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ABSTRACT

Data uncertainty has posed many unique challenges to near-
ly all types of data mining tasks, creating a need for uncer-
tain data mining. In this paper, we focus on the particular
task of mining probabilistic frequent serial episodes (P-FSEs)
from uncertain sequence data, which applies to many real
applications including sensor readings as well as customer
purchase sequences. We first define the notion of P-FSEs,
based on the frequentness probabilities of serial episodes un-
der possible world semantics. To discover P-FSEs over an
uncertain sequence, we propose: 1) an exact approach that
computes the accurate frequentness probabilities of episodes;
2) an approximate approach that approximates the frequen-
cy of episodes using probability models; 3) an optimized
approach that efficiently prunes a candidate episode by esti-
mating an upper bound of its frequentness probability using
approximation techniques.

We conduct extensive experiments to evaluate the perfor-
mance of the developed data mining algorithms. Our experi-
mental results show that: 1) while existing research demon-
strates that approximate approaches are orders of magni-
tudes faster than exact approaches, for P-FSE mining, the
efficiency improvement of the approximate approach over
the exact approach is marginal; 2) although it has been rec-
ognized that the normal distribution based approximation
approach is fairly accurate when the data set is large enough,
for P-FSE mining, the binomial distribution based approx-
imation achieves higher accuracy when the the number of
episode occurrences is limited; 3) the optimized approach
clearly outperforms the other two approaches in terms of
the runtime, and achieves very high accuracy.
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1. INTRODUCTION
Frequent serial episode discovery, first introduced in [16],

is a popular framework for mining useful and interesting
temporal patterns from sequential (and often symbolic) da-
ta. Different from frequent sequential patterns [4] which
refer to frequent subsequences discovered from a set of se-
quences, where each sequence consists of a list of elements
and each element consists of a set of item symbolics, fre-
quent serial episodes are frequent subsequences mined from
a single long sequence of events (represented by symbolic
items). Frequent serial episodes have been demonstrated
to be an effective tool to unearth temporal correlations in
data, being successfully used in many application domains,
such as analysis of alarm sequences in telecommunication
networks [16], root cause diagnostics from faults log data in
manufacturing [23], and user-behavior prediction from web
interaction logs [14] etc.

Uncertainty is inherent in data from many different do-
mains, including sensor network monitoring and moving ob-
ject tracking [22]. The data uncertainty has posed many
unique challenges to nearly all types of data mining tasks,
creating a need for uncertain data mining. Recently, a num-
ber of techniques and algorithms have been devised to take
into account data uncertainty during the data mining pro-
cess, including clustering uncertain data [11][18], classify-
ing uncertain data [6][20][19], and mining frequent patterns
over uncertain data [8][2]. A survey on uncertain data min-
ing and management can be found in [3]. However, to our
knowledge, this is the first work that studies the problem
of mining frequent serial episodes over uncertain sequence
data.

In this paper, we focus on the problem of mining frequent
serial episodes from an uncertain sequence, which consists
of an ordered list of uncertain events. Due to the fact that
the frequency of a serial episode becomes a discrete random
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variable in an uncertain sequence, we define the measure
frequentness probability to evaluate the probability that the
frequency of a serial episode is no less than some minimum
frequency threshold. Informally, a serial episode is a prob-

abilistic frequent serial episode (P-FSE) if its frequentness
probability is no less than some minimum probability.

To mine P-FSEs over an uncertain sequence, we develop
three data mining algorithms. First, we develop an exact
approach that discovers P-FSEs by computing the accurate
frequentness probabilities of episodes using the dynamic pro-
gramming based scheme. Secondly, we propose an approxi-
mate approach that approximates the frequentness probabil-
ities of episodes using probability models. Normal distribu-

tion has been used in existing probabilistic frequent pattern
mining to approximate the frequency distribution and has
achieved high accuracy. We theoretically show that the er-
ror caused by the normal approximation may be large when
the number of episode occurrences is low. In this case, we
propose to use the Binomial distribution based approxima-
tion, which demonstrates high accuracy in our experiments.
Thirdly, motivated by the observation that the major com-
putation cost of the exact approach and the approximate
approach come from the scanning of the uncertain sequence
to recognize all probabilistic occurrences of an episode, we
devise an optimized approach that estimates an upper bound
of the frequentness probability for an episode without recog-
nizing all of its occurrences. The optimized approach prunes
an episode immediately if the upper bound of its frequent-
ness probability does not satisfy the minimum probability
threshold.

We carry out extensive experiments on both synthetic
and real-world data to evaluate the performance of the pro-
posed P-FSEs mining algorithms. Our experimental result-
s demonstrate the superiority of the optimized approach
which achieves the highest efficiency, and very high accu-
racy at the same time. We also have some findings which
highlight the difference between P-FSE mining and other
probabilistic frequent pattern mining.

1. While approximate approaches can be orders of mag-
nitudes faster than exact approaches for probabilistic
frequent itemset mining [24], for P-FSE mining, the ef-
ficiency improvement of the approximate approach is
marginal. The reason is that the major cost of P-FSE
mining is the occurrence recognition, rather than the
frequency checking.

2. Although the Normal distribution based approxima-
tion usually achieves high accuracy for probabilistic
frequent itemset mining [7], for P-FSE mining, when
the number of episode occurrences is low, the Binomial
distribution based approximation is more accurate.

The remainder of this paper is structured as follows. We
review related research work in Section 2. The concep-
t of probabilistic frequent serial episodes and the problem
of probabilistic frequent serial episode mining are stated in
Section 3. Section 4 describes the algorithm proposed for P-
FSE mining. We evaluate the performance of the proposed
data mining algorithms in Section 5. Section 6 closes this
paper with some conclusive remarks.

2. RELATED WORK
In this section, we review related research in the following

two sub-areas: traditional frequent serial episode mining and
frequent pattern mining over uncertain data.

2.1 Frequent Serial Episode Mining
The problem of frequent serial episode mining was first

introduced in [16]. Similar to frequent sequential pattern
mining, frequent serial episode mining is an important tool
to discover useful and interesting temporal patterns from
sequential data. While frequent sequential pattern mining
discovers patterns from a set of sequences, frequent seri-
al episode mining focuses on discovering episodes from a
single long sequence of events. Various frequency defini-
tions of episodes have been proposed, which has given rise
to different types of frequent episodes. Recently, Achar et
al. [1] reviewed 7 different frequency definitions in the lit-
erature. Three of them, window-based frequency [16], head
frequency [9], and total frequency [9], consider the num-
ber of windows containing at least one occurrence of an
episode, where each window has the same specified width.
The remainder definitions, minimal occurrence-based fre-
quency [16], non-overlapped frequency [13], non-interleaved
frequency [12] and distinct frequency [10], directly take into
account the different occurrences of an episode in the se-
quence. Most of the existing algorithms for frequent serial
episode mining are level-wise apriori-based discovery meth-
ods, which involve two main steps: candidate generation
and frequency counting. Candidate generation is usually
handled based on the anti-monotonicity property or some
more restricted anti-monotonic properties introduced by d-
ifferent frequency definitions. For frequency counting, most
algorithms [16][13] use the finite state automata as the ba-
sic building blocks for recognizing occurrences of episodes
in data sequence. In this paper, we study the problem of
frequent serial episode mining in the context of uncertain
data. In particular, we consider frequent serial episodes de-
fined on the non-overlapped frequency and the distinct fre-
quency, since the two frequency definitions similarly incur
independent occurrences of an episode.

2.2 Pattern Mining over Uncertain Data
Due to the wide applications of uncertain data, mining fre-

quent patterns over uncertain databases has attracted much
attention recently. Frequent itemset mining and frequen-
t sequential pattern mining are two of the most important
pattern mining problems studied under the uncertain envi-
ronment.

Existing work on mining frequent itemsets from uncertain
databases falls into two categories based on the definition
of a frequent itemset: expected support-based frequent item-

set [8][2] and probabilistic frequent itemset [5][21]. Both def-
initions consider the frequency (support) of an itemset as a
discrete random variable. The former employs the expecta-
tion of the support as the measurement. That is, an itemset
if frequent only if the expected support of the itemset is
no less than a specified minimum expected support. The
latter uses the frequentness probability as the measuremen-
t, which is the probability that an itemset appears no less
than a specified minimum support times. Then, an itemset
is frequent only if its frequentness probability is no less than
a specified minimum probability threshold. For mining ex-
pected support-based frequent itemsets, there are three rep-
resentative algorithms: UApriori [8], UFP-growth [15], and
UH-Mine [2]. UApriori is the uncertain version of the well-
known Apriori algorithm. Both UFP-growth and UH-Mine
are based on the divide-and-conquer framework which us-
es the depth-first strategy to search frequent itemsets. For
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mining probabilistic frequent itemsets, two representative
algorithms are DP − dynamic programming-based Apriori
algorithm [5], and DC − divide-and-conquer-based Apriori
algorithm [21]. Approximate probabilistic frequent itemsets
mining algorithms based on Poisson distribution and Nor-
mal distribution have been proposed as well in [24] and [7],
respectively. An empirical comparison of eight existing rep-
resentative algorithms for frequent itemset mining over un-
certain data has been reported in [22] with uniform mea-
sures.

Some initial research has been undertaken to mine sequen-
tial patterns from uncertain sequence data. For example, the
expected support-based frequent sequential pattern mining
has been studied in [17]. In contrast, Zhao et al. [25] propose
to mine probabilistic frequent sequential patterns according
to the frequentness probability. To our knowledge, this is the
first work of mining frequent serial episodes from uncertain
sequence data.

3. PROBLEM DEFINITION
In this section, we first review relevant concepts in de-

terministic data. Next, we introduce the definitions in un-
certain sequence data. Then, the problem of probabilistic
frequent serial episode mining is formulated.

3.1 Preliminaries in deterministic data

Definition 1. Given a set of event types E, an event is a
pair (e, t) where e ∈ E is an event type and t is the occur-
rence time of the event. Then, an event sequence is an or-
dered sequence of events, denoted by S = 〈(e1, t1)(e2, t2) . . .
(en, tn)〉, such that ei ∈ E (∀ i ∈ [1, n]), and ti ≤ ti+1 (∀
i ∈ [1, n− 1]).

For example, the following is an event sequence containing
seven events:

〈(A, 1), (B, 3), (A, 4), (C, 6), (A, 14), (B, 15), (C, 17)〉 (1)

Definition 2. A serial episode α is a triple (V,≤, g) where
V is a set of nodes, ≤ is a total order on V , and g : V → E is
a mapping associating each node in α with an event type in
E. The interpretation of a serial episode is that the events
in g(V ) have to occur in the order described by ≤. A serial
episode α containing |V | nodes is a |V |-node episode.

Consider a 3-node episode α = (Vα,≤α, gα), Vα = {v1, v2,
v3}, gα(v1) = A, gα(v2) = B, gα(v3) = C, with v1 ≤α v2 ≤α

v3. We denote the episode as (A → B → C). For brevity,
we will refer to a serial episode as an episode hereafter.

Definition 3. An episode β = (V ′,≤′, g′) is a sub-episode
of α = (V,≤, g), denoted by β � α if there exists a mapping
f : V ′ → V such that g′(v) = g(f(v)) for all v ∈ V ′, and for
all v, w ∈ V ′ with v ≤′ w, f(v) ≤ f(w) also. An episode α is
a super-episode of β if and only if β � α.

For example, let α be a 3-node episode (A → B → C),
and β be a 2-node episode (A → B). Then, β � α.

Definition 4. An episode α = (V,≤, g) occurs in an event
sequence S =< (e1, t1)(e2, t2) . . . (en, tn) > if there exists a
mapping h : V → {1, . . . , n} from nodes of α to events of S,
such that g(vi) = Eh(vi), ∀ vi ∈ V ; and ∀ vi, vj ∈ V with
i 6= j and vi ≤ vj , we have th(vi) < th(vj ).

The 3-node episode α =(A → B → C) occurs in the exam-
ple sequence (1). For example, the events 〈(A, 1)(B, 3)(C, 6)〉
constitute an occurrence of α.

As reviewed in Section 2, a number of different frequen-
cy definitions have been proposed to capture how often an
episode occurs in an event sequence. We observe that exist-
ing frequency definitions can be grouped into two categories:
definitions incurring dependent occurrences (e.g. two occur-
rences of an episode may share common events) and def-
initions incurring independent occurrences. Due to space
constraint, in this paper, we focus on only the type of fre-
quency definitions incurring independent occurrences, which
contains two frequency definitions, the non-overlapped fre-
quency [13] and the distinct frequency [10]. We review the
definitions of the two frequency measure as follows.

Definition 5. Two occurrences h1 and h2 of an N-node
episode α are said to be non-overlapped if either th1(vN ) <

th2(v1) or th2(vN )<th1(v1). A set of occurrences is said to be
non-overlapped if every pair of occurrences in the set is non-
overlapped. A set H , of non-overlapped occurrences of α in
S is maximal if |H | ≥ |H ′|, where H ′ is any other set of non-
overlapped occurrences of α in S. The non-overlapped
frequency of α in S, denoted as freqno(α), is defined as the
cardinality of a maximal non-overlapped set of occurrences
of α in S.

Consider the occurrences of α=(A → B → C) in the ex-
ample sequence (1). The two occurrences 〈(A, 1)(B, 3)(C, 6)〉
and 〈(A, 14)(B, 15)(C, 17)〉 are non-overlapped, while 〈(A, 1)
(B, 3)(C, 6)〉 and 〈(A, 4)(B, 15)(C, 17)〉 are overlapped be-
cause (A, 4) occurs before (C, 6). Hence, the non-overlapped
frequency considers the first set of occurrences, freqno(α)
= 2.

Definition 6. Two occurrences h1 and h2 of an N-node
episode α are said to be distinct if h1(vi) 6= h2(vj), ∀ i, j ∈
[1, N ]. A set of occurrences is distinct if every pair of oc-
currences in it is distinct. A set H of distinct occurrences
of α in S is maximal if H≥H ′, where H ′ is any other set of
distinct occurrences of α in S. The distinct occurrence
frequency of α in S, denoted as freqd(α), is the cardinality
of a maximal set of distinct occurrences of α in S.

According to distinct occurrence frequency, both of the t-
wo sets of occurrences of α = (A → B → C) in sequence (1),
{〈(A, 1) (B, 3)(C, 6)〉 〈(A, 14)(B, 15)(C, 17)〉} and {〈(A, 1)
(B, 3)(C, 6)〉 〈(A, 5)(B, 15)(C, 17)〉}, are valid because the
occurrences in each set are distinct from each other 1. Thus,
freqd(α) = 2.

Then, an episode is frequent if its frequency is no less than
some user specified minimum frequency threshold. Given
an event sequence, the problem of frequent serial episode
mining is to discover the complete set of episodes satisfying
the minimum frequency threshold.

3.2 Concepts in uncertain data
After reviewing relevant definitions of frequent serial episo-

de mining in deterministic data, we now introduce the con-
cepts in the context of uncertain data.

1There are definitions in the literature, such as earliest tran-
sition and minimal occurrence window, to further restrict
the particular set of occurrences to be considered.
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Table 1: An example of uncertain sequence.
Uncertain Sequence

〈(A, 0.6, 1)(A, 0.7, 2)(B, 0.8, 2)(B, 1.0, 3)(C, 1.0, 4)〉

Table 2: Possible worlds of the example sequence.
ID Sequence Prob.
pw1 〈(A, 1)(A, 2)(B, 3)(C, 4)〉 0.084
pw2 〈(A, 1)(B, 2)(B, 3)(C, 4)〉 0.144
pw3 〈(A, 1)(A, 2)(B, 2)(B, 3)(C, 4)〉 0.336
pw4 〈(A, 1)(∅, 2)(B, 3)(C, 4)〉 0.036
pw5 〈(∅, 1)(A, 2)(B, 3)(C, 4)〉 0.056
pw6 〈(∅, 1)(B, 2)(B, 3)(C, 4)〉 0.096
pw7 〈(∅, 1)(A, 2)(B, 2)(B, 3)(C, 4)〉 0.224
pw8 〈(∅, 1)(∅, 2)(B, 3)(C, 4)〉 0.024

Definition 7. Let E be a set of all event types. An uncer-

tain event is a triple (e, p, t) where e ∈ E is an event type,
p ∈ [0, 1] is the existential probability of the event, and t

is the occurrence time of the event. Then, an uncertain
sequence is an ordered list of uncertain events, denoted by
S = 〈(e1, p1, t1)(e2, p2, t2) . . . (en, pn, tn)〉, where ei ∈ E, ∀
i ∈ [1, n]; ti ≤ ti+1, ∀ i ∈ [1, n− 1].

For example, Table 1 shows an example uncertain se-
quence with 5 uncertain events, where each event is associ-
ated with an existential probability and an occurrence time.

Possible world semantics are commonly used to explain
uncertain data. Given an uncertain event sequence S, a
set of possible worlds PW ={pw1, pw2, . . . , pww} can be
derived, where each possible world pwi, associated with an
existential probability, contains deterministic events. For
example, Table 2 shows the set of 8 possible worlds that
can be derived from the uncertain sequence in Table 1. The
probability of a possible world can be computed based on
the probabilities of corresponding events. For example, the
probability of pw1 is equal to 0.6 × 0.7 × (1 − 0.8) × 1.0 ×
1.0=0.084.

Given an episode α, we can compute its frequency in a
possible world, freq(α, pwi), using the frequency definition-
s (e.g. freqno and freqd) introduced in the deterministic
environment. Since each possible world pwi is associated
with an existential probability Pr(pwi), the frequency of an
episode α in a possible world pwi is also associated with the
probability Pr(pwi). Therefore, the frequency of an episode
in an uncertain sequence is a probability distribution.

Definition 8. Given an uncertain event sequence S, let
PW = {pw1, pw2, . . . , pww} be the set of possible worlds
derived from S, the frequency probability of an episode
α, denoted as Pr(freq(α) = c), is defined as follows,

Pr(freq(α) = c) =
∑

pwi∈PW,freq(α,pwi)=c

Pr(pwi) (2)

For instance, let α be a 3-node episode (A → B → B).
For either non-overlapped frequency or distinct frequency, α
occurs once in the possible worlds pw2 and pw3, the proba-
bility that α has the frequency value 1, Pr(freq(α) = 1) =
Pr(pw2) + Pr(pw3) = 0.144 + 0.336 = 0.48.

Then, following existing work on mining probabilistic fre-
quent patterns over uncertain data, we define the concept of

frequentness probability of an episode to measure the prob-
ability that an episode occurs no less than some specified
minimum occurrence times.

Definition 9. Given an uncertain event sequence S, and
a minimum frequency threshold τfreq, the frequentness
probability of an episode α with respect to τfreq, denoted
as Pr(freq(α) ≥ τfreq), is defined as,

Pr(freq(α) ≥ τfreq) =

|S|∑

c=τfreq

Pr(freq(α) = c) (3)

where |S| is the number of uncertain events in S, which is
consequently the maximum number of times that α may
occur.

Frequentness probability reflects how likely an episode is
frequent in an uncertain sequence. Then, we can define
probabilistic frequent serial episodes based on frequentness
probability.

Definition 10. Given an uncertain event sequence S, a
minimum frequency threshold τfreq, and a minimum prob-
ability threshold τprob, an episode α is a probabilistic fre-
quent serial episode (P-FSE) iff Pr(freq(α) ≥ τfreq) ≥
τprob.

3.3 Problem statement
Formally, given an uncertain sequence S, a frequency thres-

hold τfreq and a probability threshold τprob, the problem of
probabilistic frequent serial episode (P-FSE) mining
is to find all serial episodes where for each serial episode α,
Pr(freq(α) ≥ τfreq) ≥ τprob.

4. P-FSE MINING
In this section, we present the data mining algorithms de-

vised for P-FSE mining. We first describe the algorithm that
discovers P-FSEs by computing the exact frequentness prob-
abilities of episodes. Then, we introduce an approximate
algorithm that discovers P-FSEs using probability model-
s. Finally, we propose an optimized approach that early
prunes episodes which are not P-FSEs by estimating the
upper bounds of their frequentness probabilities.

4.1 Exact frequency based approach
We note that the frequentness probability, defined based

on either the non-overlapped frequency or the distinct fre-
quency, satisfy the anti-monotonic property.

Property 1. Given an uncertain sequence S, a frequen-
cy threshold τfreq and a probability threshold τprob, if an
episode α is not a P-FSE, then any episode β s.t. α � β is
not a P-FSE.

The property follows trivially from the fact that in every pos-
sible world, the non-overlapped frequency and the distinct
frequency satisfy the anti-monotonic property. According to
Property 1, we devise the exact frequency based approach
with the main idea illustrated in Algorithm 1.

Basically, we discover first the set of P-FSEs of individ-
ual events (lines 1-7). Then, for each discovered P-FSE of
length l, we grow it by one event from the list of individual
P-FSEs to examine whether the new episode of length (l+1)
is a P-FSE (lines 8-13). That is, the depth-first search based
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Algorithm 1 Exact Frequency based P-FSE Mining

input S - uncertain sequence on events E, τfreq, τprob
output P - complete set of P-FSEs

1: I = {}, P = {}
2: for each individual event X ∈ E do
3: α = ∅, O|α = {}
4: O|α⊔(X) = Occurrence Recognition(O|α, (X))
5: if Frequency Check(O|α⊔(X)) then
6: I = I ∪ {(X)}
7: P = I
8: for each individual episode α in I do
9: for each individual episode β in I do
10: O|α⊔β = Occurrence Recognition(O|α, β)
11: if Frequency Check(O|α⊔β) then
12: P = P ∪ {α ⊔ β},
13: α = α ⊔ β, go to line 9
14: Return P

Algorithm 2 Occurrence Recognition

input
O|α= 〈O1, O2, . . . , Om〉, X - the event to grow α by

output
O|α⊔X - the recognized occurrences of episode α ⊔X

1: for each Oi ∈ O|α do
2: Scan S from Oe

i to the end of S
3: if X is found at time tk then
4: if freqno is used then
5: for each Oj ∈ O|α s.t. i < j ≤ m & tk ≥ Os

j do
6: remove Oj from O|α
7: update Oe

i = tk
8: update Pr(Oi) = Pr(Oi)× Pr(X, tk)
9: else if freqd is used then
10: for each Oj ∈ O|α s.t. i < j ≤ m do
11: if E(Oj , tk) == X then
12: remove Oj from O|α
13: for each Oj ∈ O|α⊔X do
14: if E(Oj , tk) == X then
15: break
16: update Oi = Oi ∪ (X, tk)
17: update Pr(Oi) = Pr(Oi)× Pr(X, tk)
18: O|α⊔X = O|α⊔X ∪ Oi

19: Return O|α⊔X

strategy is used. We stop growing an episode if it is discov-
ered to be not a P-FSE, according to Property 1. There
are two main functions engaged in Algorithm 1: occurrence
recognition and frequency check, which are explained respec-
tively in details as follows.

The aim of occurrence recognition is to discover all occur-
rences of an episode from the input sequence for frequency
check. Different from other frequent pattern mining, occur-
rence recognition in frequent serial episode mining should
make sure each occurrence is valid according to the frequen-
cy definition. In this paper, we consider the non-overlapped
frequency (freqno) and the distinct frequency (freqd). For
the former, we should check whether any two occurrences
are overlapped. To this end, we need to record the start-
ing time and ending time of each occurrence of an episode.
For example, let Oi be the i-th occurrence of an episode
α. We denote Oi = (Os

i , O
e
i ) which is a pair of time points

respectively representing the occurrence times of the first

event and the last event of α in the i-th occurrence. For the
latter, we should examine whether any two occurrences are
distinct. For this purpose, we record each event (i.e. the
event type and its occurrence time) that constitutes an oc-
currence of an episode. That is, the i-th occurrence of an
l-node episode is denoted as Oi = (O1

i , O
2
i , . . . , O

l
i), where

O
j
i = (Ej, tj) records both the event type and the occurrence

time of the event constituting the occurrence of the j-th n-
ode in the episode. Then, Algorithm 2 shows the details of
the function for occurrence recognition.

The input of the function contains the list of chronological-
ly ordered occurrences of the episode α examined in the last
round, and the single node episode (X) that will be append-
ed to α. For each occurrence of α, we need to examine the
subsequent events in the sequence to discover the occurrence
of the new episode (α⊔X) (lines 1-3). If the non-overlapped
frequency (freqno) is considered, we should check whether
the newly found occurrence overlaps with any potential sub-
sequent occurrences. If it happens, we remove the poten-
tial subsequent occurrences from consideration2 (lines 5-6).
Otherwise, we update the ending time of current occurrence
(line 7), which will be inserted into the list of occurrences of
α ⊔ X (line 18). If the distinct frequency is adopted, simi-
larly, we first remove potential subsequent occurrences from
consideration if it shares an event with the newly found oc-
currence (lines 10-12). The function E(Oj , tk) returns the
event type of the event occurring at time tk in the occurrence
Oj . We should further check whether the current occurrence
shares an event with existing occurrences of (α ⊔ X). If it
happens, we should skip considering the current occurrence
(lines 13-15). Otherwise, we update the current occurrence
by appending the new event (line 16), and insert the current
occurrence into O|(α⊔X) (line 18).

Note that, since the input sequence is uncertain, the dis-
covered occurrences are probabilistic. That is, each occur-
rence is associated with an existential probability, which rep-
resents the likelihood the episode appears in the occurrence.
Therefore, for each probabilistic occurrence Oi, we record a
probability Pr(Oi), which can be computed by multiplying
the probabilities of the uncertain events in the occurrence.
In Algorithm 2, lines 8 and 17 respectively update the prob-
ability of an occurrence under the two different frequency
definitions. Pr(X, tk) returns the existential probability of
the event (X, tk) ∈ S.

The function of frequency check computes the frequent-
ness probability of an episode, given the list of recognized
probabilistic occurrences. Since the probabilistic occurrences
recognized based on the non-overlapped frequency or the
distinct frequency are independent, a dynamic programming
based scheme can be used to compute the frequentness prob-
ability of an episode, by splitting the problem into smaller
problems. In particular, given the list of probabilistic occur-
rences of an episode α, O|α = 〈O1, O2, . . . , Om〉, let Oj |α be
the first j occurrences in O|α, Oj |α ⊆ O|α. Then, the prob-
ability that α occurs at least i times in the first j possible
occurrences of O|α, denoted as P≥ij(α), can be considered
as follows. If α occurs in the j-th probabilistic occurrence
Oj , then the probability P≥ij(α) equals to the probability
that at least (i − 1) occurrences of Oj |α \ {Oj} contain α.
Otherwise, P≥ij(α) is equal to the probability that at least i

2In this paper, we consider occurrences that appear first. It
can be revised straightforwardly to consider occurrences in
minimal occurrence windows.
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probabilistic occurrences of Oj |α\{Oj} contain α. Thus, the
frequentness probability Pr(freq(α) ≥ τfreq) = P≥τfreq ,m

can be computed recursively based on the following strate-
gy:

P≥ij(α) = P≥i−1,j−1(α) · Pr(Oj) + P≥i,j−1(α) · (1− Pr(Oj))

where the boundary case is:
{

P≥0,j(α) = 1 if 0 ≤ j ≤ m

P≥i,j(α) = 0 if i > j

The dynamic programming based frequentness probability
computation was introduced in [5] for probabilistic frequent
itemset mining. The time complexity of the dynamic pro-
gramming computation for each episode is O(m2 × τfreq),
where m is the number of probabilistic occurrences.

4.2 Approximate frequency based approach
Besides exact approaches, approximate approaches based

on probability models, such as Poisson distribution and Nor-
mal distribution, have been proposed for probabilistic fre-
quent pattern mining over uncertain data. We now show
that approximation techniques can be employed for P-FSE
mining as well. Different from probabilistic frequent itemset
mining which is usually performed on a large set of transac-
tion data, frequent serial episode mining is performed on a
single long sequence, which may contain only limited num-
ber of occurrences of an episode. In this case, we show that
the Normal distribution model is not appropriately appli-
cable, and propose to approximate the frequentness proba-
bility of an episode using the Binomial distribution model
instead. In the following, we describe the approximations of
frequentness probability using the Normal distribution and
the Binomial distribution respectively.

Approximating the frequency distribution of a pattern
with a Normal distribution using a weak version of the Cen-
tral Limit Theorem is introduced in [7]. Let Y1, Y2, . . . be an
infinite sequence of stochastic variables, and let s2N denote∑N

k=1 σ
2
k for all numbers N, where σ2

k denotes the variance
of variable Yk. A weak form of the central limit theorem,
known as the Lyapunov’s Central limit Theorem, states that
if for some δ > 0 the following two conditions hold:

1. E[|Yk|
2+δ ] is finite for all k, and

2. limN→∞
1

s
2+δ
N

ΣN
i=1E[|Yi − µi|

2+δ ] = 0

then the Central Limit Theorem still holds, i.e.

ZN =
ΣN

i=1(Yi − µi)

sN

converges in distribution to a standard normal random vari-
able as N goes to infinity.

For P-FSE mining, Yk is a stochastic variable denoting
if an episode α appears in the k-th probabilistic occurrence
Ok. Yk follows a Bernoulli distribution and P (Yk = 1) = 1−
P (Yk = 0) = Pr(Ok) is the existential probability associated
with Ok. The frequency of the episode can then be expressed
by the probabilistic variable freq(α) =

∑m

i=1 Yi, and the
expected frequency is E[Y ], where Y = (Y1, Y2, . . . , Ym).

As shown in [7], the two conditions hold for δ = 1. There-
fore, ZN converges to a Normal distribution for increasing
N . When N equals to the number of probabilistic occur-

rences, we get
ΣN

i=1
(Yi−µi)

sN
= freq(α)−E[Y ]√

s2
N

. For sufficiently

Algorithm 3 Approximate Frequency Check

input statistics of O|α, N - the occurrence number thresh-
old, γN - the error threshold for Normal approximation,
γB - the error threshold for Binomial approximation

output approximation frequentness probability of α

1: if |O|α| > N then
2: calculate the upper bound of error for normal approx-

imation, eN , according to Eq. (5)
3: if eN ≤ γN then
4: return Pr(freq(α) ≥ τfreq) according to Eq. (4)
5: else
6: calculate upper bound of error for binomial approxi-

mation, eB , according to Eq. (7)
7: if eB ≤ γB then
8: return Pr(freq(α) ≥ τfreq) according to Eq. (6)
9: return -1

large number of probabilistic occurrences, freq(α)−E[Y ]√
s2
N

con-

verges in probability to the standard normal distribution.
Thus:

Pr(freq(α) ≥ τfreq) ≈ Φ(
E[Y ] + 0.5− τfreq√

s2N
) (4)

where Φ is the cdf of the standard normal distribution.
The quality of the approximation can be measured using

the Berry-Esseen theorem, which gives an upper bound on
the error. The theorem states that, there exists some pos-
itive constant C less than 0.7164, such that if Y1, Y2, .., Ym

are i.i.d. random variables with E[Y ] = 0, E[Y 2] = σ2 > 0,
and E[Y 3] = ρ < ∞, then for all Y and m,

|Pr(freq(α) > τfreq)− Φ(
E[Y ] + 0.5 − τfreq√

s2N
)| ≤

Cρ

σ3
√
m

(5)
It can be observed that, if m is not sufficiently large, the

frequentness probability approximated using the Normal dis-
tribution may be quite inaccurate, which is verified by our
experimental results. In this case, we propose to use the Bi-
nomial distribution to approximate the frequentness proba-
bility. If the existential probabilities of occurrences are all
identical, e.g. Pr(Oi) = p, the frequency of an episode α,
freq(α) =

∑m

i=1 Yi follows a Binomial distribution B(m, p),
where we set p = m−1 ∑m

i=1 Pr(Oi). Thus,

Pr(freq(α) ≥ τfreq) ≈ 1−(m−k)Ck
m

∫ 1−p

0

t
m−k−1(1−t)kdt

(6)
where k is τfreq. Clearly, this remains approximately true
only if the values of Pr(Oi) are approximately equivalen-
t. A direct setup of Stein identity for estimating binomi-
al approximation error is given in Ehm (1991). Let p =
m−1

∑m

i=1 Pr(Oi), and q = 1 − p, the correct order for the
distance between Pr(freq(α)) and B(m,p) is

min(1,mpq
−1)

m∑

i=1

(Pr(Oi)− p)2 (7)

The framework of the approximate frequency based P-
FSE mining algorithm is similar to the exact one illustrat-
ed in Algorithm 1. After recognizing all probabilistic oc-
currences of an episode, we compute some statistics on the
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sequence of corresponding existential probabilities, such as
σ2
i = Pr(Oi)(1− Pr(Oi)) and s2m =

∑m

i=1 σ
2
i , which will be

used in the Normal approximation, and the expected fre-
quency λ =

∑m

i=1 Pr(Oi) which will be used in the Binomial
approximation. Then, instead of calling the dynamic pro-
gramming based frequency check method, we call the func-
tion of Approximate Frequency Check, which is illustrated
in Algorithm 3. If the number of probabilistic occurrences is
greater than some threshold N , the Normal approximation
will be used if the approximation error is less than some pre-
defined error threshold γN . If the number of occurrences is
small, the Binomial approximation is adopted if the approx-
imate error does not exceed the error threshold γB. Other-
wise, the function returns −1 as an indication to fall back to
the exact approach to compute the frequentness probability
for the current episode.

4.3 Optimized approach
We observe that the major cost of the exact approach and

the approximate approach comes from the step of scanning
the whole sequence to recognize all valid probabilistic oc-
currences of an episode. Besides, both approaches have to
recognize all occurrences of an episode before computing its
frequentness probability. Therefore, we are motivated to de-
cide early if an episode is not a P-FSE, before recognizing all
probabilistic occurrences. We note that this can be achieved
by estimating an upper bound of an episode’s frequentness
probability using part of its sub-episode’s probabilistic oc-
currences.

Lemma 1. Let O|α = 〈O1, O2, . . . , Om〉 be the list of m
probabilistic occurrences of an episode α. Let Q|α⊔X =
〈Q1, Q2, . . . , Qn〉 be the list of n probabilistic occurrences of
episode (α⊔X), where n ≤ m. ∀1 ≤ i ≤ n, Pr(freq(α⊔X))
is no greater than the frequentness probability computed on
the sequence of 〈Pr(Q1), . . . ,Pr(Qi),Pr(Oi+1), . . . ,Pr(Om)〉.

Lemma 1 can be proved straightforwardly based on the fol-
lowing two facts. First, the length of the mixed sequence
〈Pr(Q1), . . . ,Pr(Qi),Pr(Oi+1), . . . , Pr(Om)〉 is no less than
|Q|α⊔X |. Secondly, each probability value in the mixed
sequence is no less than the corresponding probability at
the same position in Q|α⊔X , because α is a sub-episode of
(α ⊔X). According to the definition of frequentness proba-
bility, if an episode has more probabilistic occurrences, and
each occurrence is associated with higher existential proba-
bility, the episode is probabilistically more frequent. That
is, its frequentness probability is higher. Therefore, the fre-
quentness probability of (α ⊔X) should be no greater than
the one computed on the mixed sequence.

Lemma 1 defines an upper bound of the frequentness prob-
ability of an episode (α⊔X), which can be computed using
part of the probabilistic occurrences of its base episode α. If
the upper bound is less than τprob, we can prune the episode
(α⊔X) without recognizing the remainder occurrences from
Qi+1 to Qn. While the dynamic programming based scheme
can be used to compute the upper bound based on the mixed
sequence, it is computationally expensive. We thus use the
approximation technique to approximate the upper bound.

The framework of the optimized approach is similar to
the exact approach. The difference is that the optimized
approach calls a function of Early Prune, before the end of
the Occurrence Recognition (e.g. between lines 18 and 19
in Algorithm 2), when there are τfreq occurrences have been

Algorithm 4 Early Prune

input Qτfreq
|(α⊔X) - first τfreq occurrences of α ⊔X , O|α

- occurrences of α, N- the occurrence number threshold,
γN and γB - the error thresholds

output +1 - prune episode α ⊔X, −1 - no prune

1: Let Q|β be 〈Q1, . . . , Qτfreq
, Oτfreq+1, . . . , Om〉

2: P̃r(freq(β)) =
Approximate Frequency Check(Q|β , N, γN , γB)

3: if P̃r(freq(β)) 6= −1 then

4: if P̃r(freq(β)) < τprob then
5: return +1
6: return -1

recognized. This is because if the number of occurrences is
less than τfreq, the episode cannot be probabilistically fre-
quent. Algorithm 4 presents the main idea of Early Prune.
It first builds the mixed sequence of occurrences. Then,
the Approximate Frequency Check is called to compute

the upper bound P̃r(freq(β)). If P̃r(freq(β)) is less than
τprob, then the episode (α⊔X) will be pruned immediately.
Note that, since we use approximation technique to com-
pute the upper bound, the optimized approach is also an
approximate method. We will experimentally evaluate the
accuracy of the approach.

5. EXPERIMENTS
In this section, we evaluate the performance of the pro-

posed algorithms for P-FSE mining using both synthetic and
real datasets. Specifically, we test the performance of the
three P-FSE mining approaches under the distinct frequen-
cy definition and the non-overlapped frequency definition in
Sections 5.1 and 5.2 respectively. Then, we apply our P-FSE
mining approaches on a set of real-world uncertain sequence
data and report the results in Section 5.3.

All the experiments were run on a computer with Intel(R)
Core(TM) i6 CPU and 12GB memory. The algorithms were
implemented in C++, and run on Linux.

5.1 Distinct P-FSE Mining on Synthetic Data-
sets

Synthetic Data Generation. We implement a data
generator to create uncertain sequences based on parame-
ters (ℓ,m, d), where ℓ is the length of the sequence, m is
the maximum number of events at a time point, and d is
the total number of distinct event types. For most of the
experiments, the sequence of existential probabilities of an
event type, 〈Pr(O1), . . . ,Pr(Om)〉, is drawn from an Unifor-
m distribution. We also carry out experiments on sequence
data with probabilities drawn from Gaussian and Zipf dis-
tributions with different parameter values.

Experimental Setting. We compare the performance
of the three approaches proposed in this paper, which are
respectively referred to as the Exact, the Approximate
and the Optimized. We first evaluate the execution time
of the three approaches with respect to the variations of dif-
ferent parameters. For the Approximate and the Optimized,
we focus on examining their accuracies. Specifically, we use
the standard recall and precision measures. Let PExact be
the set of P-FSEs generated by the Exact approach, PApp be
the set of P-FSEs produced by the approximate algorithms
(i.e. the Approximate and the Optimized). The recall and
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Figure 1: Scalability Results for Discovering Distinct P-FSEs

the precision are computed as follows:

recall =
|PExact

⋂
PApp|

|PExact|
(8)

precision =
|PExact

⋂
PApp|

|PApp|
(9)

Higher precision and recall values reflect a better accuracy.
Effect of ℓ, m and d on Execution Time. We first

evaluate the effect of synthetic data generation parameters
on execution time. We generate five sequences for each con-
figuration of (ℓ,m, d), and report the run time averaged over
the five corresponding runs. For the Approximate and the
Optimized, the reported run times correspond to the result
patterns achieving an accuracy with recall = 1 and precision
> 0.95. The experimental results are summarized as follows:

• Figure 1 (a) shows the execution time of the three
approaches when ℓ varies from 400 to 600, where we
fix m = 30, d = 100, τfreq = 16 and τprob = 0.1.

• Figure 1 (b) shows the execution time of the three
approaches when m varies from 25 to 35, where we fix
ℓ = 400, d = 100, τfreq = 16 and τprob = 0.1.

• Figure 1 (c) shows the execution time of the three
approaches when d varies from 100 to 140, where we
fix ℓ = 400, m = 30, τfreq = 16 and τprob = 0.1.

From these results, we observe the following trends:

• The efficiency of the Approximate is similar to that of
the Exact. The reason is that, while the Approximate

is more efficient in frequency checking, the main cost
of P-FSE mining is with the occurrence recognition.

• In all of the experiments, the Exact is around 2-3 times
slower than the Optimized, which verifies the effective-
ness of the pruning strategy used by the Optimized.

• The run time of all approaches increase with the incre-
ment of parameters ℓ and m. This trend is intuitive
since larger ℓ and m imply larger data size. In partic-
ular, the run time of the Optimized increases almost
linearly with respect to the increment of the sequence
length ℓ.

• The run time of all approaches decrease with the in-
crement of d. This is mainly because, when the length
of the sequence and the mean value of events at each
time point are fixed, a larger pool of event types indi-
cates that the lengths of the P-FSEs tend to be smaller,
which further means that the approaches do not have
to recurse to deep levels.

Effect of τfreq and τprob on Execution Time and
Number of P-FSEs. We now evaluate the effect of the
frequency threshold and the probability threshold on execu-
tion time as well as the number of P-FSEs. The experimen-
tal results are summarized as follows:

• Figure 1 (d) shows the run time of the three approach-
es when the frequency threshold τfreq varies from 15
to 19, where we fix ℓ = 400, m = 30, d = 100 and
τprob = 0.1. Figure 1 (e) plots the number of P-FSEs
discovered by the Exact under the same parameter set-
ting.

• Figure 1 (f) shows the run time of the three approaches
when the probability threshold τprob varies from 0.06 to
0.1, where we fix ℓ = 400, m = 30, d = 100 and τfreq =
16. Figure 1 (g) plots the number of P-FSEs discovered
by the Exact under the same parameter setting.

From these results, we observe that,

• Both the runtime of the approaches and the size of
the discovered P-FSEs decrease with the increment of
τfreq and τprob. This trend is intuitive since larger
threshold values indicate fewer valid P-FSEs.
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Figure 2: Effect of γB and γN on precision and execution time on Discovering Distinct P-FSEs

Table 3: Accuracy w.r.t. τfreq
τfreq 16 17 18 19 20

Optimized
recall 1 1 1 1 1

precision 1 1 1 1 0.99

Approximate
recall 1 1 1 1 1

precision 0.93 0.95 1 1 0.92

Table 4: Accuracy w.r.t. τprob
τprob 0.06 0.07 0.08 0.09 0.1

Optimized
recall 1 1 1 1 1

precision 1 1 1 1 1

Approximate
recall 1 1 1 1 1

precision 0.94 1 0.96 0.98 1

• The Optimized is around 2-3 times faster than the Ex-

act, which demonstrates again the superiority the Op-

timized.

Accuracy of Approximate Approaches. Since both
the Approximate and the Optimized are not exact approach-
es, we conduct experiments to assess their accuracy. Table
3 shows the recall and precision of the two approaches when
τfreq varies from 16 to 20, where we fix ℓ = 600, m = 30,
d = 100, τprob = 0.1 , γB = 0.7, γN = 0.5 and N = 50.
As we can see, both approaches can achieve 100% recall and
very high precision. The precision of the Optimized is higher
than the Approximate, because the approximation technique
is used by the Optimized only to prune episodes.

Table 4 shows the recall and precision of the two ap-
proaches when τprob varies from 0.06 to 0.1, where we fix ℓ

= 600, m = 30, d = 100 , τfreq = 15 , γB = 0.7, γN = 0.5
and N = 50. The similar results can be observed.

Since the Approximate approach does not clearly outper-
form the Exact in term of the computation efficiency, and
the Approximate is less accurate than the Optimized, we
focus on the Exact and the Optimized in the following ex-
periments.

Effect of Uncertainty Distributions We also examine
the effect of using different distributions to generate each
event’s existential probability. Specifically, we experimen-
t with the Uniform distribution, the Gaussian distribution,
and the Zipf distribution with different parameters. Table 5
summarizes the mean and the standard deviation settings of
the Gaussian and the Uniform distribution. For the Zipf dis-
tribution, we experiment with different skew values varying
from 1.2 to 2. The run times of the Exact and the Optimized

Table 5: Existential Probability Distribution
distribution mean standard deviation
Gaussian G1 0.5 0.5
Gaussian G2 0.5 0.125
Gaussian G3 0.5 0.289
Gaussian G4 0.7 0.125
Uniform Un 0.5 0.289

0

5

10

15

1.2 1.6 2

E
xe

c 
T

im
e

 (
1

0
0

0
 s

)

Skew

Exact Optimized

0

1

2

3

4

G1 G2 G3 G4 Un

E
xe

c 
T

im
e

 (
1

0
0

0
 s

)

Exact Optimized

(a)Zipf Distribution
(b)Gaussian and Uniform 

Distribution

Figure 4: Effect of Existential Probability Distribu-
tion on Discovering Distinct Episode

are shown in Figure 4, from which we observe,

• The Optimized outperforms the Exact over all different
distributions, where we make sure both the precision
and recall of the Optimized are greater than 0.99.

• Both algorithms run relatively slower on G4. This is
because G4 has a higher mean (0.7) and a lower stan-
dard deviation (0.125), so that it generates higher ex-
istential probability values. As a result, more P-FSEs
exist in the data, which require more time to discover
them all.

• For the Zipf distribution, the runtime of both approach-
es decrease with the increment of the skew value. This
is because the Zipf distribution with a larger skew val-
ue generates fewer high existential probabilities. Con-
sequently, fewer P-FSEs exist in the data.

Effect of γB and γN We further evaluate the effect of the
error bounds on the performance of theOptimized. Figures 2
(a) and (b) show the precision and the execution time of
the Optimized w.r.t. γB . Figures 2 (c) and (d) show the
variation of the two variables w.r.t. γN . We omit recall here
because it is always 100% for the Optimized approach.

We observe that, if γB ( γN ) is too large, the precision
and the execution time of the Optimized will decrease simul-
taneously. However, if the value of γB ( γN ) is too small,
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Figure 3: Scalability Results for Discovering Non-Overlapped P-FSEs
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proximation

the precision will remain as 1 while the execution time may
increase. Empirically, a tradeoff may be found at where
γB = 0.7 and γN = 0.5.

Effect of ℓ on probability model. As analyzed in Sec-
tion 4.2, the Normal distribution based approximation may
not perform well when the number of occurrences is not suf-
ficiently high. Since we cannot directly control the number
of occurrences, we experiment by varying the length of the
sequence.

Figure 5 shows the precision of the Binomial approxima-
tion and that of the Normal approximation when ℓ varies
from 400 to 600, where we fix m = 30, d = 100, τfreq = 16
and τprob = 0.1. To test the precision of each approximation
separately, we use only one approximation once at a time.
The recall of all the results are always 1. Figure 5 reveals
that the precision of the Binomial approximation decreases
with the increase of the length of sequence. In contrast, the
precision of the Normal approximation increases with the
increase of the sequence length. This is because, when the
length of sequence becomes longer, there are more occur-
rences of episodes. According to the analysis in Section 4.2,
the Normal approximation works well when there are enough
occurrences of an episode. However, when the number of oc-
currences of an episode is small, frequentness probability is
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Figure 7: Effect of Existential Probability Distribu-
tion on Discovering Non-Overlapping Episode

better to be approximated by the Binomial approximation.

5.2 Non-Overlapped P-FSE Mining on Syn-
thetic Datasets

We also conduct experiments to mine non-overlapped P-
FSEs using the three proposed approaches. Similarly, we
evaluate the execution time and the number of P-FSEs by
varying different parameters. For each configuration of data
generation parameters, we generate five datasets and report
the results averaged over the fine runs. In particular,

• Figure 3 (a) shows the execution time of the three
approaches when ℓ varies from 400 to 600, where we
fix m = 45, d = 100, τfreq = 20 and τprob = 0.05.

• Figure 3 (b) shows the execution time of the three
approaches when m varies from 30 to 45, where we fix
ℓ = 600, d = 100, τfreq = 20 and τprob = 0.05.

• Figure 3 (c) shows the execution time of the three
approaches when d varies from 80 to 120, where we fix
ℓ = 600, m = 45, τfreq = 20 and τprob = 0.05.

• Figure 3 (d) shows the run time of the three approach-
es when the frequency threshold τfreq varies from 15
to 30, where we fix ℓ = 600, m = 45, d = 100 and
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Figure 6: Effect of γB and γN on precision and execution time for Discovering Non-Overlapping P-FSEs

τprob = 0.05. Figure 3 (e) shows the number of P-
FSEs under the same parameter setting.

• Figure 3 (f) shows the run time of the three approaches
when the probability threshold τprob varies from 0.05
to 0.09, where we fix ℓ = 600, m = 45, d = 100 and
τfreq = 20. Figure 3 (g) displays the number of P-
FSEs under the same parameter setting.

The trends demonstrated by these results are similar to
those in the distinct P-FSE mining. Therefore, we omit
summarizing the observations and analyzing the reasons.

We also study the effect of the existential probability dis-
tributions, the error bounds (γB and γN) on discovering
non-overlapped P-FSEs. The results of the effect of dif-
ferent existential probability distributions are illustrated in
Figure 7. Figure 6 shows the results by varying the γB and
γN . Again, the trends displayed in these results are similar
to those in the distinct P-FSE mining.

5.3 P-FSE Mining on Customer Behavior Se-
quences

In this subsection, we apply the Exact approach and the
Optimized approach on a real-world data set. Our real data
is collected from an equipment hire company, which supplies
more than 130 different models of equipments to customers.
We model each customer’s hiring behaviors as a sequence,
where each event corresponds to an equipment hired by the
customer. We consider the sequences containing more than
100 events in the period from Jan 1, 2010 to Dec 31, 2011.
Each event in a sequence is assigned an existential proba-
bility, which is obtained according to the customers’ hiring
histories. For instance, the equipment ‘Mini-Excavator’ be-
longs to a model ‘excavator’, which may contain other equip-
ments such as ‘Mid-Excavator’. If a customer has hired an
equipment from the model ‘excavator’ 30 times since year
2010, out of which the customer has hired the equipmen-
t ‘Mini-Excavator’ for 15 times, we assign the probability
50% to the equipment to reflect the uncertainty. For exam-
ple, a customer who prefers to hire the ‘Mini-Excavator’ may
hire the ‘Mid-Excavator’ when the former is temporarily not
available.

Overall, we have collected 6301 sequences, where the max-
imum length of a sequence is 320 and the average length is
121. The average number of events at a time point is 12,
and the average number of equipment models in a sequence
is 30. On average, around 20% of the events in a sequence
are uncertain.

We run the Exact and the Optimized on the set of re-
al data. Figures 8 and 9 respectively report the perfor-

mance of the two approaches in mining distinct P-FSEs and
non-overlapped P-FSEs on the longest sequence with 320
events, by varying the frequency threshold and the proba-
bility threshold. For the Optimized, the performance corre-
sponds to the result patterns of the best accuracy that can
be achieved. The trends shown in the figures comply with
those on synthetic data.

Besides showing P-FSEs can be mined efficiently from real
data, we also discover some interesting episodes. For exam-
ple, the company is interested in an episode α =(“heater”→
“excavator”), with the frequentness probability Pr(freq(α) ≥
20) = 70%, since “heater” is a low profit equipment while
the profit of “excavator” is high. Based on this episode,
customized promoting strategies might be designed for the
customer. We expect that our P-FSE mining algorithms
would also be useful in many other real world applications
involving uncertain data.

6. CONCLUSION
Frequent serial episode mining is an important tool to

discover interesting and useful temporal correlations from
sequential data. The inherent data uncertainty issue in
many domains call for the need to discover frequent episodes
over uncertain sequence data. In this paper, we focus on
the problem of probabilistic frequent serial episode mining.
To address the data uncertainty, we define the measure of
frequentness probability of each episode under the possible
world semantics. We develop two P-FSE mining algorithm-
s, which respectively compute the exact frequentness prob-
ability and approximate the frequentness probability. We
further devise an optimized approach that prunes candidate
episodes early by estimating the upper bounds of their fre-
quentness probabilities. We carry out extensive experiments
to evaluate the performance of the proposed approaches.
Our experimental results reveal the superiority of the opti-
mized approach. We also find that the Binomial distribution
is better than the Normal distribution when there are not
enough occurrences of episodes in an uncertain sequence.
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