
Proactive Natural Language Search Engine: Tapping into
Structured Data on the Web

Wensheng Wu
University of North Carolina at Charlotte

w.wu@uncc.edu

ABSTRACT

In this era of “big data”, a key challenge facing the database
community is to help average users tap into the huge amounts
of structured data on the Web. To address this challenge, we
propose a novel proactive template-based engine for search-
ing structured data on the Web using natural language. De-
parting from conventional search engines, the proposed en-
gine organizes questions it can answer using templates and
figures out ahead of time which sources can answer which
templates and how. Then, at query time, the engine can sim-
ply match queries with the templates and retrieve answers
using the pre-compiled evaluation plans. While attractive,
building such an engine requires innovations in template cre-
ation, query evaluation, and system evolution. In this paper,
we propose novel techniques to address these challenges.

Categories and Subject Descriptors

H.2.5 [Database Management]: Heterogeneous Databases

General Terms

Design, Language, Algorithms

Keywords

Web data, proactive search engine, natural language queries

1. INTRODUCTION
Huge amounts of structured data are becoming available

on the Web [10]. They come from a large number of diverse
sources and cover a great variety of subjects, from business,
science, government, to entertainment. Indeed, the num-
ber of Web databases with form-based query interfaces (i.e.,
the Deep Web) alone has already exceeded 25 millions [10].
In addition, recent advances in information extraction have
greatly facilitated the extraction of structured data from
web pages and texts [15], which further contributes to the
explosion of structured data on the Web.

Current web search engines have popularized the keyword-
style search interface, where users can simply enter keywords
in a single box to search for relevant documents all over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2013, March 18–22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

the Web. So a natural question is: is it feasible to use the

same keyword interface to search for the information in the

structured data? The key issue to be addressed is the am-

biguity of keyword queries [5]. For example, “movies clint
eastwood” could mean “movies that Clint Eastwood played
in” or “movies directed by Clint Eastwood” or both.

Traditionally, structured query languages such as SQL
and XQuery are used to formulate precise queries against
structured data such as relational tables and XML docu-
ments. However, writing queries in such languages requires
substantial skills and great familiarity with the schema of
data, which are unrealistic for average web users.

Instead, many sources provide more user-friendly form-
based query interfaces [17], where users can specify query
conditions using a select set of attributes. However, in or-
der to accommodate query needs from different users, these
interfaces can become very complex. For example, NSF [12]
award search interface has over 30 fields, covering varied
questions on PIs, programs, and projects.

Furthermore, users often need to combine the information
from multiple sources, e.g., for comparison shopping. How-
ever, due to the autonomous nature of sources, their inter-
faces are designed independently based on projected query
needs and the content of sources. As a result, query inter-
faces of different sources, even in the same domain, may be
very different. This in effect means that users would need
to learn a new query language for every source they visit.

A possible solution is to build a global query interface
for each domain of interest by merging query interfaces of
sources in the domain [17]. However, such a global interface
is likely even more complex, with a large number of query
attributes combined from different sources. As a result, it
might only be suitable for sophisticated users.

So the question remains whether there is a universal query
language for structured data that is easy to learn for aver-
age web users and at the same time reduces the ambiguity of
keyword queries. An obvious choice is the natural language:
human being is the master of natural language, so there
is no new language to learn. Meanwhile, natural language
queries can be much more precise than keyword queries [9].
For example, a natural language query “what movies were
directed by Clint Eastwood” clearly states that user is look-
ing for movies that Eastwood directed. Being able to pose
queries in natural language also removes from users the has-
sle of deciphering form-based source interfaces.

Challenges: However, there are several serious challenges
to be addressed when building a search engine to support
natural language queries over the structured data on the

143

Web. First, query parsing: Before a query can be processed,
it needs to be parsed to identify its intent [13]. Natural lan-
guage parsing is an extremely difficult problem, largely due
to the richness of the language [8]. Many parsers have been
developed, but they are still too brittle to reliably perform
a full parse of arbitrary natural language texts [7]. Fur-
thermore, parser should also be able to recognize variations
in query expressions. For example, both “movies clint east-
wood has directed”and“list films directed by clint eastwood”
search for movies directed by Clint Eastwood.1

Second, query processing: After a user issues a query,
the engine must quickly obtain answers from sources. Here
the challenge arises from the sheer scale and heterogene-

ity of sources [6]. For example, consider the above query
on the movies directed by Eastwood. The system must
quickly determine which sources contain the information on
movies and directors, how to transform the query into the
format understood by the sources (e.g., query form at In-
ternet Movie Database or IMDb), what is the best plan for
obtaining answers from sources (e.g., retrieving from author-
itative ones first), and how to combine the answers.

Third, keyword search: Although natural language is a
more natural and precise way of expressing queries, research
indicates that web users tend to pose short keyword queries
(2-3 words) [8]. This is largely due to the lack of support
from search engines. In fact, natural language queries are
popular among novice users before they learn the limitations
of search engines [8]. Nevertheless, since keyword queries
may be regarded as an abbreviated (and often ambiguous)
version of their natural language correspondents, the engine
should also be able to interpret and disambiguate keyword
queries. For example, it may interpret “star wars director”
as “who is the director of the movie Star Wars”.

Solution: To address these challenges, we propose a novel
proactive template-based approach to building a natural lan-
guage search engine for the structured data on the Web.
Departing from existing search engines, the proposed en-
gine organizes questions it can answer using templates and
plans ahead on which sources may be used to answer which
templates and how. Then, at query time, it matches queries
with the templates, instantiates parameters in the templates
with values extracted from the queries, and retrieves answers
using the pre-compiled evaluation plans for the templates.

To illustrate the approach, consider a template T : “what
movies has director directed”, where the parameter director

takes director names as values. Further consider two movie
sources: FilmsAndTV.com, which has only movies up to
2010; and IMDb, which has more recent movies but does
not have movies before 1950. Then one way of evaluat-
ing the queries in T is to retrieve movies directed by the
given director from both sources and combine the results.
Based on this plan, a query “what movies has Clint East-
wood directed”can then be answered by simply executing an
instantiated plan whose director is set to “Clint Eastwood”.

Advantages: The proposed approach has several key ad-

vantages. First, recent study [1] shows that web queries
often follow certain patterns and a large number of queries
in a given domain may be captured using just a few tem-
plates. Thus, a proactive engine as proposed, even with only
a few popular templates, may already be able to serve a large

1It is informative to note that search engines such as Google
return very different results for the two queries.

number of web users, providing far more accurate answers
than the current keyword-based search engines.

Second, the approach turns complex query parsing into
a simpler template matching problem: instead of parsing
queries using the entire natural language grammar, queries
are matched with the templates, each being a small gram-
mar with well-defined syntax and semantics. Since template
grammars are much simpler, the approach effectively cir-
cumvents the difficulties in query parsing.

Third, answering queries over a large number of diverse
sources is an extremely challenging problem and has been
extensively studied in data integration [6]. Distinct from
existing online solutions, the proposed proactive engine does
most of the hard work offline on answering template queries,
which helps greatly reduce response time at query time.

Finally, templates may be used to help disambiguate key-
word queries. For example, consider a keyword query“movies
clint eastwood” and two templates: “what movies has direc-

tor directed” and “what movies has actor starred in”. Know-
ing Clint Eastwood has been both an actor and a director,
the engine may use the templates to suggest possible natu-
ral language refinements to the original query, e.g., do you
mean “what movies has Clint Eastwood starred in”?

Contributions: While attractive, building a proposed en-
gine requires innovations in template creation, query evalu-
ation, and system evolution. In the rest of this paper, we
propose novel techniques to address these challenges.

• Template creation: For the engine to succeed, it must
have templates that can capture frequently asked queries.
Where can it obtain such templates? How can it predict

frequent queries? To address these challenges, we pro-
pose techniques to automatically generate templates and
to discover templates from query forms and logs.

• Template-driven query planning: Each template cor-
responds to a possibly infinite number of queries, whose
answers may lie in a large number of diverse sources. How

can the engine quickly locate relevant sources? To what ex-

tent can it plan ahead to answer queries in the template?

To address these challenges, we introduce a novel problem
of template-driven query planning, propose a best-effort
strategy for query planning, and present novel algorithms
for plan construction and optimization.

• Query processing & system evolution: How can the

engine quickly find templates matching a query? What if

no matching templates can be found? How can the engine

improve to address its deficiency? To address these chal-
lenges, we propose a novel multi-level approach to query
parsing and present techniques to evolve the engine by
learning from its interaction with users and sources.

2. TEMPLATE CREATION
Manually building templates to support a large number

of queries is likely to be a labor-extensive process. So the
first challenge is: can we automate this process as much as

possible? To address this challenge, we propose a solution
to systematically generate templates using domain models.

A domain model essentially captures the knowledge that
the engine has about a particular domain. A domain model
may contain the following components: (1) concepts, e.g.,
movie, director, and actor for the movie domain; (2) at-

tributes of concepts, e.g., the movie concept might have at-
tributes such as title, genre, and release year, while director

144

and actor might have attributes such as name and address;
(3) relationships of concepts, e.g., “direct” relationship be-
tween movie and director; (4) instances of concepts and re-
lationships, e.g., director “Victor Fleming” directed movie
“gone with the wind”; (5) synonyms, e.g., film and picture
are synonymous with movie; and (6) statistics, e.g., movie is
more frequently used than film and title is the most popu-
lar attribute of movie. Note that a concept typically corre-
sponds to a set of real-world entities, e.g., the movie concept
represents all movies. Note also that relationships are often
denoted by verbs or verb phrases, e.g., direct and star in.
An important kind of relationship between concepts is the
taxonomic or is-a relationship, e.g., release year is a year,
director or actor is a person, and address is a location.

To generate templates using a domain model, we first de-
termine main target types (i.e., entity, attribute, and rela-
tionship) of queries in the templates, and then employ type-
specific rules to generate the templates. Specifically, entity
queries look for entities with certain characteristics. A pos-
sible rule is: start with “list”, followed by the plural form of
the concept name for the entities, and then a whose-clause
specifying the characteristics. For example, a template “list
movies whose genre is genre and release year is release year”
asks for movies with specific genre and release year. A tem-
plate may have many variants. For example, in the above
template, the characteristics of entities may be stated us-
ing pre-modifiers as: “list release year genre movies”. For
another example, since release year is a (kind of) year, an
equivalent template is “list genre movies in release year”.

In contrast, attribute queries ask for attribute values of
known entities. These queries may start with“what is (are)”.
For example, “what is the genre of movie title” asks for the
genre of a specific movie with known title.

Finally, relationship queries ask for entities that are re-
lated to some other entities. For example, “which movies
were directed by director” asks for movies directed by spe-
cific director. In this template, “movie” is the concept name
and “directed by” comes from the relationship “direct” be-
tween movie and director.

However, the above solution does not address two key is-
sues: Where does the domain model come from? How can

the templates capture most frequently asked questions?

Learning from query forms: To address these issues, we
propose a novel approach to learning domain models from
query forms of Web databases. Although there have been
many works on learning domain models [4], past efforts are
mostly focused on learning from texts and structured data.
Little attention has been given to learning from query forms.
However, query forms are invaluable resources for learning
domain models, especially in our context, for several reasons.
First, query forms of databases capture salient aspects of the
databases that designers of forms expect users to be inter-
ested in. Second, there are plenty of databases with query
forms available on the Web and through examining a large
number of forms, we can gather important statistics about
the domain such as popular concepts and instances. For
example, we may learn that make and brand (of cars) are
synonyms, and make is the most popular query attribute for
cars. Using this information, we can then direct the tem-
plate generation process described above to generate tem-
plates for frequent attributes on the query forms.

One approach to learning a domain model from a set of
query forms in a domain is to first extract query attributes

from each form and then group attributes using effective
clustering algorithms (e.g., [17]) that were developed specif-

ically to address the unique challenges (e.g., the lack of at-
tribute values for text fields) in analyzing query forms. Each
cluster contains a set of semantically similar attributes, e.g.,
make and brand, and the importance of an attribute may be
measured by the number of attributes in the cluster where
the attribute belongs. Furthermore, by observing how at-
tributes are located over a large number of query forms, we
may discover attributes that describe the same concept. For
example, make and model of cars are often located close to
each other on query forms, while it is unusual that attributes
of dealership would be placed between them.

Learning from query logs: Besides query forms, another
important resource for learning domain models and frequent
asked queries is query logs of keyword-based search engines.
Compared to query forms, keyword queries are much closer
in syntax to natural language queries. For example, fields
for director names on query forms of movies databases are
more likely to be labeled as“director”than“directed by”. On
the other hand, “movies directed by clint eastwood” might
be more natural than “movies director clint eastwood”.

Due to its importance in learning user intent, the prob-
lem of analyzing query logs has received a lot of attention [1].
Recent study [1] indicates that web search queries often fol-
low certain patterns, e.g., “flights from origin to destination”
for flight search and “make model year” for car search. How-
ever, we note that while these patterns are commonly used
in web queries now, they tend to be very ambiguous. For
example, it is not clear from the query “flights from chicago
to new york” whether users are searching for round-trip or
one-way flights or flights at preferred times. In fact, some
more precise queries found at Google are “round trip flights
from chicago to new york”, “flights from chicago to new york
today”, and “all flights from chicago to new york”.

There have been several works on mining query patterns
from query logs (e.g., [1]). Clearly such patterns could
provide much insight into the common interest among web
search users, and thus may suggest good templates for the
proactive engine. However, these works assume that query
attributes (e.g., origin and destination of flights) and their
instances are already known. This assumption is too strong
in our context, since our goal is to learn not only query tem-
plates, but also domain model. To address this limitation,
we propose an approach that can simultaneously discover
domain model and query templates. The key idea is to lever-
age variations among similar queries to learn the structure of
queries. For example, consider a query “flights from chicago
to new york”. Comparing it to a similar query “flights from
chicago to los angeles”, we may infer that“new york” is likely
similar to “los angeles”, and that “to” likely represents a new
attribute. Furthermore, after seeing “flights from chicago”,
we may further infer that“to new york”expresses an optional

query condition over the attribute “to”.
Finally, we note that yet another interesting resource for

learning query patterns is query logs of form-based query
interfaces. For example, such a log may reveal that title is
the most commonly used field on an interface.

3. TEMPLATE-DRIVEN PLANNING
After templates have been created, the engine must de-

termine how to obtain answers for the queries in the tem-
plates. This gives rise to the novel problem of template-

145

driven query planning. As described earlier, a key advan-
tage of a template-based engine is that it can plan ahead
offline on query answering. However, there are several seri-
ous challenges to be addressed. First, query answers may be
found in a large number of diverse sources whose querying
capabilities, schemas, content coverage, and computational
resources may vary greatly. Second, it is often impossible to
generate complete plans for some templates or some queries
in the templates. For example, consider a template “find
books written by author”. Since there may be a large num-
ber of authors, the engine might not know ahead of time all
authors and which source has books by which author.

To address these challenges, we adopt a best-effort strat-
egy for query planning. In other words, the engine will try its
best to build query plans for templates. But due to limita-
tions in its knowledge and resources, it might not be able to
always generate complete plans. For example, in the above
template, the engine might generate a complete plan ahead
of time for best-seller authors, e.g., Bill Clinton. Suppose
that only two sources A and B have his books, and A has
more books than B. Then a possible plan would be: access
A first; if no results, then retrieve from B. For other au-
thors, the engine might generate more abstract plans. Such
a plan might indicate that answers can be found in a set
of data sources but leave out details such as the order of
accessing these sources and how to combine their results.

Similar best-effort strategy has also been employed in in-
formation extraction [15] and data integration [10]. It helps
avoid the huge upfront efforts in building a complex system
and quickly bootstrap the system.

The problem of planning queries for the execution over a
set of heterogeneous data sources has been extensively stud-
ied in data integration [6]. However, query planning in the
traditional data integration is largely schema-driven. First,
a mediated schema needs to be created to capture all query
needs. Next, schema mappings need to be discovered to
capture the relationships among all elements in the medi-
ated schema and source schemas. Finally, query plans are
generated by rewriting queries using schema mappings. A
drawback to this approach is the huge upfront efforts needed
for creating the mediated schema and schema mappings. In
contrast, the proposed template-driven approach focuses on
planning only the queries in a template. It does not require
a comprehensive mediated schema: in a sense, each tem-
plate is a small mediated schema. Furthermore, the domain
model only needs to be rich enough to cover the templates
in the domain. Thus this template-at-a-time pay-as-you-go
strategy greatly reduces the complexity of query planning
and helps quickly bootstrap the engine.

Based on the above motivations, we now describe a two-

phase compositional approach to template-driven query plan-
ning: phase one determines how to obtain answers for a tem-
plate from individual sources and outputs source-specific ac-

cess paths; then phase two assembles these paths into query
plans and optimizes the plans. A key advantage of the ap-
proach is that it greatly facilitates the incremental develop-
ment of query plans. For example, to add a new source to
the plans, we just need to find its access path and reinvoke
the plan assembler in the phase two.

Finding source-specific access paths: In RDBMS, ac-
cess paths are used to describe methods of retrieving tuples
from tables, e.g., scanning the entire table or using an index
to directly look up the desired tuples. Here access paths are

ways of obtaining answers to the queries in a template from
data sources. To build such paths, we first need to locate
among a huge number of sources ones that might provide
answers to the template. We observe that similar challenge
arises when search engines try to answer keyword queries
using structured data sources [10].

To address this challenge, there have been some works on
developing schema and value indexes to help locate sources
whose schema elements and data values match attributes
and values extracted from queries [10]. However, our focus
is very different. Instead of finding sources to answer spe-
cific queries, we are searching relevant sources for a query
template and might not know all possible values of its pa-
rameters and hence the exact queries. As a result, while
schema indexes may be adapted to our context, the value-
based indexes developed in these works become less useful.

To address this limitation, we propose several new types
of indexes for searching schema elements (e.g., relational at-
tributes and XML elements) of sources based on the char-
acteristics of their values instead of actual values. These in-
dexes include type index for searching elements by their data
types (e.g., string or numeric), pattern index for searching
by value patterns (e.g., the number of digits or the presence
of special characters such as ‘-’), and distribution index for
searching by the characteristics of value distributions (e.g.,
the average and standard deviation of numeric values).

Once relevant sources for a template have been located, we
may then proceed to find source-specific access paths. There
are two key issues to be addressed. (1) Sources may vary
greatly in their querying capabilities and the ways that their
data may be accessed. As a result, access paths to different
sources may be very different. (2) Some sources might not
be able to provide a complete answer to the template. As
a result, we need a mechanism to describe the content of
sources with respect to the template. Such descriptions will
be critical to query planning.

To systematically address the first issue, we divide sources
into two categories: one that engine has direct access to their
data and the other not. Data sources in the first category
include files and databases that store data extracted from
the Web, e.g., from tables and lists on web pages [3]. Ac-
cess paths to these sources largely depend on how the data
are stored. For example, consider a table extracted from
Wikipedia listing U.S. presidents (e.g., Barack Obama) and
their terms (e.g., 56-th). Suppose the table has two columns
name and term, and is stored in a relational database. Con-
sider a template “who is the term president of united states”.
Then the access path is: execute a query “select name from
presidents where term = term” against the database.

Sources in the second category are the ones that only pro-
vide limited access to their data, e.g., via query forms or
Web services. For these sources, the engine may not pose
arbitrary queries and might need to extract answers embed-
ded in query results. For example, consider a template “list
NSF grants of PI”. To answer this template using the NSF
award database [12], the engine needs to construct an ac-
cess path which consists of: (1) fill out search form on NSF
web site, with its PI field set to the value obtained from the
template; (2) submit the form and obtain result in HTML
pages; and (3) extract grant details from the pages.

To address the second issue, we need a formalism for de-
scribing the content of sources with respect to a particular
template. Similar formalisms, such as global-as-view and

146

local-as-view, have been developed in data integration [6].
We adapt the local-as-view method to our context, due to
its flexibility in handling new data sources. In the conven-
tional local-as-view method, data sources are described us-
ing queries (views) expressed over a mediated schema. In
contrast, we use views to relate sources to the template.

To illustrate this, consider a template T for querying show-
times of top-rated movies in given theaters. Following the
Datalog notations [6], we may represent T using a predicate
T (title, rating, location, time) whose arguments represent
title and rating of movie, location of theater, and show-
time respectively. Consider a source S1 listing movies and
their ratings and another source S2 listing movies and their
showtimes. Note that neither S1 nor S2 provides a com-
plete answer to T . In local-as-view, S1 may be expressed
as: S1(title, rating) :- T (title, rating, location, time), and
S2 as: S2(title, location, time) :- T (title, rating, location,
time). Note that views are not restricted to simple projec-
tions as above. For example, if S2 has only evening movies,
its view would be: S2(title, location, time) :- T (title, rating,
location, time), time = ‘evening’.

Plan construction and optimization: In phase two,
query planner constructs plans based on source descriptions
and access paths built in phase one. It faces two challenges:
How to combine partial answers from individual sources into
a more complete answer? How to select the best query plans
among a possibly large number of alternative plans?

To address the first challenge, we may use source descrip-
tions to determine how to combine sources to answer the
template. We note that the general problem of answer-
ing queries using views is NP-complete [6]. However, our
problem is much simpler: we focus on answering particu-
lar templates instead of arbitrary queries and thus may use
template-specific views rather than the complex views de-
fined over the mediated schema.

To illustrate the approach, consider the template T and
sources S1 and S2 as described above. From the source de-
scriptions, the planner may determine that neither source
provides all attributes in T . However, two sources share a
common attribute title and thus may be joined to provide a
more complete answer to T . (Note that finding common at-
tributes may require the resolution of semantic heterogeneity
among different sources [6].) Based on this reasoning, the
planner may then produce a plan for T as: S1(title, rating)
⊲⊳ S2(title, location, time).

To address the second challenge, we propose a model for
measuring the quality of query plans. The model incorpo-
rates several key factors. (1) Coverage, e.g., measured by
the number of results generated by the plan. For example,
consider a template “books on subject”. Suppose the engine
has a list of known subjects, e.g., American history, and
Amazon has more American history books than Barnes &
Noble. Then a plan that obtains answers from Amazon may
be ranked higher than that from Barnes & Noble. (2) Au-

thority of sources, e.g., measured by their PageRanks. Thus
plans that obtain answers from more authoritative sources
are preferred. (3) Communication cost, e.g., measured by
the number of queries that need to be posed to the sources
for executing the plan [6]. For example, consider the above
plan that joins S1 and S2 on title to answer the template
T . One method of executing the plan is to first obtain titles
and ratings from S1, and then for each title, pose a query to
S2 to obtain its theaters and showtimes. Another method

is to obtain all tuples from S1 and S2 and then perform the
join in the engine. The first method would need to pose
one query to S1 plus as many queries to S2 as the number
of movies, while the second method only needs two queries.
Thus, the first method will likely have a higher cost.

Note that coverage is often at odds with communication
cost: to achieve greater coverage, we may need to retrieve
from more sources, which in turn leads to higher communica-
tion cost. To address this, we may consider time-constrained

query planning: find plans with the highest coverage under
the constraint on targeted query response time (e.g., .5 sec).

4. QUERY PROCESSING & SYSTEM

EVOLUTION
With the offline planning, the engine needs to do much less

work at query time. However, it still needs to address several
key issues when processing queries: (1) How to quickly lo-
cate among a large number of templates ones that (partially)
match queries? (2) How to continue to improve itself?

The problem of locating templates that match queries
is similar to that of finding pre-compiled questions (e.g.,
FAQ’s) that are similar to user questions in question answer-
ing [2]. Previous research has employed information retrieval
techniques to locate similar questions by treating questions
as (short) documents [2]. However, instead of actual ques-
tions, we are searching for templates with parameters. As a
result, these techniques are not directly applicable.

Parsing queries: To address the first issue, we propose a
novelmulti-level approach to parsing queries. The key idea is
to first use cheap methods to eliminate irrelevant templates
and then perform in-depth parsing on the remaining ones.

The first level, domain identification, determines the do-
main of a query. At this level, a domain is simply repre-
sented as a document containing all tokens in the domain
model and templates. The similarity between a query and a
domain may be measured using the TF*IDF function from
information retrieval. The domain with the highest similar-
ity score will be chosen to be the domain for the query.

The second level, shallow semantic tagging, determines
components in the query and their possible semantic types.
For example, in a query Q: “list clint eastwood directed
films 2012”, list may be recognized as a question word, clint
eastwood as the name of director or actor, directed as the
relationship direct, films as the concept movie, and 2012 as
the attribute release year. After the query has been tagged,
templates with highly similar tags (judged by the TF*IDF of
tags) are identified and retained for further considerations.

The last level, template-based parsing, removes ambigu-
ous tags in the query by comparing it with top-ranked tem-
plates from the second level. For example, comparing Q

with a template T1 “list movies in year directed by direc-

tor”, we may infer that clint eastwood in Q refers to his role
as a director. Besides the disambiguation, the engine also
needs to handle partial matches. For example, compared to
another template T2 “list movies directed by director”, Q is
overspecified in that it asks for movies in specific year that
T2 cannot answer. On the other hand, a query Q′ “movies
clint eastwood” is underspecified with respect to T1. In this
case, we are not sure whether Q′ asks for movies directed
by Clint Eastwood or movies starring him or both. In both
cases, the engine should inform users of how it interprets the
query, when it returns the answer.

Note that when there are multiple templates that par-

147

tially match a query, the engine needs to properly merge

the results given by different templates. Such merging can
be either shallow, e.g., a simple concatenation of results, or
deep, e.g., a ranked list of results with duplicates removed.

Evolving the system: There are several ways that the
engine can learn from its interaction with users and sources.
First, it may learn new templates from queries that existing
templates fail to capture. For example, from an overspecified
query “toyota camry 2012” and the corresponding template
“make model”, it may learn a new attribute year. Further-
more, if similar queries are frequently asked, it may generate
a new template “make model year”.

Second, it may learn new variations for existing templates
from user clickthrough data. To illustrate this, consider a
similar query “toyota 2012 camry”. If users frequently click
on the answer produced by the template T “make model

year”, it may infer that the order of model and year in T may
be interchanged without affecting its semantics. As another
example, consider a query “movies clint eastwood director”.
If many users click on the answer given by the template “list
movies directed by director”, it may infer that “directed by”
may be replaced by “director”, and “list” may be optional.

Finally, it may also improve query plans by learning from
their past execution history. For example, suppose that in
planning for a template T , it only knows that sources A, B,
and C can provide answer to T . After several queries have
been answered using T , the engine may learn more about
these sources, e.g., A always returns answer faster than B,
and C has the best coverage. The engine may then rerun
the plan optimization algorithm to generate a better plan.

5. RELATED WORK
A key novelty of the proposed template-based query parser

is to use template-based grammars to perform targeted pars-
ing of user queries. However, templates might not be able
to capture all queries and their variations. In such cases,
shallow syntactic and semantic parsing techniques [7] may
be employed to tag the words in the queries by their syntac-
tic and semantic roles (e.g., part-of-speech or verb-argument
relationships). The similarity of queries with the templates
may then be measured based on the similarity of their tags.
These parsing techniques may also be utilized to discover
query patterns. For example, we may discover noun-phrase
query patterns (e.g., “books written by author”) if there are
a large number of such queries in a query log.

Natural language interface to databases remains an over-
arching goal despite decades of research. Such an interface
is also highly desirable for end users to query XML data [9].
Recently, [16] conducted a user study on replacing complex
query forms with free-text query interface. Our work largely
departs from these efforts by using templates to capture user
interests and parse user queries.

Wrappers are key components in a traditional data inte-
gration system [6]. Wrapper construction is a well-known
challenging task due to the difficulties in automatic under-
standing of source query interfaces. The proposed template-
driven query planning enables an incremental template-at-
a-time wrapping of sources, thereby eliminating the huge
upfront efforts in building full-fledged wrappers.

[14] proposed an approach to annotating search engine
queries using attributes in a relational table. This annota-
tion process is similar to the shallow semantic tagging in
our proposed query parser. However, annotation is the final

parsing step in [14], while we leverage templates to refine
the annotations to generate more accurate query parses.

Recent work [11] proposed to create views in a single

database to capture user interests and permit keyword search
over the views to improve the search efficiency. In contrast,
we use templates to directly capture user query needs and
focus on planning queries in the templates for the execution
over a multitude of heterogeneous data sources.

6. CONCLUDING REMARKS
We have presented a proactive search engine for tapping

into structured data on the Web using natural language
queries. The engine is unique in several aspects. (1) It ad-
dresses the key limitations of current keyword-based engines
and the “impedance mismatch” between unstructured key-
word queries and structured data. (2) It adopts a novel
template-based parsing paradigm to address fundamental
challenges in parsing natural language queries. (3) It em-
ploys a novel template-driven approach to offline query plan-
ning, which may greatly reduce query response time and help
quickly bootstrap the engine.

Besides search engines, we expect that the proposed tech-
niques may also be employed in many other user-facing ap-
plications, such as data warehousing, content management,
and mobile data management, to revolutionize the way that
users interact with the systems.

Acknowledgment: We thank anonymous reviewers for their
invaluable comments. This work is supported in part by the
Faculty Research Grant of UNC Charlotte.

7. REFERENCES
[1] G. Agarwal et al. Towards rich query interpretation:

walking back and forth for mining query templates. In
WWW, 2010.

[2] R. Burke et al. Natural language processing in the faq
finder system. In AAAI spring symposium, 1997.

[3] M. J. Cafarella et al. Webtables: exploring the power of
tables on the web. PVLDB, 1(1), 2008.

[4] M. J. Carman et al. Learning semantic descriptions of web
information sources. In IJCAI, 2007.

[5] Y. Chen et al. Keyword search on structured and
semi-structured data. In SIGMOD Conference, 2009.

[6] A. Doan, A. Halevy, and Z. Ives. Principles of Data
Integration. Morgan Kaufmann, 2012.

[7] D. Gildea et al. Automatic labeling of semantic roles.
Computational Linguistics, 28(3), 2002.

[8] M. A. Hearst. Search User Interfaces. Cambridge
University Press, 2009.

[9] Y. Li et al. A domain-adaptive natural language interface
for querying xml. In SIGMOD, 2007.

[10] J. Madhavan et al. Web-scale data integration: You can
afford to pay as you go. In CIDR, 2007.

[11] A. Nandi and H. V. Jagadish. Qunits: queried units in
database search. In CIDR, 2009.

[12] National Science Foundation. NSF Award Search.
http://www.nsf.gov/awardsearch/.

[13] E. Sadikov et al. Clustering query refinements by user
intent. In WWW, 2010.

[14] N. Sarkas et al. Structured annotations of web queries. In
SIGMOD, 2010.

[15] W. Shen et al. Toward best-effort information extraction.
In SIGMOD, 2008.

[16] K. Tjin-Kam-Jet et al. Free-text search versus complex
web forms. In ECIR, 2011.

[17] W. Wu et al. An interactive clustering-based approach to
integrating source query interfaces on the deep web. In
SIGMOD, 2004.

148

