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ABSTRACT
Recent years have witnessed the emergence of real-time object mon-
itoring applications driven by the explosion of small inexpensive
sensors. In many real-world applications, not all sensed events
carry the identification of the object whose action they report on,
so called “non-ID-ed” events. Reasons range from heterogeneous
sensing devices to human’s choosing to conceal their identifica-
tions. Such non-ID-ed events prevent us from performing object-
based analytics, such as tracking, alerting and pattern matching. We
propose a probabilistic inference framework, called FISS, to tackle
this problem by inferring the missing object identification associ-
ated with an event. Specifically, as a foundation we design a time-
varying graphic model to capture correspondences between sensed
events and objects. Upon this formal model, we elaborate how to
adapt the Forward-backward (FB) inference algorithm to continu-
ously infer probabilistic identifications for non-ID-ed events. How-
ever, we demonstrate that FB is neither scalable nor efficient over
event streams. To overcome this deficiency, we propose a suite of
strategies for optimizing its performance, including the selective
smoothing technique that significantly reduces the number of ran-
dom variables that need to be smoothed, and the finish-flag mech-
anism that enables early termination of backward computations.
Our experimental results, using large-volume streams of a real-
world healthcare application, demonstrate the accuracy, efficiency,
and scalability of FISS. Especially FISS achieves on average 15x
higher throughput than our basic FB inference.

1. INTRODUCTION
Real-time object monitoring systems are becoming increasingly

popular in domains ranging from healthcare, inventory manage-
ment, public transit management, traffic monitoring to home safety
care [3, 24, 25, 35, 37]. These systems receive high-volume event
streams from sensors installed at locations of interest. These events
then are filtered and correlated for complex pattern detection, ag-
gregated on various temporal and geographic scales, and trans-
formed into high-level actionable information.

In object monitoring systems, while sensed events are often at-
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tached with the unique identification of the tagged object (called
“ID-ed” events), it is equally common that events may not carry
their object identification (called “non-ID-ed” events). Consequently
input event streams may be composed of both ID-ed and non-ID-ed
events. Reasons that cause such mixed event streams include:

• Events may come from heterogeneous sources. While some
devices are capable to provide events with object identifica-
tion, e.g., RF sensors [3, 11, 22], other devices do not cap-
ture object identification, e.g., Passive Infrared sensors [14,
28, 33]. Object monitoring applications may consist of het-
erogeneous monitoring devices, for example both RF sensors
and Infrared sensors. For instance in a hospital inventory
management system [3], RF taggers are attached to med-
ical equipments to track their distributions, while Infrared
sensors are installed in nurse stations and doctor offices to
check the sterilization procedure of the equipment. As an-
other example in the hospital environment, it is a regulation
to restrict the number of staff in an Operation Room [9] in
order to prevent airborne infections to the patient in opera-
tion. In some hospitals, Infrared sensors are thus installed in
Operation Rooms to check on the number of staff over time,
and to observe the door openings to get an insight into air-
flow transmission. Simultaneously, RF sensors are equipped
to also monitor the hygiene performance of healthcare work-
ers [35]. As a result, data collected in those applications will
have mixed ID-ed and non-ID-ed events.

• Furthermore, some objects being monitored, usually human
beings, may advertently choose to conceal their identifica-
tion for privacy concerns, or inadvertently forget to show
their identification. In some settings, the environmental con-
dition detection, like detecting an object’s motion and pres-
ence, is only loosely coupled with an object’s identification
detection. For instance, in real-time hospital infection con-
trol systems, such as HyReminder [35], a sensor installed
in the hospital has two components: the motion reader that
detects a healthcare worker’s behaviors, such as sanitizing
hands and entering a patient’s room; and the badge reader,
which records a worker’s identification only when she ac-
tively presents her badge to the reader. So when a worker
shows her badge and then washes her hands, a “wash” event
with her identification is generated. Otherwise, if the worker
chooses not to present her badge or forgets to show her badge,
a “wash” event without any identification is generated. Con-
sequently event streams observed in such applications also
consist of both ID-ed and non-ID-ed events.

Given such a mixed input stream, those non-ID-ed events pre-

513



vent us from performing object-based analytics, such as object trac-
ing, alerting and pattern matching, which usually is the key service
needed in object monitoring applications. For example, the HyRe-
minder system [35] continuously tracks each healthcare worker for
hygiene compliance by running a set of pattern queries. An ex-
ample pattern query is to observe whether a worker cleanses her
hands before contacting a patient. These pattern queries are based
on events associated with an individual worker. This means we
have to know the worker’s identification associated with an event
before we can correctly utilize the event in the query evaluation
process. Therefore, in this paper we address a fundamental data
transformation problem for event streams mixed with ID-ed and
non-ID-ed events, namely to translate raw streams into queriable,
probabilistic event streams with object identification.

State-of-the-art. Recent research on RFID data cleaning and
inference [11, 13, 22, 23, 34] assumes that events detected by RF
readers are identified by an exact object identification. Instead they
focus on issues like cleaning redundant readings and inferring ob-
jects’ precise locations from several overlapping sensors. In other
words, these works tackled fundamentally different problems from
our problem of uncertain object identification inference.

On the other hand, the probabilistic data association (PDA) prob-
lem is closer to our target problem, as PDA aims to determine
the correct correspondence between measurements and objects [6].
The most widely-used approaches to tackle PDA are MHT [31]
and JPDAF [33]. These approaches establish probabilistic models
based on the fact that in a typical PDA application, such as iden-
tifying targets in radar observations or tracking people in a video,
the events never carry any object identification. Hence, if we were
to apply the PDA techniques to our event stream mixed with ID-ed
and non-ID-ed events, they would fail to take advantage of ID-ed
events for inference. This then would result in limited precision as
confirmed by our experimental analysis (Sec. 6.2). Besides, exist-
ing work of PDA largely focused on modeling [6, 31, 33], while
the efficiency of processing has been overlooked - which is now a
key objective of this paper.

Contributions. To fill the void, we propose a novel probabilistic
inference framework called Familiar- Stranger System, or FISS 1,
that efficiently transforms raw streams of ID-ed and non-ID-ed events
into queriable streams of events with probabilistic object identifi-
cations. Specifically, our technical contributions include:

Modeling. We devise a time-varying graphic model to capture
the underlying event stream generation process from the physi-
cal world, including the key component−the temporal correlations
among events. In contrast to existing work on either solely ID-ed
events [11, 13, 22] or solely non-ID-ed events [31, 33], we now
embrace ID-ed and non-ID-ed events within a single model. This
keeps our model simple yet while concisely expressing both the
true objection identifications (which we may not observe) and the
sensed events (which we do observe) (Section 3).

Efficient Inference. Based on our proposed model, we extend
a classical inference approach, the Forward-backward algorithm
[27], to infer the object identification of non-ID-ed events (Sec. 4).
However, our experimental evaluation (Sec. 6.3) demonstrates that
this approach, though suitable for our inference logic, is not effi-
cient enough to provide near-real-time system responsiveness nor
scalable for a high volume event stream.

Our second contribution is to devise a suite of strategies for op-
timizing the performance of the Forward-backward inference. Our
key insight is that the Forward-backward algorithm conducts a large

1A familiar stranger is an individual who we repeatedly observe and yet do
not know directly. Our system is given this name because it aims to identify
those continuously observed non-ID-ed events.

number of unnecessary computations during the backward smooth-
ing. We aim to avoid such waste by only computing the “affected”
events, i.e., events whose distributions should be revised in the
backward smoothing. Our first strategy is to prune random vari-
ables that can be shown to be unaffected by exploiting the fea-
tures of ID-ed events. The second optimization, called finish-flags
mechanism, enables early termination of the backward computa-
tion yet without sacrificing inference precision. Lastly, we pro-
pose to represent temporal conditional dependencies using Com-
plex Event Processing (CEP) pattern queries to capture temporal
correlations of events in a large volume stream [5, 17, 19, 37].
And then chasing down “affected” events can be transformed into
a pattern matching. Meanwhile, we devise an advanced data struc-
ture customized for streaming uncertain events to speed up the opti-
mized backward probability computation. These strategies together
lead to a solution that keeps up with high-volume streams while of-
fering high-precision inference results (Section 5).

System and Evaluation. Our third contribution is the imple-
mentation and thorough performance evaluation of FISS over event
streams of healthcare object monitoring. The experimental results
demonstrate that our proposed model achieves better inference pre-
cision compared to the MHT model [1, 31]. Moreover, our opti-
mization techniques for the Forward-backward algorithm make it
work 15 times faster than the basic implementation [2] (Section 6).

2. PROBLEM STATEMENT
Physical world. FISS targets environments with well-bounded

sub-spaces, such as an Intensive Care Unit (ICU) with dozens of
separated patient rooms, where sensors are installed within each
room. In this setting, the surveillance areas of sensors do not over-
lap. So an object will be detected by at most one sensor at a time.
This is a distinct difference from the existing RFID data cleaning
literature, where an object can have many redundant readings at
a time [11, 22, 23, 34], due to assuming sensors with overlapped
surveillance areas.

For ease of exposition, the rest of this paper assumes the envi-
ronment is an ICU, as depicted in Figure 2a. Such layout is typical
in clinics and hospitals. In this paper, we use the HyReminder [35]
system, deployed at University of Massachusetts Memorial Hos-
pital, as a representative application. It aims to track, monitor
and remind healthcare workers with respect to hygiene compliance.
However our techniques are general and can equally be applied to
other applications that work with streams mixed with ID-ed and
non-ID-ed sensor readings. In summary, the physical world being
monitored is an ICU composed by a set of separate rooms R =
{R1, ..., R|R|} and a set of healthcare workers being monitored,
i.e., objects O = {O1, ..., O|O|}.

To simplify our discussion, we assume the physical world is
closed, namely, the number of rooms and number of objects remain
constant. We also assume that each object is independent of each
other, which is the “disjoint tracks constraint” commonly adopted
in the PDA literature [6, 31, 33].

Input event stream. Each sensor in the ICU interrogates ob-
jects’ movements in its range and immediately returns its reading
to the server. The server collects raw readings from all sensors
and merges them into a single input stream. We abstract each sen-
sor reading as an event. Each event in the stream, denoted by a
lowercase e, corresponds to an instantaneous and atomic occur-
rence of interest [37]. Events are conceptually grouped into event
types. Every event type is distinguished by its event type name. The
event type of e is derived based on the physical information about
the sensor. For example, a motion sensor installed over a patient
room’s door will generate events of type Exit-patient-room
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and Enter-patient-room, whereas a sensor installed at a san-
itizer will generate events of type Sanitize. The integrated input
stream is mixed, meaning events may or may not have object iden-
tifications. Such stream is commonly seen in object monitoring
applications for various reasons provided in Section 1.

Each event type has associated attributes as defined by the schema.
We assume an event e in the input stream has the schema: event-type
(nonce,ts,room#,OID). Here nonce is a unique number at-
tached by the server distinguishable for any events. room# ∈ R
represents the room of the sensor that generates e, i.e., e’s location.
As described previously, our target environment is well-bounded
and closed, so room# is assumed to be accurate. OID is the object
identification associated with e. Since the object identification of e
may not be available, we allow OID to be a concrete Oi ∈ O, or
OID = null. In the rest of this paper, we denote an ID-ed event as
ê, and a non-ID-ed event as ẽ.

Output event stream. The output of FISS is a probabilistic
event stream, where each event has an associated probabilistic ob-
ject identification. As in most probabilistic data management mod-
els [4, 8], we represent the probabilistic object identification using
the possible-worlds semantics. Namely, the OID of an output event
consists of a set of mutually-exclusive alternatives with associated
confidence values. Intuitively, the object identification takes the
value of one of its alternatives, and the probability of taking a par-
ticular alternative is given by its confidence value. For example,
consider an output event enter-patient-room(127,12/01/28
17:30:00,R1,<O1:0.6,O2:0.3,O3:0.1>). This event is most
likely associated with object O1 (60% chance), but may also be
with O2 (30%) or O3 (10%).

Intuitively, the uncertainty of OID can change over time when
additional information is obtained from a newly arrived event. Then
the previously inferred object association could be revised to gain
a more accurate probability. This revision task is called smooth-
ing in probabilistic inference algorithms [32]. Therefore, FISS is
designed to also output a special event called revision, which rep-
resents the modification over a previously inferred OID of an event.
A revision has the format: Rev(nonce-of-previous-event,

new-OID). Whether to output revisions is an option chosen by
the user. In this paper FISS supports three commonly-used out-
put strategies: (i) report any change of identification association
obtained during the smoothing; (ii) report when the revision results
in 100% confidence; or (iii) report when the revised probability is
more than a threshold, say 50% different from the previous proba-
bility of that event.

In summary, FISS outputs a stream consisting of probabilistic
events and optionally revision events. Such output stream can then
be fed into an event management system for object-based analyt-
ics. For example, the output stream from FISS for the HyReminder
application will be used for hand hygiene pattern detection [35].
Many stream systems are capable to process various queries over
such probabilistic streams, including relational queries [23], com-
plex event queries [30] and aggregate queries [18]. Also, several
event stream processing systems [5, 7, 26] support revisions that
amend previously arrived events.

The inference problem. Finally, the problem we solve in this
paper is: given an input stream of raw sensor reading events, where
an event may or may not have an associated object identification,
we derive a queriable, probabilistic event stream where each event
is associated with probabilistic object identification. We aim to in-
fer the identification association as accurately as possible and to do
it in an efficient manner so to achieve near real-time responsive-
ness.

ê an ID-ed event
ẽ a non-ID-ed event
si room state variable for Room Ri

ψj object identification association variable for ẽj
εj information variable for event ej

Table 1: Summary of Symbols

3. PROPOSED GRAPHICAL MODEL
In this section we present our proposed probabilistic model that

captures the correspondences among sensed events and monitored
objects. In contrast to existing work on either solely ID-ed events
[11, 13, 22] or solely non-ID-ed events [31, 33], our solution em-
braces ID-ed and non-ID-ed events within a single model. This
keeps our model simple yet while concisely describing the physi-
cal world.

3.1 Components of the Model
Our model describes the world using random variables that pre-

sent both true object identification associations, which we may not
observe, and the input events, which we directly observe.

Given numerous event types abstracted in the representative Hy-
Reminder application, to simplify our discussion, we focus on two
important event types Enter-patient-room and Exit-
patient-room, or Enter and Exit in short respectively. These
two types of events are most critical because they tell us an object’s
movements throughout the ICU, which serve as the basic knowl-
edge from which we can estimate object identification.

Time and space. Same as most data stream management sys-
tems [16, 37], we divide time into a sequence of discrete epochs of,
for example, one second in duration. All sensor readings that occur
in the same epoch are treated as simultaneous. Each event e can
thus be attached with a timestamp from the discrete epoch domain,
denoted by e.ts. In our representative application, assuming the
epoch granularity is one second, a healthcare worker can conduct
at most one action in a single epoch. That is, one object will trigger
at most one Enter or Exit event at an epoch. As for space, given
the well-bounded physical layout we target, it suffices to model the
space as a discrete set of rooms, while each room connecting to the
hallway, as shown in Figure 2a.

Room state variables. In our problem setting (Section 2), a
non-ID-ed event does not carry an objection identification, but does
carry its accurate location, in terms of Room#, and timestamp ts.
Intuitively, we can utilize the Room# and timestamp as a starting
point to estimate the OID of the event. Casually speaking, suppose
a non-ID-ed Exit event ẽj occurs at the room Ri, we can figure
that those who were in room Ri previously have the possibility to
exit the room now. So we will consider those objects as candidates
to associate with ẽj . Similarly, for a non-ID-ed Enter event, we
will look for those objects who were outside the room previously,
as they are possible to enter the room at this time. This intuitive
observation suggests us to maintain the state of each room, i.e.,
which objects are in the room at a certain time, so that later we can
refer to this information for object identification association.

Therefore, we define a room state variable for each room. Name-
ly, for each Ri ∈ R, let random variable sti present which objects
are in Ri at a given time t. Ideally we wish to express a room state
variable sti as a set of objects. But because of the uncertainty of
OID of an event, a room state could be uncertain as well. In this
case each object in the room state will be associated with a confi-
dence value. For example, s121 = <O1:0.3, O2:0.7> represents that
for Room R1 at time 12, objectO1 has 30% possibility to be in that
room while O2 has 70% possibility. A room state could also be an
empty set when no healthcare worker is spotted in the room. In ad-
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Figure 1: Graphical model for FISS

dition, in our representative ICU layout (shown in Figure 2a), every
patient room has a door connecting to the hallway. In our model we
treat the hallway as a special kind of room, with a corresponding
random variable called hallway state, denoted as sH .

Object association variables. Since our goal is to infer object
identification associations for non-ID-ed events, we next define an
object association variable for each non-ID-ed event ẽj , denoted
as ψj . ψj expresses the probability of an object being associated
with ẽj . It is important to note that the association can be changed
over time, because when obtaining additional information from
new events, we may revise the association to a more accurate prob-
ability. Therefore, ψj is a temporal random variable, meaning its
value evolves over time. Specifically, ψt

j represents the object iden-
tification association for event ẽj at time t, where t is different from
and regardless of ẽj’s timestamp ẽj .ts. For example, given a non-
ID-ed event enter(122,12,R1,?), where 122 is the nonce, 12
is its timestamp and “?” means its OID is unknown, then an asso-
ciation variable is first created at time 12, ψ12

122. Assume ψ12
122=

{O1:0.5,O2:0.5}, representing that at time 12 we reckon objects
O1 and O2 have equal chances to be associated with this event.
Later at time 14, suppose we are able to improve this association,
we set ψ14

122 = {O1:0.9,O2:0.1}, meaning at time 14 we reckon O1

has 90% probability to associate with this event while O2 has only
10%.

Event information variables. The input event stream is the
source of run-time information that we use to infer object asso-
ciations. We thus abstract the information conveyed by an input
event, ei, as an event information variable, denoted as εi. Specifi-
cally, given an ID-ed event, its information variable presents an ob-
ject’s action (via its event type, Enter or Exit) and location (via
its Room# attribute) at time t. In comparison, given a non-ID-ed
event, we need to first infer its probable OID and then extract its in-
formation variable. Consequently, a non-ID-ed event with inferred
object association presents one or more objects’ probable actions
and locations. To discriminate between these two scenarios, let ε̂k
denote an information variable for an ID-ed event êk, and ε̃j denote
an information variable for a non-ID-ed event ẽj .

3.2 Dependencies for Object Association
Next we introduce the conditional dependencies that describe

how each component in our model interacts with the other ones,
which is used later to compute the probabilities of the object associ-
ations. Graphically, the random variables stated previously are rep-
resented using nodes, and the conditional dependencies presented
in this section are represented using edges, as depicted in Figure 1.

Room state evolution. This conditional dependency describes
how a room state variable, si, evolves as new events continuously
arrive. Intuitively, at each epoch, the new state is the old state plus
objects that are just entering the room, and minus objects that are
just exiting the room. In other words, a room state at time t de-

pends on its previous state of time t-1 and all objects’ movements
at time t. Given that objects’ movements are provided by newly
arrived events, which are modeled as event information variables,
it is intuitive that sti conditionally depends on st−1

i and all event
information variables at t. Formally, let Êt = {ε̂k|∀ε̂k.ts = t}
be the vector of all information variables for ID-ed events at t, Ẽt

= {ε̃k|∀ε̃k.ts = t} be the vector of all information variables for
non-ID-ed events at t, then this conditional dependency can be ex-
pressed as p(sti|st−1

i , Êt, Ẽt). Note that the special hallway state
sH is maintained as follows: an Enter event at any ordinary room
will be considered as an Exit event for the hallway, and vice versa.

Object association for non-ID-ed events. Suppose a new non-
ID-ed event ẽj occurs at room Ri. Intuitively we know that if ẽj is
an Exit event, then those who were in room Ri at time t-1, i.e.,
objects expressed in st−1

i , will be alternative objects to be associ-
ated with ẽj . In addition, if there are other ID-ed events simultane-
ously occurring at t, we can safely exclude those objects from be-
ing alternatives of ẽj (because we have assumed that one object can
conduct at most one action at an epoch). Formally, this conditional
dependency can be expressed as p(ψt

j |st−1
i , Êt). Symmetrically,

if ẽj is an Enter event, then those who were outside Ri at time
t-1, i.e., in the hallway, should be the alternate objects associated
with ẽj . Such objects are listed in the hallway state st−1

H . So this
conditional dependency can be represented as p(ψt

j |st−1
H , Êt).

Formal joint model. Now we are ready to state the formal de-
scription of our model. To make the notations compact, let St =
{sti|∀Ri ∈ R} be the vector of all the room states at time t,
ψt = {aj |∀ẽj .ts = t} be the vector of all object identification
association variables at time t. Assume the initial room states S0

are known. We combine the above conditional dependencies to de-
fine a joint model over the entire domain:

p(Ψ,S, Ẽ|Ê, Ẽ) = p(S0)
∏

t

∏
ẽtj
p(ψt

j |St−1, Êt)∏
i∈R p(s

t
i|st−1

i , Êt, Ẽt)

where Ψ is the vector of all object identification associations over
all times, similarly S is the vector for all room states over all times;
Ê is the vector for information of ID-ed events over all times and
Ẽ is the vector for the information of non-ID-ed events over all
times. Our model can be viewed as a particular case of a Dy-
namic Bayesian Network (DBN) [27] but with conditional prob-
ability functions specially designed for our problem, which is de-
picted graphically in Figure 1.

4. INFERRING IDS OVER STREAMS:
INITIAL EFFORT

As the raw stream is mixed with ID-ed and non-ID-ed events, the
task of translating it into a probabilistic stream is treated as an in-
ference process in our work. Inference is essentially to estimate the
true object association for non-ID-ed events. Formally speaking,
our inference task is, from the joint distribution p(Ψ,S, Ẽ|Ê, Ẽ),
to compute the posterior distribution of all object association vari-
ables, given a sequence of information Ê1:T = {Ê1, ..., ÊT } and
Ẽ1:T = {Ẽ1, ..., ẼT }. Namely, to compute, for each association
variable ψt

j ∈ {Ψ1, ...,ΨT }, the distribution p(ψt
j |Ê1:T , Ẽ1:T ).

4.1 Inference using FB Algorithm
We first set out to adapt the classical Forward-backward (FB)

inference algorithm [27, 32]. In this section, we describe the main
intuition of how and why the FB inference algorithm tackles our
problem. This provides a technical context for our later optimiza-
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tions in Section 5.
To find the posterior distributions, i.e., the most likely states for

random variables, the FB algorithm involves three steps [27, 32]:
(1) computing a set of forward probabilities, (2) computing a set of
backward probabilities, and (3) computing smoothed values. Steps
(2) and (3) are typically performed simultaneously, called “back-
ward and smoothing”, which look backward at any past distribu-
tions while accounting for the current information, and then obtain
more accurate results when possible.

Extension for FB algorithm. The FB algorithm has originally
been designed for static data set, we now extend it to the streaming
context: all arrived events are stored; whenever a new event ar-
rives, the above three steps are performed over all events received
so far; the new event is output with (inferred) object identification.
Updated values during smoothing may be optionally output as re-
visions if the user chooses to. In the rest of this paper, we use the
term “FB algorithm” to refer to this extended version of FB.

Given that our target applications are real-time systems, typically
only the relatively recent events are of interest. Though a revision
of a historical event can increase the overall inference correctness,
it may not be practically useful at the current time. For example,
the HyReminder system would monitor HCW’s hygiene behaviors
in the last one hour [35]. So a revision for an event more than one
hour ago would be assumed not to affect the monitoring results.
Therefore, FISS allows user to set an application-specified tempo-
ral boundary, call smoothing window [22], that restricts the scope of
backward revision. The FB algorithm then will only smooth events
within this temporal sliding window.

Estimating object associations. Given the conditional depen-
dencies of object association specified in Section 3.2, for a newly
arrived event that is non-ID-ed, say ẽj , the FB algorithm performs
the following in the “forward” step: compute the conditional distri-
bution p(ψt

j |st−1
i , Êt) (for an Exit event) or p(ψt

j |st−1
H , Êt) (for

an Enter event). Then the resulting distribution is the estimate of
OID for ẽj . Once all non-ID-ed events are associated with proba-
ble OIDs at time t, the FB algorithm keeps room states up to date
by computing the conditional distribution p(sti|st−1

i , Êt, Ẽt).
Then in the “backward and smoothing” step, the FB algorithm

revisits past distributions while accounting for the fresh informa-
tion gained at the current time t. Still considering the conditional
dependency p(sti|st−1

i , Êt, Ẽt), but now FB interprets the depen-
dencies in a retrospective manner: if an object, sayOx, exits Room
Ri at time t, then Ox would have to have stayed in Room Ri at
time t-1. Suppose previously the room state st−1

i was uncertain
about Ox’s staying, then the FB algorithm is now able to ensure
thatOx must have been in st−1

i with 100% confidence. As a result,
FB amends the previous value of st−1

i . And then this updated in-
formation is carried by FB to compute backward probabilities for
other older variables. Since the object association depends on room
states, as expressed by p(ψt

j |st−1
i , Êt), the revision of a room state

may trigger the revision of an object association in turn. Suppose a
historic Exit event ẽ at time t depended on the room state st−1

i ,
and now st−1

i is revised. Then FB will revise the OID of ẽ by com-
puting the backward probability of p(ψt

j |st−1
i , Êt). The backward

and smoothing computation continues going back, one epoch at a
time, until reaches the smoothing window boundary.

Next in Example 1, we illustrate how the FB algorithm infers ob-
ject identifications for non-ID-ed events using the conditional de-
pendencies defined in Section 3.2.

EXAMPLE 1. We make use of a representative layout of an ICU,
as shown in Figure 2a. Figures 2b and 2c depict Room R1’s state
s1 and Hallway’s state sH , while Room R2 to R7’s states are not

(a) Example ICU floor plan

(b) Inference results at time 12 and 13

(c) Inference results at time 14

Figure 2: Forward-Backward inference example

shown due to space constraints. We assume there are only three
healthcare workers in the ICU, i.e., O1, O2 and O3.

Figure 2b depicts Room R1’s state s1 and the hallway’s state
sH ’ starting from time t=11. Namely, at time 11, there was no
one in Room R1, and there were two workers, O1 and O2, in the
hallway.

Suppose at time 12, a non-ID-ed event enter(122,R1,?)
arrives, where 122 is the nonce, R1 is the room number and “?”
means the OID is unknown. The FB algorithm first performs the
forward inference to assign possible object identifications for this
event. Based on conditional dependency p(ψt

j |st−1
H , Êt), FB checks

the hallway’s status at time 11. Intuitively, those in the hallway at
t=11 have the possibility to enter Room R1 at t=12. So O1 and
O2 both are alternatives for this event. To simplify our discussion,
we assume O1 and O2 have equal chances of entering R1. So FB
assigns an equal confidence for them, i.e., 50% vs. 50%. Conse-
quently, a probabilistic event enter(122,R1,<O1:0.5, O2:
0.5>) is output. And then FB computes room states s121 and s12H
based on the conditional probability p(sti|st−1

i , Êt, Ẽt). Since the
enter event is uncertain, room states s1 and sH at time 12 are
uncertain too. Namely, s121 is set to <O1:0.5,O2:0.5>, saying
that either worker O1 or O2 is at Room R1 at t=12, each with
50% probability. Symmetrically, the hallway state s12H is set to
<O1:0.5,O2:0.5>. And then FB goes back in time, namely from
t=12 to the beginning of the smoothing window (say t=1), to com-
pute backward probabilities for all random variables (not shown in
Fig. 2).

Next at time 13, event exit(124,R2,O3) arrives, expressing
that worker O3 exits Room R2 at t=13. This is an ID-ed event, so
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no identification association is performed. The FB algorithm then
computes Room R3’s state and hallway’s state at t=13. Next FB
performs backward smoothing over all random variables. Note that
Room R1’s historic states are computed for backward probabil-
ity, however, none of them is changed given exit(124,R2,O3).
Actually, after the backward probabilistic computation, s121 is left
as it was. That is, we are still not sure which one ofO1 andO2 was
in Room R1 at t=12 and t=13.

Next at time 14, as shown in Figure 2c, event exit(127,R1,O1)
arrives. This ID-ed event conveys that worker O1 exited room
R1 at t=14. Intuitively we now figure that O1 must have entered
Room R1 previously. By computing the backward probability of
p(ψt

j |st−1
H , Êt), FB is able to amend Room R1’s historic states (s131

and s121 ) and the hallway’s historic states (s13H and s12H ) to reflect
this finding. Namely, s121 and s131 are both changed to < O1:1.0>,
meaning it is assured that workerO1 was in roomR1 at time 12 and
13. Symmetrically, s12H and s13H are revised to present that worker
O2 were in the hallway at time 12 to 13. If the user sets to output
revision events, then a revision Rev(122, < O1 : 1.0 >) is
produced. This revision event conveys that the historical event with
nonce 122 should be associated with O1 with probability 1.0.

4.2 Discussion of Deficiencies of FB Algorithm
The conventional implementation of the FB algorithm described

in Section 4.1 is straightforward and easy accessible (by extend-
ing an off-the-shelf AI software). However, it is not able to achieve
near-real-time responsiveness, nor to scale to a large volume stream,
as we will explain below and also demonstrate by experiments in
Section 6.3.

In the conventional implementation of FB, the backward and
smoothing step is very computation-intensive. This is because this
step computes backward probabilities for every random variable
one epoch at a time. Suppose a smoothing window contains n
epochs, then for each random variable, the smoothing step needs
to check relevant conditional probabilities n times [27].

In fact, we observe that many of these computations are unnec-
essary. For example, in Figure 2b, the event exit(124,R2,O3)
occurring at time 13 will not change room state s1 nor the object
association for enter(122,R1,?). But unfortunately the FB
algorithm would nonetheless run the backward computation for all
random variables. Our intuition is that if the distribution of a his-
toric event’s OID is not affected by the newly added event, the
smoothing will produce an “empty” computational result. If we
are able to skip probabilistic computations for those “unaffected”
events, then the cost of FB can be reduced − henceforth its effi-
ciency can be improved.

5. INFERENCE SPEEDUP:
OPTIMIZATION STRATEGIES

To overcome the above deficiencies suffered by the FB algo-
rithm, we now devise three advanced techniques, namely, prun-
ing unaffected variables, early termination of smoothing and se-
lective smoothing, to optimize the backward and smoothing step.
These techniques lead to a solution that keeps up with high-volume
streams while offering the equally high precision of inference as
the classical FB algorithm.

Our intuition is, in order to chase down the random variables that
need to be computed during the backward and smoothing, we wish
to find out which kind of random variables could ever be affected
by the newly updated information.

DEFINITION 1. Affected random variable: a random variable

that will be set a different value from its current value by the back-
ward probability computation during the inference.

5.1 Pruning Unaffected Variables
We first show an important property of random variables in our

model, which tells us which random variables are definitely not af-
fected. The merit of knowing that a random variable is not affected
is that the backward computation can thus safely skip this random
variable while guaranteeing to offer the same inference result.

THEOREM 1. If an alternative of a random variable is associ-
ated with 100% confidence, then this alternative’s confidence will
never be changed by the FB inference in future.

Proof: In our model, an alternative with 100% confidence of a ran-
dom variable can be produced by two ways: first, it is directly given
as input by an ID-ed event; and second, it is inferred by the FB algo-
rithm. So we prove this theorem case by case. In the first case, the
information brought by an ID-ed event is considered as a ground
truth which does not depend on any other random variable. Hence-
forth it will not be changed during the inference process. In the
second case, we prove by contradiction. If an alternative’s con-
fidence will be changed later, then that means it is still uncertain
now. In that case, it would not have had 100% confidence.2

LEMMA 1. If all alternatives of a random variable are associ-
ated with 100% confidence, then this random variable will not be
an affected random variable.

Proof: This lemma is derived from Theorem 1 and Definition 1.2
Lemma 1 is intuitive. Let us consider the random variables in

Figure 2b for example. At the beginning, the hallway state at time
11, i.e., s11H , is assured to be < O1:1.0,O2:1.0>. This implies s11H
will never be changed by any smoothing afterwards, because we
are already 100% sure who were in the hallway at time 11.

Therefore the first optimization we propose is to skip the back-
ward computation for those “unaffected” random variables, i.e.,
those whose alternatives are associated with 100% confidence.
Though simple, this optimization is especially appealing in our tar-
get environment where the input stream is mixed with ID-ed and
non-ID-ed events. Based on our model, an ID-ed event provides
relevant random variables with accurate states. Thus there are po-
tentially a large number of random variables with accurate values
in our system. Skipping backward computations for those variables
will henceforth significantly reduce processing cost .

5.2 Early Termination Using Finish-Flags
Next, we introduce a second optimization strategy that improves

performance by early terminating unnecessary computations in the
backward and smoothing process, yet without sacrificing inference
precision. We start by presenting the intuition of this mechanism
using the following example.

EXAMPLE 2. Let us consider the random variables in Figure 2b
again. Based on Lemma 1, we know that the hallway state variable
s11H is unaffected. We further observe that all hallway states ear-
lier than s11H will also never be changed. The intuition is, since
the state at time 11 is assured, the smoothing performed at time 11
must have completed all necessary computations for sH with the
accurate information already. Thus any smoothing process after
time 11 will never change those historical states afterwards. Con-
sequently, it is safe to skip backward computations for all hallway
states earlier than time 11.

Example 2 suggests that for a room state variable, the backward
step should be able to skip the computations for all historic states
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before an accurate state. The justification for this strategy is given
in Lemma 2.

LEMMA 2. For a room state random variable si, if its state at
time t, i.e., sti , has all alternatives associated with a 100% confi-
dence, then previous states of si that are earlier than t will not be
affected by any inference occurring later than t.

Proof: This feature is due to the Markov property of our model
and the construction of the Forward-backward algorithm [27, 32].
When computing backward probabilities for si upon the arrival of
an event etj , the information carried by etj , i.e., εj , is passed through
a sequence of states of si, from the current time t to the begin-
ning of the smoothing window, say t0. The passing is from one
epoch to its contiguously earlier epoch. The backward distribution
p(s

tk
i |εj , s

tk+1
i , ..., sti) computed at every epoch tk provides the

probability of being in the state of stki given event etj and all fu-
ture states. Noting that our model (defined in Section 3) exhibits
the Markov property, namely the conditional probability distribu-
tion of future states of the process depends only upon the present
state, not on the sequence of events that preceded it. So the back-
ward distribution is equal to p(stki |εj , s

tk+1
i ). If the value of εj and

s
tk+1
i does not change, p(stki ) will not change neither. Now that
sti is assumed to be unaffected, its contiguously previous state st−1

i

will be unaffected too. Then it can be deduced that all previous
states of sti will be unaffected. 2

Lemma 2 gives a basis for our early termination mechanism,
namely to stop the backward and smoothing when a room state
with 100% probability is reached. To efficiently implement this
mechanism, a mark for room state random variables, called finish-
flag, is created. A finish-flag is attached to a state when the state is
certain. The smoothing process for this random variable stops once
a finish-flag is encountered. Suppose there are thousands of histor-
ical states before the finish flag, which is realistic in our stream-
ing environment, using the finish-flag then can save thousands of
backward probability computations. An example of placing and
utilizing finish-flags is described below.

EXAMPLE 3. Figure 3 shows our optimization techniques ap-
plied to the same event stream as in Example 1. Room R1’s states
and hallway’s states are listed at the bottom of Fig. 3. From Ex-
ample 1 we know that s111 and s11H have all alternatives with 100%
confidences. Hence two finish-flags are created for s111 and s11H re-
spectively at time 11. Therefore the backward and smoothing com-
putation for s1 or sH will not check any states earlier than time
11. In comparison, in Example 1, the backward computation goes
all the way back until the starting point of the smoothing window,
which potentially involves hundreds of historic states.

Furthermore, when creating finish-flags, we can also dynami-
cally purge the states of random variables by removing those states
prior to finish-flags, because those states will never be affected af-
terwards. Purging by finish-flags is a complementary policy to
purging by the smoothing window in FISS. Purging by finish-flags
is more aggressive and henceforth saves more space. This is im-
portant in stream processing where runtime data structures need to
be purged to avoid memory depletion [16, 37].

5.3 Selective Smoothing via Pattern Matching
Our proposed pruning (Section 5.1) and early termination (Sec-

tion 5.2) strategies sift out random variables that are definitely un-
affected, which serves as a preliminary round of seeking affected
random variables. In this section, we propose a method that declar-
atively detects affected events.

Figure 3: Example of optimized smoothing when exit(127,R1,O1)
just arrives. Upper: partitions of probabilistic events. Bottom: ran-
dom variables with finishing-flags. Dashed lines: hyper-links from
events to random variables.

5.3.1 Motivation of pattern matching based method
We first introduce the notion of affected events, and then present

an important observation regarding affected events in our model.

DEFINITION 2. Affected event is an event whose object asso-
ciation will be changed by the backward probability computation
during the inference.

LEMMA 3. An affected random variable depends on at least
one affected event.

Proof: Prove by contradiction. If a random variable depends only
on events that are unaffected, then based on the definition of DBN
[27], this random variable will not be affected either. This is a
contradiction of the assumption that the variable is affected. 2

Motivated by Lemma 3, we propose to detect affected events and
then follow the conditional dependencies to locate affected random
variables, instead of searching through all random variables. There
are two main benefits of such event detection based strategy: First,
the total number of events in our system is much less than the num-
ber of random variables, as can be seen from our model defined
in Section 3 and depicted in Figure 1; Second, detecting affected
events is more intuitive than detecting random variables, because
events are observed by human beings, while random variables are
abstractions.

Therefore we now rephrase conditional dependencies p(ψt
j |st−1

H ,
Ê) and p(sti|st−1

i , Êt, Ẽt) from events’ perspective. We found
that these dependencies essentially specify the correlations between
events, as described below.

OBSERVATION 1. The backward probability of p(sti|st−1
i , Êt,

Ẽt) tells that if there is an Exit event for object Ox at room Ri,
then there must be a previous Enter event for Ox at room Ri. 2

This observation raises an interesting challenge: can we declar-
atively specify which event will be affected by a given event? The
2Symmetrically, the backward probability also tells that if there is an
Enter event for object Oi at room Rj , then there must be a previous
Exit event for Oi at a certain room. However, in our model, entering a
room is equal to exiting the hallway, and vice versa. So it is unnecessary to
repeat the symmetrical logic in Observation 1.
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Figure 4: Pattern query Q1 specifying affected event

answer is yes. Intuitively, it appears that an affected event should
satisfy the temporal constraint, the event type constraint, as well
as the value constraints on OID, as presented in Observation 1.
Specifically, our proposed solution is to declaratively specify af-
fected events by using Complex Event Processing (CEP) pattern
queries.

The reason of choosing CEP pattern queries is two-fold. First,
for the sake of expressiveness, a CEP pattern query specifies how
individual events are filtered and multiple events are correlated via
time-based and value-based constraints [17, 19, 21]. This fits our
specific problem well. Second, for the sake of performance, CEP
engines are known for their sophisticated capabilities for detect-
ing temporal correlated patterns of events in huge volume event
streams [5, 12, 17, 19, 36, 37]. Thus if we can specify affected
events via CEP pattern queries, then the CEP technology can help
FISS to detect affected events effectively and efficiently.

5.3.2 Conditional dependency as pattern queries
Next we describe how to declaratively specify affected events

using CEP pattern queries based on the conditional dependencies
in our model. As a preparation, we describe the properties of an
affected event in further depth by extending Observation 1.

LEMMA 4. Given an event e, suppose event e′ is affected by e,
then e′ should satisfy the following conditions: (1) e′.ts < e.ts;
(2) e′.OID is uncertain; (3) e′.OID and e.OID contain at least one
common alternative; (4) if e’s event type is Exit, then e′’s event
type is Enter, and vice versa.

Proof: Conditions (1) and (2) can be directly derived from The-
orem 1. We prove condition (3) by contradiction. Suppose the
alternative objects for e are {Oj1 ,...Ojn}. If none of them is an
alternative object of e′, then that means we are 100% sure e′ is not
associated with any of {Oj1 ,...Ojn}. Based on our assumption of
“disjoint tracks constraint” presented in Section 2, then we can fig-
ure that the association of e does not affect e′. This contradicts the
definition of our affected event (Def. 2). For condition (4), this is
derived from Observation 1.2

Our key idea is to compose a pattern query, using the commonly
used CEP pattern query syntax [19, 37], by imposing every condi-
tions in Lemma 4 with proper clauses.

Since the conditions in Lemma 4 require comparisons of proba-
bilistic OIDs, we need to extend the CEP pattern query semantics
to support equivalence tests on a probabilistic attribute.

DEFINITION 3. The equivalence test over two OIDs, denoted
as ∼=, returns true if the two OID contain at least one common
alternative object, otherwise returns false.

For example, <A:0.5, B:0.5, C:0> ∼= <A:0.7, B:0, C:0.3> re-
turns true, while <A:0.5, B:0.5, C:0> ∼= <A:0, B:0, C:1.0> re-
turns false.

Next we create the pattern query named Q1 (shown in Figure 4)
to express the conditions of affected events as specified in Lemma 4.
Q1 exhibits three unique features.

• Q1 utilizes the sequence pattern SEQ to specify the temporal
order in which the events must occur [19, 37]. Namely, when
a new Exit event arrives we search for an Enter that occurs
previously and satisfies all the predicates in Q1.

• Q1 is defined using the appropriate event selection strategy that
addresses how to select the relevant events from a large vol-
ume of events [21]. Namely, Q1 uses the skip-till-next-match
selection strategy to impose that irrelevant events are skipped
until an Enter event matching all constraints is encountered.
If multiple events in the event history can match the constraints,
only the first one, i.e., the most recent one, is considered.

• In the WHERE clause Q1 specifies predicates on the probabilis-
tic OID attribute, which requires the two events to contain at
least one common object alternative (Def. 3).

We have thus shown the successful declarative specification of
affected events. This is a transformation from the formal condi-
tional dependencies to practical CEP pattern queries. It is worth
noting that not all conditional dependencies can be transformed
into pattern queries. CEP pattern queries put great emphasis on
specifying sequence patterns of events. We thus take this feature
to represent temporal conditional dependencies in DBNs, i.e., tem-
poral arcs crossing different epochs [27]. For other conditional
dependencies that are not temporal, we will use the conventional
presentation.

5.3.3 Runtime affected variable detection
Next we describe our proposed algorithm for efficiently detect-

ing affected events and random variables by leveraging CEP pat-
tern matching technology. Specifically, we devise an advanced data
structure called hyper-linked Queue, or hyQ in short, to manage
events and random variables in an integrated manner. hyQ main-
tains partitioned queues of probabilistic events in order to speed up
event pattern matching. It also builds hyper-links between events
and relevant random variables to help efficiently trace the condi-
tional dependencies.

Initialization. At the initialization stage, suppose all pattern
queries created for the model (using the technique presented in
Sec. 5.3.2) are registered in FISS. The set of queries is denoted as
Q. Following the well-established NFA (Non-deterministic Finite
Automata) based event pattern detection mechanism [21, 37], an
NFA is created for each pattern query Q ∈ Q to represent the se-
quence of event types. For example, the NFA for Q1 contains event
types Enter and Exit, as depicted in Figure 3 by two black ovals.
The arrow from Enter to Exit imposes the temporal order be-
tween them, namely an Enter event should be ahead of an Exit
event, as specified in Q1.

A hyper-linked queue, i.e., hyQ, is created for each event type
to store events of the same type in time order. In order to expe-
dite the equivalent test on OIDs of events, every hyQ is partitioned
on the probabilistic OID attribute. The conventional partitioning
mechanism in CEP engines [24, 37] dispatches events based on the
discrete values of an attribute. However, in our context, OIDs are
uncertain. We thus propose to build partitions based on the al-
ternatives of an uncertain OID, while recording the confidence of
each alternative in the partitioned event. This special partitioning
mechanism allows an uncertain event to belong to multiple parti-
tions (when its OID has more than one alternative). Figure 3 shows
two hyQs for query Q1, namely, the gray block is the hyQ for event
type Exit, while the pink block is the hyQ for event type Enter.
Since we assume there are totally three objects in the example ap-
plication, events in hyQs are partitioned on these three alternatives.
Note that event enter(122,R1,?) falls into two partitions, O1
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and O2, because it could be associated with either of these two
objects.

For a room state variable, in order to provide efficient ordered
access, we index its states by timestamp. Figure 3 illustrates such
an arrangement. In the bottom of Figure 3, for example, the state
variable for room R1, s1, has its states organized in time order.
Also note that the finish-flags have been established for all historic
states where applicable.

Furthermore, to keep track of the probabilistic dependencies, a
hyper-link is maintained for each event, connecting to all random
variables that depend on this event. As illustrated in Figure 3, the
hyper-link for event enter(122,R1,?) points to room R1’s
state s121 and the hallway’s state s12H , because the distributions of
s121 and s12H depend on this event.

Selectively Backward Smoothing. Next we describe the cus-
tomized backward and smoothing process of FISS. When a new
event e arrives, FISS first performs forward inference, same as
Step 1 of the classical FB algorithm (Section 4.1). However, FISS
then performs the backward computation in a dramatically differ-
ent way. Specifically, FISS first evaluates all pattern queries in
Q to locate affected events. Suppose the inferred OID of e is
<Ox1 : p1, ...Oxk : pk>, where pk denotes the confidence, and
the event type of e is Exit. During the query evaluation, FISS
only checks those Enter events that fall into at least one partition
of {Ox1 , ..., Oxk}. This evaluation makes heavy use of partitioned
hyQs. Namely, for a pattern query Q, its NFA helps to restrict the
event type and the temporal order between events. Also its par-
titioned hyQs enable the equivalence test on probabilistic OID to
be efficient. The query evaluation returns historic events that are
potentially affected by the new event e, while other events will not
be considered for further backward computation (because they are
guaranteed to be unaffected by our technology). Example 4 illus-
trates such query evaluation process.

EXAMPLE 4. In Figure 3, at time t=14, event exit(127,R1,
O1) arrives. FISS follows the NFA to search Enter events that
occurred before time 14. As we can see, all historic Enter events
are stored in hyQs and partitioned by objects. So FISS only needs
to check those events falling into the partition of objectO1, because
exit(127,R1,O1) is associated withO1. Event enter(122,
R1,?) is quickly detected, which is then determined to be an
affected event. And then the evaluation for this particular query
stops, because the “skip-till-next-match” clause of Q1 imposes that
only the first matched event is returned, as explained in Sec. 5.3.2.

Next, given an affected event, FISS utilizes the hyper-links to
locate affected random variables immediately. Moreover, the prun-
ing (Sec. 5.1) and finish-flag (Sec. 5.2) strategies are incorporated
during the selection of affected random variables, so that those ran-
dom variables that are definitely unaffected will be sifted out on the
way. Finally, the backward probability computation will account
for those affected random variables only.

EXAMPLE 5. In Figure 3, the backward and smoothing at time
t=14 only considers Room R1’s state s1 and hallway state sH , be-
cause they are affected variables of exit(127,R1,O1). All
other room state variables are not ever accounted for backward
computation.

In summary, our proposed selective smoothing strategy achieves
scalability by restricting the backward probability computations to
a small scope of affected random variables. Most importantly, we
do so in a timely fashion by leveraging the CEP technology. This
enables FISS to offer the most likely association for non-ID-events
in near real-time, even over a large volume stream.

6. EXPERIMENTAL EVALUATION
We have implemented all proposed inference techniques in FISS

using Java and we take the Active CEP framework [36] as our back-
end CEP engine. In this section, we present a detailed evaluation of
FISS using event streams modeled based on the real-world health-
care system HyReminder [35]. All measurements were obtained
from a 1.3Ghz Intel Due-core processor with 4GB RAM running
JRE 1.6.

Our experimental results demonstrate that our system (1) pro-
duces a probabilistic event stream with probabilistic object identifi-
cations for all events; (2) offers significant error reduction over the
MHT [31] model, a state-of-the-art alternative model; (3) responds
to high-volume streaming events within near-real-time on a mod-
erate hardware platform; (4) provides on average 15 times faster
processing time than the basic FB algorithm.

6.1 Experimental Setup
Motion tracing event streams. We make use of the data sim-

ulator for a hospital ICU scenario that produces sensor reading
streams according to the real-world observations obtained in the
HyReminder system [35]. Specifically, the simulator has a subrou-
tine that generates a single healthcare worker’s trace in the ICU,
which consists of a sequence of pairs of Enter and Exit events.
Based on our analysis of the real data from the HyReminder sys-
tem, the time interval of a worker staying at a patient room follows
a Gaussian distribution. This subroutine is first executed for each
worker separately. Then the simulator merges all workers’ traces
into one stream ordered in time.

Also, to obtain insight into key factors on accuracy and perfor-
mance, we control several properties of the event stream. One cru-
cial property is the “non-ID-ed ratio” of the input stream, meaning
the percentile of events that do not have associated object identi-
ties. We implement this by randomly selecting a number of events
in the stream, for which their OIDs are hidden. E.g., if the non-
ID-ed ratio is set to 20%, then 20% events in the stream will have
their OID missing. In this way, FISS cannot see the real OIDs of
non-ID-ed events, while the simulator keeps a copy of all OIDs for
later inference precision evaluation.

When we use the simulator to generate healthcare workers’ traces,
the experimental results below are the average over 20 runs of the
stream per each particular setting.

Metrics. Typically, the accuracy of inference results is measured
using the precision metric, i.e., the ratio of inferred values over
the ground truth [6, 22, 34]. In our context, the precision of our
inference algorithms can be measured as the ratio of the inferred
OID over the real OID of a non-ID-ed event. For example, suppose
the inferred OID is< O1=0.75,O2=0.25>, and the ground truth is
< O1=1.0>, then the precision is 0.75/1.0 = 75%. Note that we do
not calculate precisions for ID-ed events, simply because no object
association inference is done for ID-ed events.

The performance metrics are the processing time and the through-
put of our system. The throughput is measured as the average num-
ber of events that our system takes to process in one unit time.
Namely, given a batch of input events of size numIn (numIn is set
to be much larger than the maximum window size of all queries),
suppose the system time span taken to process the batch is Tproc,
then the throughput = numIn/Tproc.

6.1.1 Alternative Approaches Compared
MHT. In order to demonstrate our proposed time-varying graph-

ical model provides the desired inference precision, we compare
with one of the most widely used approaches for the data asso-
ciation problem, namely the multiple hypothesis tracking (MHT)
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model [31]. MHT model maintains multiple possible tracks for
each object, and updates every possible existing track when pro-
cessing a new event. Over time, a track can branch into many pos-
sible directions. MHT calculates the probability of each potential
track. Typically it only reports the most probable tracks because
reporting all is too prohibitive [15]. The main difference between
MHT and our proposed model is that MHT does not revise the pre-
viously inferred object associations in a track.

In the experiments we adopt an open-source Java implemen-
tation [1] of MHT based on the Murty best-k assignment algo-
rithm [15]. The real-world constraints specified in the MHT im-
plementation (in the form of ambiguity matrix and observed fea-
tures [1]) are equivalent to the conditional probabilities aforemen-
tioned in Section 3.2. The MHT implementation is based on the
best-k assignment which returns the k most probable tracks for an
object at each epoch [15]. We have enumerated k from 100 to 5
and found that a reasonable k in our setting is k=12, which ensures
to return results within an affordable time.

Basic FB Algorithm. We compare the performance of our pro-
posed optimization techniques with the off-the-shelf Forward-back-
ward algorithm. We make use of an open-source implementation of
FB algorithm in Java [2], and extend the implementation to enable
it to work with streaming data, as described in Section 4.1.

6.2 Experiments on Inference Accuracy
We first evaluate the accuracy of our inference method. Since our

optimized inference algorithm and the basic FB algorithm imple-
ment the same model, i.e., use the same conditional dependencies
specified in Section 3.2, they offer the same inference precision.
Thus we only compare our proposed inference technique (marked
as “FISS”) versus MHT (marked as “MHT”) below.

Non-ID-ed ratio vs. precision. We first test the sensitivity to
the non-ID-ed ratio of the input stream. As Figure 5a shows, while
both FISS and MHT produce worse inference accuracy as the non-
ID-ed ratio increases, FISS outperforms MHT by 45% on average.
Especially when the non-ID-ed ratio is low, i.e., 5% to 45%, FISS
achieves 60% higher precision than MHT. This is mainly because
the MHT model does not conduct smoothing over historical object
identification associations, even when more information could be
gained as new events arrive (especially ID-ed events).

Number of objects vs. precision. Next we vary the number
of objects contained in the simulated stream for a fixed non-ID-
ed ratio of 25%. Figure 5b reports the average precision results
as the object count increases exponentially. We can see that nei-
ther of the models degrades significantly. The primary reason is
the conditional probabilities specified for object association treat
each object independent of each other, which is known as the “dis-
joint tracks constraint” commonly adopted in the PDA problem [6].
However, MHT scales less gracefully than our FISS approach, es-
pecially when the object number is larger than 32. Recall that the
MHT implementation is an approximation based on best-k assign-
ment [15], so when the number of objects increases, an non-ID-ed
event naturally has more alternate objects that can be assigned to
it, yet in MHT only a subset (with the fixed k size) of all possible
assignments will be obtained. Such pruning consequently reduces
the inference precision of MHT.

6.3 Experiments on Inference Efficiency
Though our optimized inference algorithm and the basic FB al-

gorithm provide the same inference precision, their performances
are significantly different. Next we compare the processing time
of these two algorithms for consuming the same chunk of the input
stream (of 2000 events). The following three experiments (Fig-

(a) Vary stream non-ID-ed ratio (b) Vary number of objects

Figure 5: Comparison on Inference Accuracy

ures 6 (a), (b) and (c)) convey that our optimized inference algo-
rithm (denoted by “FISS”) results in a dramatically less processing
time than the basic FB algorithm (denoted by “FB”) – while FISS
only needs several thousands of milliseconds to process, the basic
FB approach requires several millions, i.e., 15-fold faster.

Number of objects vs. processing time. In this experiment
we vary the number of objects observed in the input stream. The
non-ID-ed ratio of the input stream is 25% and number of rooms
is 10, with a smoothing window of 60 minutes. As can be seen
from Figure 6a, FISS offers a significantly better processing time
than the basic FB. Namely, FISS processes the input stream on av-
erage 15 times faster. Moreover, we observe that FISS is not very
sensitive to the number of objects. The main reason is FISS parti-
tions events on object ID. Even though the total number of objects
increases, only the related objects to an event, which typically is
fairly stable within a given time period, need to be considered for
computation. On the other hand, as explained in Section 4.2, the
basic FB algorithm is linear in the number of possible states of a
random variable [27], which in our context is exponential in the
number of objects.

Number of rooms vs. processing time. Next we observe the
processing time of FISS and basic FB while varying the number
of rooms in the environment. Figure 6b demonstrates that FISS
achieves a stable performance when the room number increases.
The key reason is FISS only computes backward probability for
affected random variables, as stated in Lemma 4. This limits the
scope of random variables that must be accounted for computation,
which usually relates to one particular room and the hallway. On
the other hand, the basic FB algorithm is linear in the room number,
as it always revisits every random variables during the backward
step and more rooms means more variables.

Non-ID-ed ratio vs. processing time. Figure 6c shows the pro-
cessing time for increasing non-ID-ratios. FISS needs more pro-
cessing time when the number of non-ID-ed events in the stream
increases for three reasons: First, more non-ID-ed events ask for
more forward inference computations; Second, an uncertain event
will lead to more affected historical events compared to an ID-ed
event; Three, as the number of accurate events decreases, fewer
finish-flags can be placed. In contrast, the basic FB algorithm does
not perform selective smoothing nor early termination. Its process-
ing time is just slightly affected by the non-ID-ed ratio simply be-
cause it performs more forward inference computations to estimate
missing OIDs.

Smoothing window vs. throughput. Next we investigate how
FISS and basic FB perform under various smoothing window sizes.
In this experiment, the smoothing window varies from 30 minutes
to 180 minutes. We set the non-ID-ed ratio to be 25%, the number
of objects to be 32, which is realistic for an ICU. Figure 7 demon-
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(a) Vary number of objects (b) Vary number of rooms (c) Vary non-ID-ed ratio

Figure 6: Processing Time on Stream of 2000 Events

Figure 7: Smoothing window size vs. throughput

strates that both FISS and basic FB degrade in terms of through-
put as the smoothing window becomes larger. Because a larger
smoothing window means more events must be processed during
backward smoothing. But FISS is capable to scale even when the
window size is 180 minutes, mainly thanks to the finish-flag tech-
nique. As explained in Section 5.2, the optimized backward com-
putation terminates when either a finish-flag is reached or in the
worst case, when events are out of the window. This experiment
shows that even when the non-ID-ed ratio is relatively large, 25%
in this experiment, many backward computations take advantage
of finish-flags, thus resulting in much less processing time. In con-
trast, the FB algorithm conducts each backward revision until the
window threshold. That is, its time complexity is polynomial in the
number of events [27].

Output strategy vs. number of output events. In this experi-
ment we test three commonly-used output strategies introduced in
Section 2, namely reporting any change (denoted as “Any”), re-
porting when the object association is certain (denoted as “Cer-
tain”) and reporting when the revision differs by more than 50%
(denoted as “50%”). The input stream in this experiment contains
2000 events with 32 objects and the non-ID ratio is 25%. Figure 8
depicts the number of output events, including both ordinary events
and revisions, for the three strategies. As we can see, among all
changes made during smoothing, shown by the bar of “Any”, only
a small portion (namely 30%) of them are significant, shown by
the bar of “Certain”. We also observe that an input event could be
modified more than once, resulting in multiple revisions.

7. RELATED WORK
Probabilistic data association (PDA). Techniques for PDA de-

termine the correspondence between measured observations and
objects [6] when the association between them is uncertain. In typ-

Figure 8: Output strategy vs. num. of output events

ical PDA applications, like radar based object tracking and person
tracking in videos, the input observations never carry any object
identification. This is the key difference from our target applica-
tion, where the observations are mixed with ID-ed and non-ID-ed
events. Consequently, models and methods from this research area
do not work very well for our problem. Our experiments demon-
strate that if we adapt the widely-used PDA approach, MHT [31], to
our problem, the association results are less accurate than those pro-
duced using our proposed FISS solution. Besides, existing work [6,
31, 33] of PDA largely focused on modeling, while the efficiency
of processing has been overlooked - which is a key objective of this
paper.

RFID stream processing. Recent research has addressed the RFID
location inference [11, 13, 34] and RFID data cleaning problems [20,
22]. In these problem settings, object identities are reliably given
by RFID readings, i.e., no inference on object identification is need-
ed. Instead, they focus on challenges like cleaning redundant read-
ings and inferring objects’ precise locations. Therefore they funda-
mentally tackle a different problem from us.

Furthermore, in their context, observations of an object are likely
redundant, lossy or erroneous. Hence they chose approximate in-
ference methods such as particle filtering [11, 13, 20, 22, 34], which
maintains weighted samples about the true location of each object.
In contrast, in our problem setting (described in Section 2), the in-
formation brought by input events are precise, in the sense that even
though the identification of an event may be missing, all attributes
(including time and location) of an event are accurate. Namely we
do not need to handle redundant, lossy or erroneous event streams.
We thus chose an exact inference method, the Forward-backward
algorithm, that fits our problem well. In spite of different mod-
els and inference methods, technically we have been inspired by
several ideas of efficient inference over streaming data from their
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techniques, like limiting the scope of smoothing [22, 34] and cus-
tomizing data structures to speed up the inference process [11, 34].

Complex event processing (CEP). In recent research on CEP, the
focuses have been primarily to enrich the expressiveness of pattern
queries and to improve the efficiency of real-time pattern matching
[5, 17, 19, 36, 37]. We are the first to adopt CEP techniques for
probabilistic inference over event streams. We not only provide the
methodology of transforming temporal dependencies involved in
the inference problem into pattern queries (Section 5.3), but also
experimentally show the dramatic performance gain offered by our
CEP-aided optimizations (Section 6.3).

8. CONCLUSION & FUTURE WORK
In this paper we present a probabilistic approach to translate a

stream consisting of ID-ed and non-ID-ed sensor readings into a
probabilistic event stream, thus enabling object-based event ana-
lytics in real-time. We design a set of optimization strategies for
inferring streaming events using the extended Forward-backward
algorithm. The proposed strategies scale the backward probabil-
ity computation while offering the most likely object association.
Our experiments show that our proposed solution offers on average
45% better precision over the state-of-the-art PDA approach. Our
optimized inference strategies achieve on average 15 times higher
throughput than the basic Forward-backward implementation.

An important finding. Our proposed optimization techniques,
namely leveraging pattern queries for selectively smoothing and
using finish-flags to early terminate backward computations, are
general mechanisms for the Forward-backward algorithm. Even
though these techniques were demonstrated in the context of our
object identification inference problem, they could be applied to
other problems wherever the Forward- backward inference is adopted.
Improving the performance of probabilistic inference algorithms
with database principles is of independent interest to the proba-
bilistic database community [10, 23, 29]. The generality of our
techniques strengthens this paper’s contributions and warrants fu-
ture studies.

In future work, we plan to incorporate our optimization tech-
niques to the real-world HyReminder system. We also plan to ex-
plore object-based analytics over probabilistic event streams.
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