼〉 where
v ∼ v′ iff ρ(v) = ρ(v′). To be clear that we deal with FO
over that vocabulary, we shall write FO(∼). If we want to
talk about constant data tests (i.e., =c), we assume that the
FO vocabulary contains constants. In that case we shall refer
to FO(c,∼).

It turns out that the equivalence with FO3 breaks when we
add tests on data that have been seen so far.

THEOREM 4.11. • GXPathcore(eq) (FO3(∼);

• GXPathcore(c,eq) (FO3(c,∼).

Proof sketch. The first containment uses the translation into
FO3 shown in the proof of Theorem 4.1. For the new data
operators, we use the following. If e = 〈α = β〉 then

Fe(x) ≡ ∃y, z(y ∼ z ∧ Fα(x, y) ∧ ∃y(z = y ∧ Fβ(x, y)))

and likewise for the inequality comparison.

Translation of constants is self-evident.

To prove strictness we show that the FO3 query F (x, y) ≡
x ∼ y is not definable in GXPathreg(c,eq). Note that F
defines the set of all pairs of nodes carrying the same data
value. The proof of this is implicit in the proof of Proposition
6.1. 2

Thus, the standard XPath data tests are insufficient for cap-
turing FO3 over data graphs. Nonetheless, there is a simple
extension of data tests that lets core graph XPath capture
FO3(∼); we shall present it in Section 6.

5. COMPLEXITY OF QUERY EVALUA-
TION

In this section we investigate the complexity of querying
graph databases using variants of GXPath. We consider two
problems. One is QUERY EVALUATION, which is essen-
tially model checking: we have a graph database, a query
(i.e., a path expression), and a pair of nodes, and we want to
check if the pair of nodes is in the query result. That is, we
deal with the following decision problem.

137

PROBLEM: QUERY EVALUATION
INPUT: A graph G = (V,E),

a path expression α, nodes v, v′ ∈ V .
QUESTION: Is (v, v′) ∈ JαKG?

The second version we consider is QUERY COMPUTATION,
which actually computes the result of a query and outputs it.
Normally, when one deals with path expressions, one fixes
a context node v and looks for all nodes v′ such that (v, v′)
satisfies the expression. We deal with a slightly more general
version here, where the context node need not be single.

PROBLEM: QUERY COMPUTATION
INPUT: A graph G = (V,E), a path expression α,

and a set of nodes S ⊆ V .
OUTPUT: All v′ ∈ V such that there exists a v ∈ S

with (v, v′) ∈ JαKG.

Note that in both problems we deal with combined complex-
ity, as the query is a part of the input.

For measuring complexity, we let |G| denote the size of the
graph and |α| (resp., |ϕ|) denote the size of the path expres-
sion α (resp., node expression ϕ).

The main result of this section is that the combined com-
plexity remains in polynomial time for all fragments we de-
fined in Section 3. Not only that, but the exponents are low,
ranging from linear to cubic. Notice that for navigational
fragments, the low (and even linear) complexity should not
come as a surprise. We noticed that GXPathpath-pos

reg is es-
sentially PDL, for which global model checking is known
to have linear-time complexity [3, 17]. Also, polynomial-
time combined complexity results are known for pure navi-
gational GXPathreg from the PDL perspective as well [30].

Our main contribution is thus to establish the low combined
complexity bounds for fragments that handle two new fea-
tures we added on top of navigational languages: data value
comparisons and counters. The former does increase expres-
siveness; the latter, as already remarked, does not, but it can
make expressions exponentially more succinct. Thus, work
is needed to keep combined complexity polynomial when
counters are added.

For obtaining the linear-time complexities in this section, we
assume a total order on the labels of edges. We assume that
graphs are represented as adjacency lists such that we can
obtain, for a given node v, the outgoing edges or the incom-
ing edges, sorted in increasing order of labels, in constant
time. (We note that the linear-time algorithm from [3] for
PDL model checking also assumes that adjacency lists are
sorted.) As we said, the following result is immediate from
PDL model checking techniques:

FACT 5.1. Both QUERY EVALUATION and QUERY

COMPUTATION problems for GXPathpath-pos
reg can be solved

in linear time, i.e., O(|α| · |G|).

PROOF. Since global model checking for PDL is in linear
time [3, 17], it is immediate that QUERY EVALUATION is in
time O(|α| · |G|). From this, the same bound for QUERY
COMPUTATION can also be derived. Given a query α and
a set S, we can mark the nodes in S with a special predi-
cate that occurs nowhere in α. We can then modify query α
and use the algorithm for global model checking for PDL to
obtain the required output of QUERY COMPUTATION.

The main upper bound in this section shows that combined
complexity of both problems is polynomial for the most ex-
pressive language we have: regular graph XPath with count-
ing, constant tests, and equality tests.

THEOREM 5.2. Both QUERY EVALUATION and QUERY
COMPUTATION problems for #GXPathreg(c,eq) can be
solved in polynomial time, specifically, i.e., O(|α| · |G|3).

Proof sketch. We can do a dynamic programming algorithm
that considers the parse tree of α in a bottom-up fashion and
computes, for every subexpression β of α, the table JβKG.
For each subexpression ϕ, we store in a bit-vector the nodes
of G that match ϕ.

When we see a subexpression of the form βn,m, we compute
the adjacency matrix representation of JβKG and compute
Jβn,mKG by using fast squaring methods. This approach is
similar to the one used for regular expressions with counters
(cf. [33]). 2

The algorithm for Theorem 5.2 is based on connectivity ma-
trix multiplications for dealing with the counters. If the
queries do not have counters, we can evaluate them more ef-
ficiently because we can avoid matrix multiplications. This
allows us to drop data complexity from cubic to quadratic.

THEOREM 5.3. Both QUERY EVALUATION and QUERY
COMPUTATION problems for GXPathreg(c,eq) can be
solved in polynomial time, specifically, i.e., O(|α| · |G|2).

The algorithm in the proof for Theorem 5.3 actually com-
putes the entire relation JαKG. Since the size of this relation
can be quadratic in the worst-case, a significantly faster al-
gorithm for computing JαKG cannot be expected.

A result related to Theorem 5.3 is shown in [30]. Here
the combined complexity is investigated for an extension of
PDL which includes the complement operator and context-
free path expressions, and a model-checking algorithm
based on adjacency matrix operation is presented. The al-
gorithm from [30] uses time O(|ϕ|2 · |V |5), where |V | is the
number of nodes in G.

Finally, we give a fragment that takes data value compar-
isons into consideration and still permits linear-time query
evaluation and computation. We do so by noticing that us-
ing only constant tests (as opposed to equality tests) does not
introduce extra complexity for evaluation of path-positive
GXPath. Since the latter is essentially PDL, we get an al-
gorithm that is linear in both the query and the data. That is,
we have the following.

138

THEOREM 5.4. Both QUERY EVALUATION and QUERY

COMPUTATION problems for GXPathpath-pos
reg (c) can be

solved in linear time, i.e., O(|α| · |G|).

6. BEYOND XPATH TESTS
We have seen previously that the equivalence of core graph
XPath and FO3 established for pure navigational frag-
ments does not extend to data tests, as GXPathcore(eq) (
FO3(∼). This naturally leads to a question: what can be
added to data tests to capture the full power of FO3?

The answer to this is to add a different type of equality com-
parison, not present in XPath but used previously to enhance
the power of RPQs and CRPQs [32]. These are defined by
adding two expressions to the grammar for α: one is α=, the
other is α 6=. Semantics, over data graphs, is

Jα=KG = {(v, v′) ∈ JαKG | ρ(v) = ρ(v′)}
Jα6=KG = {(v, v′) ∈ JαKG | ρ(v) 6= ρ(v′)}

In other words, we test whether data values at the beginning
and at the end of a path are the same, or different. Such
an extension is denoted by ∼, i.e. we talk about languages
GXPath(∼) (with the usual sub- and superscripts).

The first observation is that these tests indeed add to the ex-
pressiveness of the languages.

PROPOSITION 6.1. The path query a=, for a ∈ Σ, is not
definable in GXPathreg(c,eq).

Note that this query, a=, is definable on trees by the
GXPathcore(eq) query [〈ε = a〉] · a · [〈ε = a−〉]. This is
because the parent of a given node is unique. However, on
graphs this is not always the case, and thus new equality tests
add power.

The proof (omitted here) shows that, even though
GXPathreg(c,eq) can test if a node has an a-successor with
the same data value by the means of expression 〈ε = a〉,
which will return the set {v ∈ V | ∃v′ ∈ V | (v, v′) ∈
Ja=KG}, it has no means of retrieving that specific succes-
sor.

With the extra power given to us by the equality tests, we
can capture FO3 over data graphs.

THEOREM 6.2. GXPathcore(∼) = FO3(∼).

Proof sketch. We follow the technique of the proof of The-
orem 4.1. All of the translations used there still apply.
The proof that relation algebra is contained in the language
GXPathcore(∼) is the same as without data values. We only
have to add conversion of the new symbol ∼: if R =∼, then
e = ε ∪ (ε)=.

For the other direction we have to show how to translate new
path expressions α= and α6= into FO3(∼). This is done as
follows: if e = α= then Fe(x, y) ≡ Fα(x, y) ∧ x ∼ y and
likewise for inequality. The equivalences easily follow. Now

the theorem follows from the equivalence of relation algebra
and FO3 [43]. 2

From this we know that every GXPathcore(eq) query can be
expressed in GXPathcore(∼). We can also perform such a
transformation explicitly. It is not difficult to see that ev-
ery node expression of the form 〈α = β〉 is equivalent to
GXPathcore(∼) expression 〈α · (α− · β)= · β− ∩ ε〉, and
similarly for 6=.

Query evaluation in the extended fragment.

We have added new features to the language. They increased
its expressiveness, so the question arises whether the com-
plexity of query evaluation (and query computation) suffers
from this addition. The good news is that even with this ad-
dition, we retain polynomial combined complexity of both
query evaluation and query computation, still with a low-
degree polynomial.

THEOREM 6.3. Both QUERY EVALUATION and QUERY
COMPUTATION problems for GXPathreg(c,eq,∼) can be
solved in polynomial time, specifically in time O(|α| · |G|2).

Proof sketch. The algorithm is similar to the one of Theo-
rem 5.3, which computes a table JβKG for every path subex-
pression β. We now alter it so that, every time when we meet
a subexpression of the form β=, we walk through the table
for JβKG and remove all tuples with different data values,
thus obtaining a table for Jβ=KG. We proceed similarly for
Jβ6=KG. 2

7. CONCLUSIONS
After conducting the study of XPath-like languages over
graph databases, our main conclusion is that they were per-
haps unfairly overlooked as potential query languages. And
indeed, some practitioners do attempt to use them [13, 26]
probably following the intuition that such languages should
behave well in the graph database context.

Our goal was to provide a theoretical foundation for this in-
tuition. We did it by studying the expressiveness and com-
plexity of various XPath formalisms over graph databases.
Our languages included purely navigational features, to
which one could add any of several features for handling
data stored in graph databases. The navigational features
corresponded to core and regular flavors of XPath, while
data tests included different comparisons of data values: ei-
ther XPath-like based on standard node tests, or more ad-
vanced, doing tests involving endpoints of paths.

We showed that the languages correspond to typical yard-
sticks for relational and XML languages. The navigational
power of the core language captures FO3, and this continues
to be so with the most advanced data test (although typical
XPath data tests fall short of the full FO power). For frag-
ments based on regular XPath, we had correspondence with
a three-variable fragment of the transitive closure logic.

We showed that the languages fit in well with some of the
features proposed for SPARQL, the language for query-

139

ing RDF data. Specifically, we showed that one of the
navigational fragments we deal with corresponds precisely
to a popular navigational formalism for SPARQL, namely
nested regular expressions, and we handled numerical tests
on the numbers of repetitions of path, also proposed in the
SPARQL standardization effort.

We then demonstrated that all the languages behave very
well computationally: the combined complexity of all of
them is polynomial. In fact, it is always a low-degree poly-
nomial. The worst case complexity is cubic, and it applies
only in the case of numerical tests, which are known to make
expressions exponentially more succinct. In other cases, it is
quadratic, and can even drop to linear for some fragments.

Given these desirable properties of XPath-like languages
for graph databases, we believe this theoretical study jus-
tifies an attempt to experiment with those in practical sce-
narios, perhaps in less ad hoc way than was done in [13, 26].
As for a concrete language to adapt, we believe languages
based on GXPathpath-pos

reg hold a lot of promise. The navi-
gational part is essentially PDL and therefore firmly rooted
in logic. Complexity-wise it behaves like XPath: it can
be evaluated in linear time and its satisfiability problem is
EXPTIME-complete [28]. Perhaps more important, its prox-
imity to XPath makes it very accessible to practitioners who
are familiar with XML technology. In addition, as our study
shows, it can be augmented with all other features (equality
and constant tests, counting, even equality tests going be-
yond XPath) without incurring significant complexity costs.

Acknowledgment. The authors would like to thank Juan
Reutter for helpful comments during the preparation of this
manuscript. This work was supported by the FET-Open
project FoX (Foundations of XML), grant agreement FP7-
ICT-233599, by EPSRC grant G049165, and by DFG grant
MA 4938/2-1.

8. REFERENCES

[1] S. Abiteboul, V. Vianu. Regular path queries with constraints. J.
Comput. Syst. Sci. 58(3):428–452 (1999).

[2] N. Alechina, S. Demri, M. de Rijke. A modal perspective on path
constraints. J. Log. Comput. 13(6): 939–956 (2003).

[3] N. Alechina and N. Immerman. Reachability logic: An efficient
fragment of transitive closure logic. L. J. of the IGPL 8(3):325–337
(2000).

[4] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In Handbook of
Philosophical Logic, vol. 2, Springer 2001.

[5] R. Angles, C. Gutiérrez. Survey of graph database models. ACM
Comput. Surv. 40(1): (2008).

[6] P. Barceló, D. Figueira, L. Libkin. Graph logics with rational
relations and the generalized intersection problem. In LICS 2012.

[7] P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive languages for
path queries over graph-structured data. In PODS, pages 3–14, 2010.

[8] P. Barceló, J. Pérez and J. L. Reutter. Relative expressiveness of
nested regular expressions, In AMW 2012.

[9] M. Bojanczyk and S. Lasota. An extension of data automata that
captures XPath. In LICS 2010, pages 243–252.

[10] M. Bojanczyk, P. Parys. XPath evaluation in linear time. J. ACM
58(4): 17 (2011).

[11] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Containment of conjunctive regular path queries with inverse. In
KR’00, pages 176–185.

[12] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. An
automata-theoretic approach to regular XPath. In DBPL 2009, 18-35.

[13] S. Cassidy. Generalizing XPath for directed graphs. In Extreme
Markup Languages, 2003.

[14] B. ten Cate. The expressivity of XPath with transitive closure. In
PODS 2006, pages 328–337.

[15] B. ten Cate, C. Lutz. The complexity of query containment in
expressive fragments of XPath 2.0. J. ACM 56(6): (2009).

[16] B. ten Cate, M. Marx. Navigational XPath: calculus and algebra.
SIGMOD Record 36(2): 19–26 (2007).

[17] R. Cleaveland and B. Steffen. A Linear-time model-checking
algorithm for the alternation-free modal mu-calculus. Formal
Methods in System Design, 2(2):121–147, 1993.

[18] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for
real life recursion. In PODS’90, pages 404–416.

[19] I. Cruz, A. Mendelzon, P. Wood. A graphical query language
supporting recursion. In SIGMOD’87, pages 323–330.

[20] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Graph pattern matching: from
intractable to polynomial time. PVLDB 3(1): 264–275 (2010).

[21] W. Fan. Graph pattern matching revised for social network analysis.
In ICDT 2012, pages 8–21.

[22] D. Figueira. Reasoning on words and trees with data. PhD thesis,
2010.

[23] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D.
Van Gucht, S. Vansummeren, Y. Wu. Relative expressive power of
navigational querying on graphs. ICDT 2011, 197-207

[24] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D.
Van Gucht, S. Vansummeren, Y. Wu. The impact of transitive closure
on the boolean expressiveness of navigational query languages on
graphs. FoIKS 2012, 124-143

[25] G. Gottlob, C. Koch, R. Pichler. Efficient algorithms for processing
XPath queries. ACM Trans. Database Syst. 30(2):444–491 (2005).

[26] Gremlin Language. https://github.com/tinkerpop/gremlin/wiki
[27] C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations of semantic

Web databases. J. Comput. Syst. Sci. 77(3): 520–541 (2011).
[28] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
[29] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. W3C

Working Draft 5 January 2012.
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/

[30] M. Lange. Model checking propositional dynamic logic with all
extras. J. Applied Logic 4(1), 39–49, 2006.

[31] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[32] L. Libkin and D. Vrgoč. Regular path queries on graphs with data.

ICDT 2012, pages 74–85.
[33] K. Losemann and W. Martens. The complexity of evaluating path

expressions in SPARQL. PODS 2012, pages 101–112.
[34] C. Lutz, D. Walther. PDL with negation of atomic programs. In

IJCAR 2004, pages 259–273.
[35] M. Marx. XPath and modal logics of finite DAGs. In TABLEAUX

2003, pages 150–164.
[36] M. Marx. Conditional XPath. ACM Trans. Database Syst. 30(4):

929–959 (2005).
[37] J. Pérez, M. Arenas, C. Gutierrez. Semantics and complexity of

SPARQL. ACM TODS 34(3): 2009.
[38] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A navigational

language for RDF. In J. Web Sem. 8(4): 255–270 (2010).
[39] R. Ronen and O. Shmueli. SoQL: a language for querying and

creating data in social networks. In ICDE 2009.
[40] M. San Martín, C. Gutierrez. Representing, querying and

transforming social networks with RDF/SPARQL. In ESWC 2009,
pages 293–307.

[41] Th. Schwentick. XPath query containment. SIGMOD Record 33(1):
101–109 (2004).

[42] L. Segoufin. Static analysis of XML processing with data values.
SIGMOD Record 36(1): 31–38 (2007).

[43] A. Tarski and S. Givant. A Formalization of Set Theory Without
Variables. AMS, 1987.

[44] XML Path Language (XPath). www.w3.org/TR/xpath.

140

