
Certain and Possible XPath Answers

Sara Cohen
School of Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem, Israel

sara@cs.huji.ac.il

Yaacov Y. Weiss
School of Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem, Israel

yyweiss@cs.huji.ac.il

ABSTRACT
Formulating an XPath query over an XML document is a
difficult chore for a non-expert user. This paper introduces
a novel approach to ease the querying process. Instead of
specifying a query, the user simply marks positive examples
X+ of nodes that fit her information need. She may also
mark negative examples X− of undesirable nodes. A deduc-
tive method, to suggest additional nodes that will interest
the user, is developed in this paper.

To be precise, a node y is a certain answer if every query
returning all positive examples X+, and not returning any
negative example from X−, must also return y. Similarly,
y is a possible answer if there exists a query returning X+

and y, while not returning any node in X−. Thus, y is likely
to be of interest to the user if y is a certain answer, and
unlikely to be of interest if y is not even a possible answer.
The complexity of finding certain and possible answers, with
respect to various classes of XPath, is studied.

It is shown that for a wide variety of XPath queries (in-
cluding child and descendant axes, wildcards, branching and
attribute constraints), certain and possible answers can be
found efficiently, provided that X+ and X− are of bounded
size. To prove this result a novel algorithm is developed.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query lan-
guages; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—Query formulation

General Terms
Algorithms, Theory

1. INTRODUCTION
Formulating an XPath query over an XML document is

a difficult (if not impossible) chore for a non-expert user.
In order to correctly formulate a query, the user must be
intimately familiar with the XPath syntax. In addition, the

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.

EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

user must have complete familiarity with the XML schema
of the document she is querying. However, often users are
not familiar with all details of relevant XML schema. In fact,
they may be completely oblivious of the XML structure, as
they may view XML documents as HTML, via a style-sheet
transformation. Obviously, lack of knowledge of the query
language and the document format completely preclude non-
expert users from querying XML documents.

This paper introduces a novel approach to ease the query-
ing process. The underlying assumption of this paper is that
the user has an information need that can be expressed as an
XPath query of some type. In fact, the user may not even
be interested in deriving all answers to the XPath query,
but, rather, in finding enough answers of interest. We as-
sume that the user does not have the expertise to formulate
her query. Therefore, instead of specifying a query, the user
simply marks positive examples X+ (and possibly negative
examples X−) of nodes that fit (resp. do not fit) her informa-
tion need. Note that she may even mark these in the HTML
rendering of the XML document, as long as the underlying
XML node can be recognized by the system. The system
then suggests additional nodes that might be of interest to
the user, given the user examples.

Deciding which nodes may interest the user is challenging.
We introduce a precise semantics to this question, by defin-
ing certain and possible answers. Intuitively, a node y is a
certain answer if every XPath query returning all positive
examples X+, and not returning any negative example from
X−, must also return y. Similarly, y is a possible answer if
there exists an XPath query returning X+ and y, while not
returning any node in X−. Thus, assuming the the user’s
underlying information need is expressible in XPath, y is
likely to be of interest to the user if y is a certain answer,
and unlikely to be of interest if y is not even a possible an-
swer.

In this paper we consider XPath queries with child and
descendant axes, wildcards, branching, and attribute condi-
tions of the form @a θ c where a is the name of an attribute,
θ is one of =,≤,≥ and c is a constant. We demonstrate the
notions of certain and possible answers with a simple exam-
ple, below. Example 3.6 is more intricate, and takes into
consideration variations in the document structure.

Example 1.1. Consider the XML document in Figure 1,
listing books for sale. We have numbered the book-labeled
nodes for easy reference. Suppose Nodes 1 and 2 (hereafter
referred to as x1 and x2) are chosen by the user as posi-
tive examples, i.e., X+ = {x1, x2}. Then, for example, x4

is a possible answer as there is an XPath query returning

237



forSale

qq uu ##
,, --1book

{{

��

##

2book

{{

��

##

3book

{{

��

##

4book

{{

��

##

5book

{{

��

##title
Hop on

Pop

price
8.95

title
Green Eggs
and Ham

price
3.95

title
The

Lorax

price
5.95

title
Go Dog,

Go

price
3.95

title
Very Hungry
Caterpillar

price
6.00

author
Dr. Seuss

author
Dr. Seuss

author
Dr. Seuss

author
P.D. Eastman

author
Eric Carle

Figure 1: XML document with a simple structure, listing books for sale.

x1, x2, x4. (In fact, without negative examples, every node
is a possible answer, as witnessed by the XPath query re-
turning all nodes in the document.) Node x3 is a certain
answer as every query returning x1 and x2 will also return
x3. To see this observe that the most precise XPath query re-
turning x1 and x2 will return books with author “Dr. Seuss”
and price between 3.95 and 8.95, and x3 satisfies both these
properties.

Suppose now that x5 is chosen by the user as a negative
example, i.e., X− = {x5}. It is not difficult to see that x4 is
no longer a possible answer, as any XPath query returning
x1 and x2, cannot differentiate between x4 and x5.1

Determining certain and possible answers is a nontrivial
problem, and this is especially true for documents with less
regular structures. In this paper we study the complexity of
these problems. Our main contributions are:

• We develop a novel method to ease the querying process
via the notions of certain and possible answers. We
emphasize that this method is suitable for non-expert
users who cannot formulate XPath queries, and who
are interested in viewing sufficiently many (but not
necessarily all) results for their information needs.

• The problems of determining certain and possible an-
swers are abstracted to the more general query exis-
tence problem: given X+ and X−, determine whether
there exists a query that returns all of X+ and none
of X−.

• We introduce query automata as a compact summary
of queries returning the positive examples X+.

• We characterize query existence by an intricate set-
based algorithm, which allow us to determine whether
there exists a query in the language of an automata
that does not return any of X−.

• Finally, by proving a bound on the size of the sets
that our algorithm produces, we show that determin-
ing certain answers, possible answers and query ex-
istence are all in polynomial time in the size of the
document, provided that X+ and X− are of bounded
size. This bound on X+ and X− is natural, as these
sets are hand-picked by the user. Our results hold for
a wide variety of XPath queries, including child and

1We consider a fragment of XPath that does not allow at-
tribute conditions involving disjunction or 6=. If these were
allowed, then x4 would remain a possible answer. However,
such an XPath class would often yield useless results in the
context of our paper, as we can use these constructs to list
all allowed or forbidden values.

descendant axes, wildcards, branching and attribute
constraints.

This paper is structured as follows. Section 2 discusses
related work. Section 3 introduces necessary definitions, in-
cluding the formal definitions of the problems of interest.
Sections 4–6 present our polynomial algorithm for XPath
queries with child and descendant axes, as well as wildcards.
Extensions that allow for attributes and branching are pre-
sented in Section 7. Finally, in Section 8, we conclude.

2. RELATED WORK
The notions of certain and possible answers have been

studied extensively in the context of data exchange, e.g. [5,
12], and are applied when the queried database is not known
precisely. In this paper, we take a completely different ap-
proach. In particular, we assume that the database is known,
but the user query is only partially known (via the informa-
tion conveyed by X+ and X−). To the best of our knowledge
certain and possible answers have not been studied before
in this context.

While this paper is the first to consider the problems of de-
termining certain and possible answers for unknown queries,
there are three related areas of past work. First, there is a
wealth of articles which aim at simplifying the querying pro-
cess for the non-expert user. Second, there are several works
that aim at explaining the presence (or absence) of query re-
sults. Third, the problem of learning XPath queries (or tree
patterns) from user examples has been studied in the past.
We discuss each of these areas below.

XML Querying for the Non-Expert User. There seems
to be a consensus that querying XML by a non-expert user
is difficult. Hence, there are many papers that aim at sim-
plifying this task. Most work on this topic take one of the
two following approaches: use of keywords or flexible inter-
pretations of queries.

There has been considerable research on XML keyword
search, e.g., [14,16,18], suggesting that users formulate their
queries over XML as keyword searches. The burden is then
upon the system to return results that will be of interest
to the user. Different semantics and ranking methods have
been developed. While keyword searches are extremely sim-
ple for formulation, they are generally not very expressive.
Thus, for example, users cannot use inequalities to constrain
the results, nor can they explicitly state the relationships be-
tween various keywords.

A complementary approach is to allow users to formu-
late queries as trees, and then flexibly interpret these query
trees, to return answers that are somewhat similar to the
user’s query, e.g., [7,22,24]. This results in a more expressive

238



query language, which is both advantageous (since it allows
the user to more precisely express her information need),
as well as disadvantageous (as it makes querying again less
intuitive).

The approach suggested in this paper is complementary to
both of the above. We do not require the user to formulate
her information need as a query at all, but, instead, she
marks positive and negative examples from the document,
and then the system automatically finds additional nodes of
interest.

Explaining Query Results. Recently, there has been con-
siderable interest in explaining query results to a user, i.e.,
in justifying why certain tuples do, or do not, appear in a
query result. Most of this work, e.g., [10,15,17,20], assumes
that the query is given. Answers take the form of prove-
nance of tuples, or explanations as to which query clause
caused tuples to be eliminated. This is very different from
our framework in which only the answers are given, and not
the queries.

Somewhat more related are [11, 25, 26]. In [26], the focus
is on generating a query that almost returns a given output
(with a precise definition for “almost”). In [25] missing tu-
ples in a query result are explained by generating a query
that returns the query result, as well as the missing tuples.
Finally, in [11] the problem of synthesizing view definitions
from data is studied. There are many differences between
these works and ours. One obvious difference is that these
works consider relational databases and conjunctive queries,
and the results are not immediately applicable to other set-
tings. However, perhaps the most significant difference is
that these papers focus on deriving queries, while we fo-
cus on determining whether nodes are potentially interest-
ing answers for the user. This is a crucial difference, as our
notions of certain and possible answers take into consider-
ation a huge (actually infinite) number of different queries,
at the same time. To be precise, finding all queries that re-
turn X+, while not returning X− is intractable, due to the
potentially mammoth number of such queries; whereas we
show that determining certain and possible answers can be
solved in polynomial time.

Learning XPath and Tree Patterns. There is a wealth of
work on using machine learning techniques to learn XPath
queries or tree patterns from positive and negative exam-
ples. Most often, these works are in the context of wrapper
induction. Below we discuss some of the more theoretical
related work on learning queries.

In [23], an algorithm for learning XPath queries from ex-
amples was presented. The algorithm was shown to be poly-
nomial for certain types of XPath queries (e.g., the queries
must be anchored), when only positive examples are given.
The presence of negative examples rendered their learning
problem to be NP-complete. The goal of [23] is rather dif-
ferent from that of this paper (and thus, the techniques em-
ployed are also different). In particular, one of the main re-
sults of [23] states that for every XPath query there exists a
characteristic set (i.e., a set of XML fragments with marked
positive examples) for which the query can be learned, using
their algorithm, in polynomial time. Our goal is different, as
we do not expect to learn the user’s query (which might re-
quire many examples), but rather to find additional answers
that are consistent with the input provided by the user.

Slightly more related are the works of [1, 2, 4, 6, 8, 9, 19,
21]. The goal of these papers is to learn a query (e.g.,
in the classes XPath, tree automata, tree patterns, (k, l)-
contextual tree languages), usually using equivalence or mem-
bership questions. Intuitively, equivalence questions provide
the user with a query (or examples of results of a query) and
ask the user whether the computer-provided query is equiv-
alent to that of the user. Membership questions provide the
user with an example, and ask the user whether this example
should be marked positively. Equivalence questions are con-
sidered more natural for a user, as membership questions of-
ten provide the user with a document that is completely dif-
ferent from the document of current interest, and ask ques-
tions about this different document. Many negative results
have been shown, most notably, that tree automata cannot
be learned in polynomial time with equivalence questions [4],
as well as a similar negative result for learning even simple
fragments of XPath [8, 9]. Several of these works [19, 21]
have been experimentally tested against wrapper induction
benchmarks, and have been shown to work extremely well.

The results of [1, 2, 4, 6, 8, 9] are, once again, completely
different from (and complementary to) those of ours. Most
significantly, we do not ask the user questions of any type,
nor do we attempt to precisely learn the user’s query of
interest. Instead, we generalize the user’s examples by de-
veloping an algorithm that determines whether a node in
the document is returned by the intersection (resp. union)
of all XPath queries that are consistent with the user ex-
amples, in order to provide the user with additional certain
(resp. possible) answers of interest. Note that we neither
arbitrarily choose some consistent XPath query to return to
the user,2 nor do we burden the user with questions. When
the precise user’s query is required for some purpose, our
approach is not sufficient (and instead, those of [8,9] can be
used). However, in many contexts, the user is simply inter-
ested in seeing enough nodes of interest (e.g., for imprecise
querying of XML). In these cases, we expect our approach to
be very useful. The negative results on learnability from the
above papers strengthen the motivation for our approach, as
precisely learning the user’s query will often not be possible
in polynomial time, even when the user is willing to answer
questions. Thus, [1, 2, 4, 6, 8, 9] do not provide solutions for
ad-hoc querying, which is the goal of this paper.

3. DEFINITIONS

XML Documents. Let Ne and Na be fixed infinite sets of
element and attribute names. Let D< be a fixed infinite and
totally ordered domain of values and D be a fixed infinite
(non-ordered) domain of values. We model XML documents
as unranked trees, where each node has a label taken from
Ne. In addition, a node can have any number of attributes,
with names from Na and values in D< ∪ D. We formally
define documents below.

Definition 3.1 (Document). A document is a tuple
d = (V, E , r, lab,@) where

• (V, E , r) is an unranked tree with nodes V, edges E and
root r ∈ V;

2Our algorithm is capable of returning such an arbitrary
XPath query if desired.

239



1R

tt �� ))2A@a=2

��

6B

��

9A

�� ""
3B@a=3

�� ##

7A@a=3

��

10C

��}}

14B

��
4C

5D 8D
11B

��

13E
15C

12C

Figure 2: XML document d.

• lab is a function from V to Ne, which associates each
node with a label;

• for each a ∈ Na, @a is a partial function from V to
D or from V to D<, which associates nodes with at-
tributes and values.

Remark 1. To simplify the presentation, our nodes do
not have data associated directly with them, rather only via
attributes. To model nodes with data (e.g., as in Figure 1),
we simply assume some attribute @val for each node, with
which the data of the node is associated.

A small document d appears in Figure 2. We will use d
as a running example throughout the paper. The nodes are
numbered for easy reference; we will refer to these nodes
as x1, . . . , x15. (The circles and box can be ignored for the
time being.) Note that nodes x2, x3, x7 have associated at-
tributes.

Query Syntax. We consider XPath queries with child and
descendant axes, wildcards, branching and attribute con-
straints, as defined next.

Definition 3.2 (Query). A query is an expression q
of the form

q ::= ↓l | ⇓l | q/q | q[q] | q[@a θ c] ,

where ↓ and ⇓ represent the child and descendant axes, re-
spectively, l ∈ Ne ∪ {∗} is a label or wildcard, q/q is the
concatenation of two queries, q[q] is used to express branch-
ing conditions and @a θ c constrains the value of attribute
a ∈ Na, with θ ∈ {≤,≥,=} and c ∈ D< ∪ D.

Of course, we will assume that θ is “=” if c ∈ D, i.e., if
c is part of an unordered domain. Note that for technical
reasons, we will not allow queries to contain duplicate occur-
rences of the same branching conditions, e.g., ↓D[⇓A][⇓B]
is allowed, while ↓D[⇓A][⇓A] is not.

To make the presentation clear, we use lowercase letters
from the end of the alphabet (z, y, . . .) to denote nodes in a
document. We use lowercase letters from the beginning of
the alphabet (a, b, . . .) to denote names of attributes and up-
percase letters from the beginning of the alphabet to denote
element names (A,B, . . .).

Query Semantics. We formally define the semantics of our
queries, by induction on the structure of a query.

Definition 3.3 (Results). Let d be a document, x and
y be nodes in d, and q be a query. We say that q returns y
from x, written d |= q(x, y), if

• q = “↓l”: y is a child of x and either l = ∗ or lab(y) =
l;

• q = “⇓l”: y is a descendant of x and either l = ∗ or
lab(y) = l;

• q = “q1/q2”: there is a node z such that d |= q1(x, z)
and d |= q2(z, y);

• q = “q1[q2]”: d |= q1(x, y) and there is some z such
that d |= q2(y, z)

• q = “q1[@a θ c]”: d |= q1(x, y) and @a is defined on y
with a value ca such that ca θ c.

Finally, we define the result of q on d as

q(d) = {x | d |= q(r, x)} ,

where r is the root node of d.

Example 3.4. To demonstrate our query semantics, we
present several queries with their results over d (Figure 2):

↓∗ / ↓∗ / ↓∗ (d) = {x4, x5, x8, x11, x13, x15}
⇓A[@a ≤ 3] /⇓C(d) = {x4}

↓∗ [↓B][↓C/↓B] /⇓E(d) = {x13} .

Classes of Queries. We will be interested in various classes
of XPath queries. To specify a particular class, we will use
the format C(F ) where F is a subset of features among
{∗, ↓,⇓, [ ],@}. Thus, F lists the features that queries in
the class may contain; ∗, ⇓ and ↓, indicate the allowed pres-
ence of ∗, ⇓ and ↓, respectively, in the query; [ ] allows the
use of the query form q[q] and @ allows the use of the query
form q[@a θ c]. We abstractly denote a class of queries as C,
when the particular set of features is not of importance.

Problems of Interest. Given a set of nodes, from an XML
document, chosen by the user, we wish to determine which
additional nodes are certainly of interest, and which are pos-
sibly of interest, to the user. These two sets are formally
defined next.

We fix a class of queries C, a document d and subsets X+

and X− of nodes in d, called positive and negative exam-
ples, respectively. We use QC(X+,X−) to denote the set of
queries

{q ∈ C | X+ ⊆ q(d) ∧ X− ∩ q(d) = ∅} .

Thus, QC(X+,X−) contains the queries in C that return all
positive examples, and no negative examples. These queries
are said to be consistent with X+ and X−.

Definition 3.5 (Certain and Possible Answers).
The set of certain and possible answers with respect to C, X+

and X−, are defined as follows

CertC(X+,X−) :=
⋂

q∈QC(X+,X−)

q(d)

PossC(X+,X−) :=
⋃

q∈QC(X+,X−)

q(d)

240



Intuitively, y is a certain answer if every query that is
consistent with X+ and X−, also returns y. Similarly, y is
a possible answer if there exists a query that is consistent
with X+ and X−, and that also returns y.

Remark 2. The sets of certain and possible answers are
dependent on the class of queries C, e.g., it is possible for y
to be a certain answer with respect to a class C1, while not
being a certain answer with respect to C2. The subclasses
of XPath considered in this paper were chosen for two rea-
sons. First, they capture the most common XPath features.
Second, they are restricted enough to allow interesting gen-
eralizations, which might not be possible if the language was
richer. To see why, consider allowing disjunctions of XPath
expressions. Then, intuitively, QC(X+,X−) would contain
the query that is the disjunction of all precise expressions de-
scribing the nodes in X+, and thus, CertC(X+,X−) would
not generalize X+ in an interesting manner.

Remark 3. All the definitions and results in this paper
assume that there is a single document d, containing positive
and negative examples. The restriction to a single document
is only to simplify the presentation. However, all results im-
mediately apply even if the examples are taken from multiple
documents.

Remark 4. As X+ and X− are hand-picked by the
user, we will always assume that they are of bounded
size, i.e., X+ and X− have a constant number of nodes,
even though d is unbounded. Since our goal is to enable ad-
hoc imprecise querying, we do not see it likely for the user
to choose an exorbitant number of examples.

We demonstrate these notions with the following example.

Example 3.6. Consider document d from Figure 2. Sup-
pose that X+ contains the circled nodes, i.e., X+ = {x4, x8}.
To make the discussion more intuitive, we consider the class
of XPath queries C(↓,⇓, ∗) (i.e., without branching and at-
tribute conditions). Observe first that x15 is a certain an-
swer. This is immediate as no query in C(↓,⇓, ∗) can dis-
tinguish between x4 and x15.

Next, we show that x5 is also certain answer. To see this,
observe that every query returning x4, x8 must be either one
of the following three queries, or must contain one of these
queries: (1) ⇓A/⇓∗, (2) ⇓B /⇓∗, (3) ↓∗ / ↓∗ /↓∗. All three
of these queries also return x5.

Node x12 is a possible answer, as, e.g., the query ⇓A/⇓∗
returns X+{x4, x8} and x12. However, x12 is not a certain
answer, as ↓∗ / ↓∗ / ↓∗ returns X+, but not x12.

Suppose now that the user has marked the boxed node x13

as a negative example, i.e., X− = {x13}. It is easy to
see that x12 is now a certain answer; every query return-
ing {x4, x8}, and not returning x13, also returns x12.

Thus, small efforts on the part of the user, to mark nodes
as positive or negative examples, can immediately allow many
deductions on the part of the system as to which additional
nodes can interest the user.

One way to determine if a node y is a certain answer, is to
generateQC(X+,X−), and then check if y is also returned by
all these queries. Obviously, this is highly inefficient as there
can be an exponential number of queries that return X+.
(For example, if q returns at least X+, then replacing any
label in q with a wildcard will also yield a query returning

R

zz �� $$
A

��

. . . B

��
B

��

n
times

oo // A

��
C

��

C

��
D D

Figure 3: Document d′ with an exponential number
of minimal queries returning the positive examples.

at least X+.) If constraints on attributes are allowed, then
there can be an infinite number of queries that return X+.

An alternative approach is to find all minimal queries re-
turning X+ and not X−, and only check whether y is re-
turned by these. This is the approach we took in our ex-
planations in Example 3.6. To formalize this notion, we say
that q is minimal with respect to X+ if X+ ⊆ q(d) and
there is no q′ such that X+ ⊆ q′(d) and q′ ⊂ q (i.e., q′

is contained in q for all documents). Unfortunately, as the
following example demonstrates, even if there are only two
positive examples and no negative examples at all, there can
still be an exponential number of minimal queries returning
X+, and hence this strategy is also not feasible.

Example 3.7. Consider the document d′ in Figure 3. The
notation in the figure indicates that there are n repetitions
of the paths in the boxes, i.e., each of the two paths to D are
of length 3n+2. It is easy to see that for X+ containing pre-
cisely the two circled nodes, there are an exponential num-
ber of minimal queries. In particular, every XPath query
q1/⇓C/ · · · /qn/⇓C/⇓D where qi ∈ {⇓A,⇓B} for i ≤ n, is
minimal.

Example 3.7 demonstrates the need for a novel approach
to determining certain and possible answers. Our first step
in solving these problems is to observe that both the problem
of determining possible answers and the problem of deter-
mining certain answers, can be reduced to a single general
existence problem, defined next.

Problem 1 (Query Existence). Let X+ and X− be
sets of nodes in a document d, and let C be a class of queries.
The query existence problem is to determine whether the set
QC(X+,X−) is not empty.

We now show the relationship between this problem and
those of finding possible and certain answers.

Proposition 3.8. Let d be a document, X+ and X− be
sets of nodes, y be a node and C be a class of queries. Then,

1. y ∈ CertC(X+,X−) ⇐⇒ QC(X+,X− ∪ {y}) = ∅;

2. y ∈ PossC(X+,X−) ⇐⇒ QC(X+ ∪ {y},X−) 6= ∅.

We conclude that an efficient solution to the query ex-
istence problem provides us with a efficient algorithm for
determining both certain and possible answers. Such a so-
lution is the focus of this paper.

241



(x2, x7) ⇓∗

%%

start // (x1, x1)

⇓A,⇓∗ 88

⇓B,⇓∗ &&

↓∗,⇓∗//
⇓∗

11

⇓∗

44
(x2, x6)

↓∗,⇓∗//
⇓∗ **

(x3, x7)
↓∗,⇓∗// (x4, x8)

(x3, x6) ⇓∗

99

Figure 4: Query automaton A(Cpath, {x4, x8}).

4. QUERY AUTOMATA FOR X+

Solving the query existence problem, i.e., determining if
QC(X+,X−) 6= ∅, requires taking both X+ and X− into
consideration. In our algorithm, X+ is used to form a query
automaton, and special types of verification mappings, from
the query automaton to X−, are used to characterize query
existence. This section focuses on the construction of the
query automaton, while verification mappings are introduced
in Section 5.

In this section, we fix a document d = (V, E , r, lab,@) and
a bounded set X+. In order to solve the query existence
problem, we introduce the notion of a query automaton.
This structure will be used to concisely represent all queries
in C that return X+, i.e., the set of queries QC(X+, ∅). The
construction of this automaton depends on the specific class
C. We start by considering the class C(∗,⇓, ↓), denoted Cpath.
Later, (in Section 7) we will consider larger (and smaller)
classes of queries and show how to adapt our automata and
algorithm for these classes.

Remark 5. When considering the class Cpath, the prob-
lem at hand bears some similarity to that of inferring com-
mon patterns from strings, e.g. [3, 13]. However, previous
work has focused on finding a single minimal common pat-
tern (with respect to different notions of minimality), and
not on determining whether another string is satisfied by all
(or some) common pattern. In addition, our assumption of
a bound on X+ and X− provides us with new cases that are
efficiently inferable, requiring the development of new tech-
niques.

For each x ∈ X+, we use Vx to denote the set of nodes
on the path from root of d to x. Intuitively, Vx is the set
of nodes of interest for x in d. It contains all nodes that a
query in Cpath can “examine” while returning y.3

We show how to construct a query automaton for a set of
nodes X+ and the class Cpath. Let x be a node in X+. In
the following, we use Ne,x to denote the set containing the
wildcard, as well as all labels associated with a node in Vx.

Construction 1. The query automaton A(Cpath, x) =
(S,Σ, δ, s0, sf ) is defined as follows:

1. S = Vx;

2. Σ = {↓l | l ∈ Ne,x} ∪ {⇓l | l ∈ Ne,x};

3. δ(z, q) is the set of nodes z′ such that d |= q(z, z′);

3The notion of “examining” a node when returning y should
be self-explanatory. However, to be more precise, in Defini-
tion 3.3, deciding that d |= q(r, y) may involve subproblems
of the format d |= q1(z, w). Nodes z, w are thus, examined,
when determining that y is returned.

(x2, x7) ⇓∗

%%

start // (x1, x1)

⇓A 88

⇓B &&

↓∗ // (x2, x6)
↓∗ // (x3, x7)

↓∗ // (x4, x8)

(x3, x6) ⇓∗

99

Figure 5: Normalization An of A from Figure 4.

4. s0 = r, i.e., the root of d;

5. sf = x;

The query automaton A(Cpath,X+) is simply the product of
the automata A(Cpath, x), for all x in X+.

If s is a state in A(Cpath,X+), then observe that δ(s, ↓l)
must always either be empty, or contain a singleton. This
holds since a state s is a tuple of nodes (z1, . . . , zk) from d
and each node zi can have a single child among Vxi , i.e.,
among the nodes on the path to xi.

The language of A, written L(A), is the set of all queries
accepted by A, where q is accepted by A if there are queries
q1, . . . , qn and states s1, . . . , sn, with sn = sf , such that

• q = q1/ · · · /qn;

• for all 1 ≤ i ≤ n, it holds that si ∈ δ(si−1, qi).

Example 4.1. Recall the document d from Figure 2. Let
X+ = {x4, x8}. The query automata A for X+ and Cpath
appears in Figure 4. We have only drawn states s that are
between s0 and sf , i.e., s is reachable from the starting state
s0, and sf is reachable from s.

Observe that the starting state (x1, x1) contains only the
root node and the final state (x4, x8) corresponds precisely to
X+. There is a transition ⇓A (as well as ⇓∗) from (x1, x1)
to (x2, x7) since x2 and x7 are both descendants of x1, and
they have the same label A. Similarly, there is a transition
↓∗ from (x3, x7) to (x4, x8) as (1) x4 is a child of x3 and (2)
x8 is a child of x7.

It is not difficult to see that A accepts precisely the lan-
guage of queries returning {x4, x8} over d. This language
includes the three queries (1) ⇓A/⇓∗, (2) ⇓B /⇓∗, and (3)
↓∗ / ↓∗ / ↓∗ discussed in Example 3.6, as well as additional
queries, such as ⇓∗, and ⇓∗ /↓∗.

Our automata satisfy several important properties.

Theorem 4.2. Let X+ be a set of nodes and A be the
automaton A(Cpath,X+). Then,

1. A is acyclic;

2. A is polynomial in the size of d if X+ is of constant
size;

3. the language of A is precisely the set of queries in Cpath
returning X+, i.e., L(A) = QCpath(X+, ∅).

According to Theorem 4.2, to solve the query existence
problem, it is sufficient to find a query q in L(A(Cpath,X+))
for which X−∩q(d) = ∅. For purposes of efficiency, we prefer

242



to consider a normalized version of our automata. Normal-
ized automata will have at most one transition between any
pair of states, i.e., for any two states s1 and s2, and for any
α, α′ ∈ Σ, if s2 ∈ δ(s1, α) and s2 ∈ δ(s1, α

′), then α = α′.
Note that this property will not naturally occur in our au-
tomata, since, e.g., if s2 ∈ δ(s1, ↓a), then s2 ∈ δ(s1, ↓∗),
s2 ∈ δ(s1,⇓a), s2 ∈ δ(s1,⇓∗), by our construction.

Let A be an automaton, defined as above. The normal-
ization of A, denoted An is derived from A by the following
two steps:

• Removing Unneeded Wildcards. For each pair
of states s1, s2 in A, if there is some l 6= ∗ such that
s2 ∈ δ(s1, ↓l), then remove s2 from δ(s1, ↓∗). Similarly,
if there is some l 6= ∗ such that s2 ∈ δ(s1,⇓l), then
remove s2 from δ(s1,⇓∗).

• Removing Unneeded Descendants. For each pair
of states s1, s2 in A, if there is some l such that s2 ∈
δ(s1, ↓l), then remove s2 from δ(s1,⇓l).
Similarly, for each pair of states s1, s2 in A, if there is
a path of transitions of length greater than one from
s1 to s2, then remove s2 from δ(s1,⇓l).

It is not difficult to see that this process is unambiguous,
and is independent of the order of application (due to the au-
tomaton being acyclic). For example, removal of unneeded
descendants is order independent, since a descendant transi-
tion from s1 to s2 is only removed if there is some other path
of transitions from s1 to s2. Hence, this descendant transi-
tion is not needed when determining which other descendant
transitions to remove.

Example 4.3. The normalized version An of the automata
A from Figure 4, appears in Figure 5. Observe that A and
An have the same set of states, the same starting state and
the same final state. However, in An we have removed tran-
sitions that were somewhat superfluous, as they could be de-
rived from other transitions in the automaton.

For example, there is a single transition ⇓A from (x1, x1)
to (x2, x7) in An, whereas there were two transitions (⇓A
and ⇓∗) in A. Similarly only the transition ↓∗ from (x3, x7)
to (x4, x8) was retained in An. Finally, observe that there
are pairs of states for which a transition exists in A, but
there is none at all in An. For example, there is no tran-
sition from (x1, x1) to (x4, x8) in An; the ⇓∗ transition ap-
pearing in A was removed as there are paths of length greater
than one from (x1, x1) to (x4, x8) in A.

Observe that the language of An contains precisely three
queries (those discussed already in Example 3.6): (1) ⇓A/⇓∗,
(2) ⇓B /⇓∗, and (3) ↓∗ / ↓∗ / ↓∗.

It is easy to see that the normalization An of A has the
following properties.

Proposition 4.4. Let An be the normalization of A. Then,
for all states s,

• there is at most one state s1 and one query ↓l1 such
that s ∈ δ(s1, ↓l1);

• if there are states s1 and s2 and queries ⇓l1 and ⇓l2
such that s ∈ δ(s1,⇓l1) and s ∈ δ(s2,⇓l2), then l1 = l2.

Normalization removes queries from the language, but
preserves all minimal queries. This is a crucial characteristic

that allows us to show the following result. (In Theorem 4.5,
we use q ⊆ q′ to denote the fact that q(d) ⊆ q′(d), for all
documents d.)

Theorem 4.5. Let A = A(Cpath,X+) be a query automata
and An be its normalization. Then,

1. L(An) ⊆ L(A).

2. For all q′ ∈ L(A), there exists a q ∈ L(An) such that
q ⊆ q′.

3. QCpath(X+,X−) 6= ∅ if and only if there exists a query

q ∈ L(An) such that X− ∩ q(d) = ∅.

5. VERIFICATION MAPPINGS FOR X−
The previous section defined query automata that capture

the X+ part of the query existence problem. This section
focuses on X−, in order to provide a characterization, based
on X− and the query automaton, that will allow us to an-
swer the query existence problem. To this end, we introduce
single-node and multi-node verification mappings.

We fix An to be the normalization of A(Cpath,X+). A se-
quence of states s̄ = s0, . . . , sn in An is an accepting sequence
if the following conditions hold:

• sn = sf , i.e., is the accepting state and

• for all 1 ≤ i ≤ n, there exists qi in the alphabet of An

such that si ∈ δ(si−1, qi).

Since An is normalized, there will be precisely one qi for
which si ∈ δ(si−1, qi). Hence, we will refer to qi unambigu-
ously in Definition 5.1 below. Note that there is a natural
correspondence between accepting sequences and words in
L(An).

Let x ∈ X− be a node. Let Vx be, as before, the set of
nodes on the path from the root of d to x. Define Vεx as
Vx ∪ {ε}. We extend |= (from Definition 3.3) to deal with ε
by defining:

• for all d, q and y, d |= q(y, ε);

• for all d, q and y, if y 6= ε, then d 6|= q(ε, y).

The purpose of this “dummy node” ε will soon be apparent.
Intuitively, it is used to mark paths that do not (or cannot)
continue in the database.

Definition 5.1 (SNQV-Mapping). Let s0, . . . , sn be
an accepting sequence in An. A function µ : {s0, . . . , sn} →
Vεx is a single-node query-verification mapping (or snqv-
mapping for short) for s0, . . . , sn and x if all the following
conditions hold:

1. µ(s0) = r (where r is the root of d);

2. µ(sn) = x or µ(sn) = ε;

3. for all i, it holds that d |= qi(µ(si−1), µ(si)).

Intuitively, an snqv-mapping µ for s0, . . . , sn and x indicates
whether x can be returned by query q = q1/ · · · /qn formed
by states s0, . . . , sn. If µ maps all states to nodes other than
ε, then it constitutes a proof that x is returned by q over
d. Conversely, if x ∈ q(d), then there is an snqv-mapping
µ for which µ(sf ) = x. Hence, x 6∈ q(d), if and only if all
snqv-mapping µ for s0, . . . , sn map sn ( = sf ) to ε.

243



Example 5.2. Consider node x13 from document d (Fig-
ure 2). Let s̄1, s̄2, s̄3 be the accepting sequences from An

(Figure 5):

s̄1 = (x1, x1), (x2, x7), (x4, x8)

s̄2 = (x1, x1), (x2, x6), (x3, x7), (x4, x8)

s̄3 = (x1, x1), (x3, x6), (x4, x8) ,

and µ1, µ
′
1, µ2, µ3 be the mappings:

µ1(x1, x1) = x1 µ1(x2, x7) = x9 µ1(x4, x8) = ε

µ′1(x1, x1) = x1 µ′1(x2, x7) = x9 µ′1(x4, x8) = x13

µ2(x1, x1) = x1 µ2(x2, x6) = x9 µ2(x3, x7) = x10

µ2(x4, x8) = x13

µ3(x1, x1) = x1 µ3(x3, x6) = ε µ3(x4, x8) = ε

Mappings µ1 and µ′1 are both snqv-mappings for s̄1 and x13.
Note that µ′1 is a witness to the fact that the query defined by
s̄1 returns node x13. Similarly, µ2 and µ3 are snqv-mappings
for s̄2 and s̄3, respectively, and x13. Every snqv-mapping for
s̄3 and x13 maps (x4, x8) to ε. This holds as the query defined
by s̄3, i.e., ⇓B/⇓∗, does not return x13.

We extend the notion of an snqv-mapping to multiple
nodes. Let X− = {x1, . . . , xk}. We define VεX− = Vεx1 ×
· · · × Vεxk .

Definition 5.3 (MNQV-Mapping). Let s0, . . . , sn be
an accepting sequence in An. A function µ : {s0, . . . , sn} →
VεX− is a multi-node query-verification mapping (or mnqv-
mapping for short) for s0, . . . , sn and x1, . . . , xk if, for all
j ≤ k, the projection µj of µ on its j-th components4 is an
snqv-mapping for xj.

Observe that if every mnqv-mapping µ for s0, . . . , sn and
x1, . . . , xk maps sn ( = sf ) to the tuple ε̄ = (ε, . . . , ε), then
there exists a query q ∈ L(An) for which X− ∩ q(d) = ∅.
Thus, such query is a proof for non-emptiness of the set
QCpath(X+,X−). We demonstrate this observation next.

Example 5.4. Consider X− = {x10, x13}. Then,

µ(x1, x1) = (x1, x1) µ(x2, x6) = (x9, x9)

µ(x3, x7) = (x10, x10) µ(x4, x8) = (ε, x13)

is an mnqv-mapping for s̄2 = (x1, x1), (x2, x6), (x3, x7), (x4, x8)
and X−, while

µ′(x1, x1) = (x1, x1) µ′(x3, x6) = (ε, ε)

µ(x4, x8) = (ε, ε) .

is an mnqv-mapping for s̄3 = (x1, x1), (x3, x6), (x4, x8).
Note that µ indicates that the query defined by s̄2 is not

a witness for query existence, as this query will return x13

(one of the nodes in X−). However, as all mnqv-mappings
for s̄3 will map (x4, x8) to ε̄, the query defined by s̄3 is a
witness for the query existence problem.

6. DETERMINING QUERY EXISTENCE
In this section we show how to use the notions of mnqv-

mappings, in order to determine query existence. Let s be

4Formally, this projection µj is defined in the following fash-
ion: µj(si) = yj if µ(si) = (y1, . . . , yk).

a state in An and let s̄ be an accepting sequence containing
s. We define

Imgs̄(s) := {ȳ | ∃µ for s̄ and x1, . . . , xk s.t. µ(s) = ȳ} .

Thus, Imgs̄(s) is the set containing the images of s in all
mnqv-mappings for s̄ and x1, . . . , xk. Obviously, Imgs̄(s) ⊆
VεX− , but Imgs̄(s) can also be much smaller.

Now, from our discussion in the previous section, it is easy
to see the following result, which follows, essentially, by the
definitions.

Proposition 6.1. The set QCpath(X+,X−) is not empty
if and only if there exists an accepting sequence s̄ such that
Imgs̄(sf ) = {ε̄}.

Note that the accepting sequence s̄ provides us with a query
(defined by this sequence of transitions) that returns all of
X+ and none of X−.

Proposition 6.1 provides us with a procedure for determin-
ing query existence, namely, consider all accepting sequences
s̄, compute Imgs̄(sf ) and check whether this set is precisely
{ε̄}. Obviously, however, such a procedure is highly inef-
ficient, e.g., since it must consider a possibly exponential
number of accepting sequences.

To avoid explicit enumeration of all accepting sequences,
define AllImg(s) as

AllImg(s) := {Imgs̄(s) | s̄ is an accepting sequence} .

Note that AllImg(s) is a set of sets. Then, the following is
a corollary of Proposition 6.1.

Corollary 6.2. The set QCpath(X+,X−) is not empty
if and only if {ε̄} ∈ AllImg(sf ).

Corollary 6.2 again provides us with an approach to solv-
ing the query existence problem, namely, first compute the
set AllImg(sf ), and then check if the set {ε̄} is contained
in AllImg(sf ). In order for this approach to be efficient, we
will show that for all s,

1. AllImg(s) is of polynomial size and

2. AllImg(s) can be computed in polynomial time .

Note that neither of these claims is trivial, as a straightfor-
ward computation requires us to consider each of the pos-
sibly exponential number of accepting sequences, each of
which might, conceivably give rise to a distinct set. Notwith-
standing this difficulty, we will present a procedure for com-
puting AllImg(s), and will show that this procedure runs in
polynomial time (thus, proving both of the above claims).

6.1 Computing AllImg(s)

We will show how compute AllImg(s) inductively, by con-
sidering the states s in An in a topological ordering. Since
An is acyclic (Theorem 4.2), this ordering is well-defined.

Initial State. For the initial state s0, it is easy to see that

AllImg(s0) = {{r̄}} ,

where r̄ is the tuple containing only the document root
node. This follows immediately from the definition, since
Imgs̄(s0) = {r̄}, for all accepting sequences s̄.

244



Non-Initial State. We now consider a non-initial state s.
Before describing our computation of AllImg(s), we show
how Imgs̄(s) can be expressed as a function of Imgs̄(t),
where t is the state preceding s. For this purpose, we define
the function N ext below.

Formally, let s̄ be an accepting sequence containing s and
let t be the state immediately preceding s in s̄. Recall that
since An is normalized, there will be a single transition qt
from t to s.

We show how to define Imgs̄(s), in terms of Imgs̄(t). Let
ȳ = (y1, . . . , yk) be a tuple in Imgs̄(t). For each l ≤ k,
define

Zl := {z ∈ Vεxl | d |= qt(yl, z)} .

Moreover, if s is the accepting state sf , then we remove from
Zl all nodes that are different from xl and from ε. Now,
define

N ext((y1, . . . , yk), qt) = Z1 × · · · × Zk . (1)

For sets of tuples, Ψ, we similarly define

N ext(Ψ, qt) = ∪ȳ∈ΨN ext(ȳ, qt) . (2)

We show the following result.

Proposition 6.3. Let s̄ be an accepting sequence, s be a
state in s̄ and t be the state preceding s in s̄. Then,

Imgs̄(s) = N ext(Imgs̄(t), qt) .

Proposition 6.3 is useful as it relates sets Imgs̄(s) and
Imgs̄(t). However, in order to avoid considering all accept-
ing sequences, we must be able to relate the sets AllImg(s)
and AllImg(t). This is precisely what we do next.

Again, let t be a state with a single transition qt to s, in
Sn. Define

AllNext(AllImg(t), qt) = {N ext(Ψ, qt) | Ψ ∈ AllImg(t)} .

Observe that AllNext(AllImg(t), qt) is a set of sets, just like
AllImg(t). Now the following result easily follows from the
definition of AllImg(s) and from Proposition 6.3.

Corollary 6.4. Let s be a non-initial state of An and
let T be the set of all nodes from which s is reachable in a
single transition. Then,

AllImg(s) =
⋃
t∈T

AllNext(AllImg(t), qt) .

We conclude this section by observing that Corollary 6.4
provides us with an algorithm to compute AllImg(s), for all
states s: For the initial state s0, recall that AllImg(s0) =
{{r̄}}. Next, iterate over all remaining states in topolog-
ical order, and use the definition of AllNext to compute
AllImg(s) in terms of all previously computed AllImg(t)
(with transitions to s).

6.2 Bounding the Size of AllImg(s)

Section 6.1 provided us with a method to compute the
set of sets AllImg(s), for all states s. It is easy to observe
that this computation is polynomial in the sizes of the previ-
ously computed sets AllImg(t). Hence, if we can show that
AllImg(s) is always of polynomial size in the input (and
not dependent on the iteration step), we derive an efficient
method of determining query existence. Thus, bounding the

size of AllImg(s) is the topic of this section. We start with
some necessary definitions.

First, we define a partial order over tuples in VεX− . Let
ȳ = (y1, . . . , yk) and z̄ = (z1, . . . , zk) be tuples in VεX− . We
say that ȳ precedes z̄, written ȳ � z̄, if for each i ≤ k, one
of the following conditions hold: (1) yi = zi; (2) yi is an
ancestor of zi; or (3) zi = ε. Given a set of tuples Ψ, we say
that ȳ is a minimal tuple in Ψ, if ȳ ≺ z̄, for all z̄ ∈ Ψ.

An arbitrary set of tuples from VεX− may not have a min-
imal tuple (with respect to �), as not every two tuples are
comparable. However, we can show the following property
of Imgs̄(s).

Theorem 6.5. For every s in An and each accepting se-
quence s̄, there is a minimal tuple in Imgs̄(s).

Corollary 6.6 follows immediately.

Corollary 6.6. For every s in An, each set in AllImg(s)
has a minimal tuple.

Minimal tuples are useful, as they are the only tuple of
interest in a set of tuples, when propagating with a query of
the form ⇓l, as Proposition 6.7 shows.

Proposition 6.7. Let ȳi be minimal among {ȳ1, · · · , ȳn}.
Then, for any l ∈ Ne ∪ {∗},

N ext({ȳ1, · · · , ȳn},⇓l) = N ext(ȳi,⇓l) .

We will use |AllImg(s)| to denote the total size of s, in-
cluding all members of all sets, i.e.,

|AllImg(s)| =
∑

Ψ∈AllImg(s)

|Ψ| .

Note that |AllImg(s)| ≤
∑
s̄ |Imgs̄(s)|, but |AllImg(s)| can

also be significantly smaller, since AllImg(s) is a set of sets,
and thus, a single copy of duplicate sets is retained.

In the following, h(s) is the height of s, i.e., the number of
nodes on the longest path from the initial state s0 to s. For
nodes in d, we define h similarly, i.e., h(x) is the number of
nodes on the path from r to x. Finally, we will use h(X−)
to denote the maximum of all heights of nodes in X−, i.e.,
h(X−) := max{h(x) | x ∈ X−}.

Theorem 6.8. Let m be h(X−) and k be |X−|. Then,
for any state s in An,

|AllImg(s)| ≤ (m+ 1)kh(s) .

We now derive the main result of this section.

Theorem 6.9. Determining non-emptiness of the query
set QCpath(X+,X−) is in polynomial time, if X+ and X−
are of constant size.

Due to Proposition 3.8, the following is immediate.

Corollary 6.10. Determining whether a node y is in
CertCpath(X+,X−) and whether y is in PossCpath(X+,X−)

is in polynomial time, if X+ and X− are of constant size.

245



(x2, x7) ⇓∗

%%

start // (x1, x1)

⇓A[@a≤3][@a≥2]
77

⇓B ''

↓∗ // (x2, x6)
↓∗[@a=3]// (x3, x7)

↓∗ // (x4, x8)

(x3, x6) ⇓∗

99

Figure 6: Normalized automaton for class
C(∗, ↓,⇓,@).

7. OTHER CLASSES OF QUERIES
The previous sections considered the class of queries Cpath.

Note that the class of queries does not have bearing on the
algorithm, for the most part; however it is critical in defining
the query automaton. This section considers other classes
of queries and shows how to adapt query automata to these
cases. In particular, we will show how to deal with spe-
cific features. These constructions can be combined in a
straight-forward manner, when considering classes that con-
tain several of these features.

7.1 Classes with Attributes
Attributes can not be directly encoded in the automata

presented this far since, unlike labels, (1) attributes allow
for inequality conditions and (2) there may be multiple at-
tributes associated with a single node. However, extending
our results to deal with attributes is still quite easy. The
only change is in the language of our automaton (which will
allow queries with attributes) and in their construction. In
the following we detail only the main difference in construc-
tion, i.e., how the transitions are determined.

Given X+ = {x1, . . . , xk}, let An be the normalized au-
tomaton constructed in Section 4 for the language Cpath.
Let s = (z1, . . . , zk) and s′ = (z′1, . . . , z

′
k) be states such that

there is a transition σ from s to s′. Now, let A be the set of
attributes a common to nodes z′1, . . . , z

′
k, with values taken

from D<. Define

amin := min{@a(zi) | i ≤ k}
amax := max{@a(zi) | i ≤ k}

Let B be the set of attributes b common to nodes z′1, . . . , z
′
k,

with values taken from D, for which there is a single value
bval such that @b(zi) = bval, for all i.

Now, we replace the transition σ with the transition

σ ·a∈A ([@a ≥ amin][@a ≤ amax]) ·b∈B ([@b = bval]) ,

where ·a∈A and ·b∈B are string concatenation, applied to all
a ∈ A and b ∈ B, respectively. Intuitively, σ is replaced with
a stricter transition that also enforces all possible attribute
constraints.

Example 7.1. The normalized automaton in Figure 5 was
created for the set X+ = {x4, x8} and the class of queries
Cpath. Figure 6 contains the normalized automaton for the
same set X+, but this time for class C(∗, ↓,⇓,@).

It is not difficult to show that besides these changes, the
algorithm can remain the same, and still solves query ex-
istence in polynomial time. Note, in particular, that def-
initions and results for verification mappings are given in

terms of satisfaction of queries (i.e., the operator |= from
Definition 3.3), and hence, are independent of the language
chosen.

7.2 Classes with Branching
In essence, dealing with branching again involves adapt-

ing the transitions of the query automaton, albeit, in a much
more intricate manner. In order to simplify the presentation,
we will assume in this section that branching is allowed,
while attributes are not. Combining both branching and
attributes is rather straight-forward, when using the tech-
niques of both this section, and those of the previous.

From a technical standpoint, branching introduces signif-
icant challenges. We focus in this section on the difficulties
that arise, explaining where straightforward extensions of
our previous results fail to provide a polynomial solution.
Due to space limitations, this section only contains a hint to
our mechanism used to overcome the new problems.

When defining our query automata in Section 4, the al-
phabet was of the form ↓l and ⇓l (where l is a label or
wildcard). Similarly to the way attributes were dealt with,
one can enrich the alphabet of query automata to include
↓l[q̄] and ⇓l[q̄] where [q̄] denotes a series of branching con-
ditions [q1] · · · [qn] (each of which may, in turn, also include
branching conditions). In such a manner, one can define an
automaton that returns precisely the language of all queries
(which may include branching) that return X+.

Example 7.2. Consider the automaton in Figure 4. In
order to capture all branching conditions, the transition from
(x1, x1) to (x2, x6) could be augmented with more queries,
such as

↓ ∗ [↓∗] ↓ ∗ [↓ ∗ /↓D] ⇓ ∗ [⇓D] ,

among many, many others. Note that for all three of the
queries q above, it holds that d |= q(x1, x2) and d |= q(x1, x6).

Let Cbranch be the class of queries C(∗,⇓, ↓, []). Let d be
a document and X+ be a set of nodes. Then, the query
automaton A(Cbranch,X+) is defined similarly to Construc-
tion 1, with the following change to the alphabet. The al-
phabet Σ of A(Cbranch,X+) contains all expressions of the
form ↓l[q1] · · · [qm] and ⇓l[q1] · · · [qm], where qi are queries
in Cbranch. In other words, Σ contains all single step (i.e.,
single axes) XPath queries with arbitrary branching.5 Note
that the transition function remains the same (it is defined in
terms of query satisfaction, for all queries in the alphabet).

With essentially the same proof as that of Theorem 4.2, it
is easy to show that A(Cbranch,X+) is acyclic and that the
language ofA is precisely those queries in Cbranch that return
X+. However, Claim 2 of Theorem 4.2 no longer holds, as
there may now be an exponential number of transitions.

Fortunately, the size of A(Cbranch,X+) is not of particular
concern, as our algorithm for checking query existence uses
a normalized version of an automaton. Therefore, our next
step is to extend the normalization process to automata of
the form A(Cbranch,X+). In a similar spirit to the normal-
ization defined in Section 4, we remove unneeded wildcard
transitions, (by removing transitions involving ∗, when there

5To ensure a finite number of transitions in the automa-
ton, recall that we do not allow expressions in which
the same branching condition appears multiple times, e.g.,
↓D[⇓A][⇓A].

246



is a more specific one with a label), and we remove unneeded
descendant transitions (by removing transitions involving ⇓,
when these are implied by other transitions in the automa-
ton). In addition to these parts of the normalization process
described earlier, we also perform a third step:

• Removing Unneeded Branching. Remove transi-
tions of the form ↓l[q1] · · · [qn] (resp. ⇓l[q1] · · · [qn]) be-
tween states that have a transition ↓l[q′1] · · · [q′m] (resp.
⇓l[q′1] · · · [q′m]) such that all of qi are among q′j .

It is quite easy to show that the result of normalization,
denoted An(Cbranch,X+), satisfies properties in the spirit
of those of Proposition 4.4. In particular, each state s will
have at most one incoming transition with a child axis (i.e.,
of the form ↓l[q1] · · · [qm]), and all incoming transitions will
have precisely the same branching conditions. This hinges
on the crucial observation that, in A(Cbranch,X+), if s has
incoming transitions ⇓l[q1] and ⇓l[q2], then s will also have
the incoming transition ⇓l[q1][q2] (and hence the former two
will be removed during normalization).

In addition, as in Theorem 4.5, with essentially the same
proof one can show that QCbranch(X+,X−) is not empty if
and only if there exists a query q ∈ L(An(Cbranch,X+)) such
that X− ∩ q(d) = ∅.

Given the above results, the algorithm used for checking
for query existence in Section 6 can be used for the class
Cbranch. However, this does not immediately show that de-
termining non-emptiness of QCbranch(X+,X−) is in polyno-
mial time. There are three difficulties with this process:

1. As described so far, An is derived from A. However,
since A may have exponentially many transitions, it is
not possible to generate A, and thereafter derive An,
in polynomial time.

2. The transitions in An may have exponentially large
branching conditions. To understand why, recall that
a transition containing the branching condition [q] into
a state (z1, . . . , zk) implies that the subtree rooted at
zi (in the document) satisfies q, for all i. Thus, the
most restrictive transition into (z1, . . . , zn) will have a
branching condition that expresses all the common as-
pects of the subtrees rooted at z1, . . . , zn. Obviously,
this branching condition can be exponential in size (as
there can, potentially, be exponentially many common-
alities to the subtrees rooted at z1, . . . , zn).

Thus, we may conclude that even if it were possible to
directly generate An (while bypassing the need to gen-
erate A), simply representing An in a straight-forward
fashion (by writing the branching conditions on its
transitions) can take exponential time (and space).

3. One of the basic operations performed while running
our algorithm that checks for query existence is to
check whether nodes on the paths to X− also satisfy
queries on the transitions in An. Since branching con-
ditions may be of exponential size, it is not clear how
to check for satisfaction in less than exponential time.

We now present a result allowing us to bypass these three
problems. Recall that all incoming transitions to a state
have the same branching conditions, and that there is at
most one transition between any two states. The following
result shows that it is possible to iterate over the normalized

version An of A(Cbranch,X+), to generate mnqv-mappings,
without explicit generation of the branching conditions in
the transitions. To this end, Theorem 7.3 states that it is
possible to check satisfaction of the queries on transitions of
An without their explicit generation. Note that this is all
that is necessary in order to generate mnqv-mappings.

Theorem 7.3. Let An be the normalization of the au-
tomaton A(Cbranch,X+). Let s1 and s2 be states in An,
such that s2 ∈ δ(s1, σ[q̄]), where σ is of the form ⇓l, ⇓∗, ↓l
or ↓∗, and [q̄] is a series of branching conditions. Let z1 and
z2 be nodes in document d. Then, without explicit generation
of [q̄], it is possible to determine whether d |= σ[q̄](z1, z2) in
polynomial time, if X+ is of bounded size.

Given Theorem 7.3 and the discussion above, we can im-
mediately conclude that query existence is in polynomial
time even if branching is allowed.

Corollary 7.4. Query existence, determining certain an-
swers and determining possible answers is in polynomial time,
if X+ and X− are of bounded size, for C(↓,⇓, ∗, [ ]).

Combining the results in this section and those in Sec-
tion 7.1, we get the following, stronger, result.

Corollary 7.5. Query existence, determining certain an-
swers and determining possible answers is in polynomial time,
if X+ and X− are of bounded size, for C(↓,⇓, ∗, [ ],@).

7.3 Classes Omitting Features
The previous two sections dealt with adding in additional

features to the class of queries. In this section, we consider
omitting some of the features.

If C does not contain ↓, ⇓ or ∗, we simply do not add transi-
tions for queries with these features during our construction
process (see Construction 1). An easy analysis shows that
our algorithm remains correct when removing these transi-
tions. Thus, combined with Corollary 7.5 we can show the
following.

Corollary 7.6. Query existence, determining certain an-
swers and determining possible answers is in polynomial time,
if X+ and X− are of bounded size, for any class C(F ), where
F ⊆ {↓,⇓, ∗, [ ],@}.

Not adding edges with these features can significantly re-
duce the size of the query automata. In some cases, this will
lead to an automata that has a polynomially sized language.
In these cases, query existence will be polynomial even if X+

and X− are unbounded in size.

Theorem 7.7. Let C(F ) be a class of queries, d be a doc-
ument, X+ and X− be sets of nodes from d.

1. If F does not contain ⇓, [ ], then determining whether
QC(F )(X+,X−) is not empty is in polynomial time,

even if X+ and X− are unbounded in size.

2. If F does not contain ⇓, then then determining whether
QC(F )(X+,X−) is not empty is in polynomial time if

X+ is bounded, even if X− is unbounded.

Omitting language features and bounding one of X+ or
X− does not always reduce the complexity of query exis-
tence, as demonstrated in the following theorem. Note that
the second claim in Theorem 7.8 is an easy adaptation of a
result in [23] to our setting.

247



Theorem 7.8. Let C(F ) be a class of queries, d be a doc-
ument, X+ and X− be sets of nodes from d.

1. If F contains ⇓, but not [ ], then it is NP-complete
to determine whether QC(F )(X+,X−) is not empty, if

X− is unbounded in size, even if |X+| = 2.

2. [23] If F contains [ ], ↓, then it is NP-hard to deter-
mine whether QC(F )(X+,X−) is not empty, if X+ is

unbounded in size, even if |X−| = 1.

8. CONCLUSION
The goal of this work is to enable an intuitive interface

for querying XML. Instead of formulating XPath queries
against a document, the user simply marks some nodes of
interest X+, and can also indicate that some nodes X− are
not of interest. Additional nodes that may interest the user
are defined via the notions of certain and possible answers.

The main result of this paper is an efficient algorithm for
determining query existence (where query existence general-
izes both the problem of determining certain answers and the
problem of determining possible answers). Our algorithm is
based on the notion of a query automaton, which efficiently
summarizes the language of queries returning X+, and on
the notion of verification mappings. Effort is required to
prove that the algorithm is in polynomial time, when X+

and X− are bounded. Thus, this paper presents a positive
result—that determining certain and possible answers is in
polynomial time, even for the class of XPath including child,
descendant, wildcards, branching and attribute constraints.

There are many directions for future work. One important
problem is that of ranking possible answers. The current
work is binary in nature. A node either is, or is not, a pos-
sible answer. However, in practice, possible answers should
not all be thought of as equally likely to be of interest, and
hence the ability to rank possible answers is of importance.
Another related problem is that of returning approximately
certain (or possible) answers, in the case of an inconsistent
set of positive and negative examples. Approximation may
also be a useful tool if the number of positive and nega-
tive examples grows prohibitively large (e.g., when used in
contexts other than ad-hoc querying). Finally, for an imple-
mentation, it is important to leverage the document schema
in order to more efficiently return certain and possible an-
swers. For example, one can take advantage of similarities in
document structure in order to reduce the number of pos-
itive/negative examples considered (as examples with the
same structure introduce some redundancies).

9. REFERENCES
[1] T. Amoth, P. Cull, and P. Tadepalli. On exact

learning of unordered tree patterns. Machine
Learning, 44:211–243, 2001.

[2] T. R. Amoth, P. Cull, and P. Tadepalli. Exact
learning of tree patterns from queries and
counterexamples. In COLT, pages 175–186, 1998.

[3] D. Angluin. Finding patterns common to a set of
strings. In STOC, pages 130–141, 1979.

[4] D. Angluin. Negative results for equivalence queries.
Machine Learning, 5(2):121–150, July 1990.

[5] M. Arenas and L. Libkin. XML data exchange:
Consistency and query answering. J. ACM, 55(2),
2008.

[6] H. Arimura, H. Ishizaka, and T. Shinohara. Learning
unions of tree patterns using queries. Theor. Comput.
Sci., 185(1):47–62, 1997.

[7] N. Augsten, D. Barbosa, M. Bohlen, and T. Palpanas.
Tasm: Top-k approximate subtree matching. In ICDE,
pages 353 –364, 2010.

[8] J. Carme, M. Ceresna, and M. Goebel. Query-based
learning of XPath expressions. In ICGI, pages
342–343, 2006.

[9] M. Ceresna. Supervised Learning of Wrappers from
Structured Data Sources. PhD thesis, Vienna
University of Technology, 2005.

[10] A. Chapman and H. V. Jagadish. Why not? In
SIGMOD, pages 523–534. ACM, 2009.

[11] A. Das Sarma, A. Parameswaran, H. Garcia-Molina,
and J. Widom. Synthesizing view definitions from
data. In ICDT, pages 89–103, 2010.

[12] C. David, L. Libkin, and F. Murlak. Certain answers
for XML queries. In PODS, pages 191–202, 2010.

[13] E. M. Gold. Complexity of automaton identification
from given data. Information and Control,
37(3):302–320, 1978.

[14] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. Xrank: Ranked keyword
search over XML documents. In SIGMOD, 2003.

[15] M. Herschel, M. A. Hernández, and W.-C. Tan.
Artemis: a system for analyzing missing answers.
Proc. VLDB Endow., 2:1550–1553, August 2009.

[16] V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Keyword proximity search on XML graphs. In ICDE,
pages 367–378, 2003.

[17] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On
the provenance of non-answers to queries over
extracted data. PVLDB, 1(1):736–747, 2008.

[18] B. Kimelfeld and Y. Sagiv. Finding and
approximating top-k answers in keyword proximity
search. In PODS, pages 173–182, 2006.

[19] R. Kosala, M. Bruynooghe, J. Van Den Bussche, and
H. Blocked. Information extraction from web
documents based on local unranked tree automaton
inference. In IJCAI, pages 403–408, 2003.

[20] A. Meliou, W. Gatterbauer, K. F. Moore, and
D. Suciu. Why so? or why no? functional causality for
explaining query answers. In Management of
Uncertain Data, pages 3–17, 2010.

[21] S. Raeymaekers, M. Bruynooghe, and J. Bussche.
Learning (k,l)-contextual tree languages for
information extraction from web pages. Machine
Learning, 71(2-3):155–183, June 2008.

[22] D. Shasha, J. T.-L. Wang, and R. Giugno.
Algorithmics and applications of tree and graph
searching. In PODS, pages 39–52, 2002.

[23] S. Staworko and P. Wieczorek. Learning twig and
path queries. In ICDT, pages 140–154, 2012.

[24] Y. Tian and J. Patel. Tale: A tool for approximate
large graph matching. In ICDE, pages 963–972, 2008.

[25] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In SIGMOD, pages 15–26, 2010.

[26] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
by output. In SIGMOD, pages 535–548. ACM, 2009.

248




