
ProRea — Live Database Migration for Multi-tenant RDBMS
with Snapshot Isolation

Oliver Schiller Nazario Cipriani Bernhard Mitschang
Applications of Parallel and Distributed Systems, IPVS,
Universität Stuttgart, Universitätsstr. 38, 70569 Stuttgart

{schiller, cipriani, mitschang}@ipvs.uni-stuttgart.de

ABSTRACT
The consolidation of multiple tenants onto a single RDBMS instance
turned out to be benefical with respect to resource utilization and
scalability. The consolidation implies that multiple tenants share
the physical resources available for the RDBMS instance. If the
available resources tend to get insufficient to meet the SLAs agreed
with the tenants, migration of a tenant’s database from one RDBMS
instance to another is compelling. Highly available services de-
mand for live migration techniques that come with minimal service
interruption and low performance impact.

This paper meets the demand for live migration techniques by
contributing ProRea. ProRea is a live database migration approach
designed for multi-tenant RDBMS that run OLTP workloads un-
der snapshot isolation. ProRea extends concepts of existing live
database migration approaches to accomplish minimal service inter-
ruption, high efficiency and very low migration overhead. Measure-
ments of a prototypical ProRea implementation underpin its good
performance.

Categories and Subject Descriptors
H.2.4 [Database Management Systems]: [Relational databases];
H.3.4 [Information Storage and Retrieval]: [Distributed systems]

General Terms
Design, Management, Performance

Keywords
Database Live Migration, Snapshot Isolation, Multi-tenancy, Cloud
Computing, RDBMS

1. INTRODUCTION
Nowadays, relational database management system (RDBMS)

instances are available for everyone through pushing a button on
a web-based management interface, e. g. Amazon RDS [2]. Some
seconds after pushing the button, a new instance runs somewhere in
the Cloud without any efforts, except for the money that the service

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

provider debits from the credit card. The amount of money paid
depends on the individual demands but also on the fixed overheads
which each tenant induces for the service provider. Naturally, lower
fixed overheads per tenant enlarge the profit margin of the service
provider. However, lower fixed overheads also allow lowering ser-
vice fees which eventually may attract more tenants. Therefore,
minimization of fixed overheads per tenant represents a central
challenge of Cloud Computing.

A central opportunity to reduce fixed overheads and essential
characteristic of Cloud Computing [15] constitutes multi-tenancy.
Multi-tenancy describes consolidating multiple tenants onto a single
physical resource, which lowers unused capacity and decreases
the numbers of resources to manage and maintain. Despite of the
consolidation onto a single physical resource, each tenant seems to
have individual resources. For this purpose, tenants obtain virtual
resources which are mapped to the underlying physical realities.

To stay efficient and to keep in view the demands of tenants, the
service provider has to adapt the mapping of virtual resources to
physical resources regularly. In fact, an autonomic manager, as
drafted in [9], decides about the mapping to guarantee good re-
source utilization and to meet SLAs upon which the service provider
and the tenants agreed, e. g. transaction throughput or transaction
response times. At this, a primitive operation for the autonomic
manager represents the migration of a tenant (or its virtual resource)
from one physical resource to another physical resource. As ser-
vices nowadays run 24/7, the migration must not interrupt normal
processing, which means the migration has to run live. The high
proliferation of relational database technology to manage data thus
calls for live migration of relational databases.

In principle, live migration of virtual machines, which is common
nowadays, enables live migration of relational databases as well; a
virtual machine may simply wrap a corresponding RDBMS instance
per tenant. However, virtual machines come with huge footprints
which entail large fixed overheads per tenant. This is particularly
unfavorable for smaller tenants. A promising model to overcome this
drawback represents Shared Process. In Shared Process, each tenant
has a dedicated database, but they share a single RDBMS instance
and, thus, share resources of the RDBMS instance, e. g. logging. To
support such models, new live migration approaches for relational
databases emerged recently [26, 32, 8, 10]. A central difference of
these approaches represents the type of database transfer: proactive
or reactive [1].

Proactive migration approaches [26, 32, 8] push the whole database
to the destination of migration, before it starts new transactions at
it. These approaches propagate modifications of the database that
happen during migration to the destination. This yields redundant
work at the source and the destination and causes blocking updates
while applying the modifications that occurred during migration. As

53

opposed to proactive migration approaches, reactive approaches [10]
directly start new transactions at the destination and pull required
database parts on demand. This leads to many page faults which
entail pulling the corresponding pages from the source.

To overcome the drawbacks of purely proactive and purely reac-
tive approaches, we contribute ProRea which represents a new live
database migration approach that combines proactive and reactive
measures. ProRea starts with proactively pushing hot pages, i. e.
pages that have been recently accessed and, thus, are in the buffer
pool of the RDBMS instance. Thereafter, newly arriving transac-
tions start at the destination and pull pages on demand. ProRea
reduces page faults and improves buffer pool handling significantly
compared to purely reactive approaches. For this purpose, it requires
little redundant work, but considerably less than a purely proactive
approach. Our detailed contributions are as follows:

• Section 2 embarks upon reviewing common multi-tenancy
models: Shared Machine, Shared Process and Shared Table.
In this context, it motivates the applicability of Shared Process
and reviews database migration approaches which are suitable
for Shared Process.

• Section 3 sums up the environment and system conditions for
which ProRea is designed. Thereafter, the basic concept of
ProRea follows. Referring to the basic concept of ProRea, a
semi-formal proof shows that ProRea ensures snapshot isola-
tion during migration.

• Section 4 analyzes costs and trade-offs of ProRea. Moreover,
it provides an optimized buffer space handling strategy which
supports releasing load from the source of migration.

• Section 5 presents measurements of a prototypical imple-
mentation of ProRea that underpin the good performance of
ProRea compared to a purely reactive approach.

• Section 6 outlines how to deal with system failures during
database migration assuming a log-based recovery approach.

• Finally, the paper finishes with our conclusions and directions
for future work.

2. STATE OF THE ART
Virtualization constitutes the fundamental technical concept that

drives Cloud Computing. Therefore, a key decision when creating
cloud services is concerned with placing the cut between physical
and virtual resources. At this, one size does not fit all — where to
place the cut between physical to virtual resources depends on many
issues: desired abstraction, customization and isolation requirements
of tenants, workloads of tenants, size of tenants, applications and
so forth. Therefore, different models to enable multi-tenancy with
RDBMSs emerged. Subsequently, we give a brief overview of these
models, clarifying the position of Shared Process. Thereafter, we
review related database migration techniques.

2.1 Multi-tenancy Models: Shared Process
Many different models and implementations have been proposed

to enable multi-tenancy with RDBMSs [6, 11, 13, 22]. Jacobs et
al. [13] proposed three model categories having different degrees of
abstraction and consolidation. For each category industrial imple-
mentations or at least academical evaluations exist (we only name
some examples):

1. Shared Machine: The tenants share a single machine, but
each tenant has a private RDBMS instance (Soror et al [28]).

2. Shared Process: The tenants share a single RDBMS instance,
but each tenant obtains a private database or at least a private
set of tables (SQLAzure [16], RelationalCloud [7]).

3. Shared Table: The tenants share a single RDBMS instance,
a single database instance and a single set of tables (Sales-
force.com [23, 33], SuccessFactors [30]).

These categories represent a quite rough classification, but it suffices
for the following discussion. For a sub-division of these categories,
we refer to [22].

Shared Machine allows consolidating only few tenants onto one
machine due to the large main memory footprint of RDBMS in-
stances [13]. Obviously, this gets worse if a virtual machine wraps
the RDBMS instance [7]. Therefore, this approach comes with low
consolidation efficiency for smaller tenants. Note that we refer to
tenants which require little resource capacity as small tenants.

Compared to Shared Machine, Shared Process and Shared Table
decrease the overheads per tenant. Shared Table offers the highest
degree of sharing between tenants and thus the lowest overheads per
tenant. The high degree of sharing in Shared table is mainly useful
if many tenants require similar data structures, show similar data
access patterns and omit to have high customization or isolation
needs. This is often the case in software as a service (SaaS) scenarios
for very small tenants. Hence, Shared Table is attractive in this case
due to its good performance and very low overheads per tenant [3,
25, 24].

Database as a service (DaaS) scenarios are different. In DaaS,
tenants provide different workloads and do not share any data or
schemas. In this case, Shared Process is promising due to its good
trade-off between isolation, customization and scalability [9]. It is
particularly interesting to consolidate many smaller tenants with
maximum database sizes of few GBs.

Note that the described models may also occur nested. A soft-
ware provider may use DaaS offerings, which adopt Shared Process,
to provide its SaaS offering by means of Shared Table. More-
over, techniques developed for Shared Process, e. g. migration
techniques, may be beneficial for a SaaS provider as well if the SaaS
provider manages and maintains multiple Shared Table databases
using Shared Process. To conclude, Shared Process and related
techniques target a broad range of use cases.

2.2 Database Migration for Shared Process
Multi-tenancy

Database migration represents a primitive operation in order to
keep in view the changed demands of tenants and to run the service
efficiently, e. g. to avoid overload situations and to reduce energy
consumption. Subsequently, we review existing techniques that
allow database migration within a Shared Process multi-tenancy
model. For this purpose, we start with Stop and Copy as a straight-
forward approach and going on with live database migration ap-
proaches.

2.2.1 Stop and Copy
Stop and Copy shuts down the database, flushes it to disk, copies

the database from the source to the destination, and, finally, restarts
it at the destination. Obviously, this approach is straightforward and
very efficient but also has some intrinsic drawbacks.

First of all, the database is offline during migration. For example,
to copy a database having 2.5 GB over a 1 Gbit/s ethernet requires
at least 20 seconds, assumed full network transfer speed. Yet, co-
located tenants on the same machine or other machines may observe
severe degradation when copying full speed ahead. Limiting transfer
speed actually solves this issue, but lengthens service interruption.

54

In addition to that, the database runs with cold buffer pool after
migration which naturally impacts performance. For the points men-
tioned, other approaches, live migration approaches, that minimize
service interruption and performance impact are desired.

2.2.2 Live Migration
Several researchers and developers showed interest in live migra-

tion of virtual machines or live migration of processes. Compared
to these types of live migration, live database migration for Shared
Process multi-tenancy models requires another granularity; it re-
quires transferring databases instead of whole virtual machines or
processes. As a result, the algorithms for database live migration
are tailored to the concepts relevant in RDBMS and keep in view
related dependencies, e. g. transactions, concurrency control and
recovery.

Several works into live migration of relational databases exist. A
common practice is what we refer to as fuzzy migration, as it resem-
bles fuzzy backup and fuzzy reorganization [27]. Fuzzy migration
creates and transfers a fuzzy dump of the database from the source
to the destination. Thereafter, it applies recorded modifications of
the database which occurred while dumping and transferring on the
database image at the destination. The previous step may run repeat-
edly in hope that the volume of modifications that newly comes up
during each step decreases. Finally, it shuts down the database at the
source, transfers the last set of recorded modifications, applies them
on the database image at the destination, and restarts the database
at the destination. Now, the database at the destination is able to
process transactions. This approach is proactive as it copies the data
to the destination before switching transaction processing.

Recent research applied this technique on different system archi-
tectures and evaluated different aspects [26, 32, 8]. This approach
is quite simple and applicable by adopting standard database tools.
However, it also has some considerable drawbacks: redundant work
at the source and the destination, higher network traffic compared to
stop and copy, blocked updates during replay of changes recorded
in the last step, and transaction load stays at the source until whole
data is transferred, which is undesired for out-scaling.

To overcome these drawbacks, Elmore et al. [10] proposed a
reactive approach, called Zephyr. Reactive approaches switch trans-
action processing from the source to the destination before they
copy the data. If a transaction accesses a page, which is not trans-
ferred already, it causes a page fault. That is, the page is pulled
synchronously from the source. Reactive approaches keep redundant
work at a minimum and come without a serious service interruption.
Moreover, they are able to disburden the source quickly. However,
the page faults increase average transaction latency.

ProRea is a hybrid approach which combines proactive and
reactive measures. By this, ProRea accomplishes minimal ser-
vice interruption and minimizes the number of page faults. With
respect to the handover of transaction load from the source to the
destination, ProRea is similar to Zephyr because both allow run-
ning transactions concurrently at the source and the destination.
Concurrently running transactions at the source and the destina-
tion require synchronization measures which are integrated into
the migration protocol. Therefore, the used concurrency control
mechanism considerably influences the design of the migration pro-
tocol. The used concurreny control mechanism differs in ProRea
and Zephyr. ProRea bases upon multi-version concurrency control
in order to provide snapshot isolation, whereas Zephyr bases upon
strict 2-phase locking. Snapshot isolation only avoids most con-
currency anomalies, but it provides higher concurrency than strict
2-phase locking. Thus, it surely is a popular concurrency control
mechanism; major RDBMS implementations including Microsoft

SQL Server, Oracle, MySQL, PostgreSQL, Firebird, H2, Interbase,
Sybase IQ, and SQL Anywhere support snapshot isolation.

3. PROREA
Live database migration techniques, especially techniques which

are tightly integrated into the RDBMS, depend on the system and en-
vironment conditions, e. g. adopted concurrency control, workload
type and system architecture. For this reason, we first describe the
conditions for which ProRea is designed. Subsequently, we explain
the algorithmic building blocks of ProRea. Finally, a semi formal
proof that the presented algorithmic building blocks fulfill snapshot
isolation follows.

3.1 Basic System and Environment Conditions
ProRea targets a shared nothing system architecture of the RDBMS

cluster, as depicted in Fig. 1. The RDBMS cluster comprises multi-
ple machines, each running a RDBMS instance. A RDBMS instance
serves several databases and each database relates to one tenant.
Thus, tenants provide a natural partitioning which aligns database
boundaries to server boundaries. This assumption implies that a
tenant fits on a single machine with respect to its SLAs and require-
ments, which represents a common scenario [34]. If a tenant’s data
is horizontally or vertically partitioned and thus distributed over
several nodes, one partition could be considered as one database
from the perspective of migration. Moreover, we assume an OLTP
workload that consists of mainly short-running transactions.

To establish transparency of the database location, we imagine
that the tenant connects to a cluster management instance that knows
the location of the tenant’s database. As shown in Fig. 1, the client
library queries the cluster management instance about the machine
that serves the tenant’s database. Thereafter, it connects to the
returned machine and issues queries over this connection. Hence,
the cluster management instance stays out of the line regarding
query processing, which is necessary for high scalability.

For a short period of time, ProRea allows running transactions
concurrently at the source and at the destination. As already men-
tioned, the measures required to ensure isolation during this period
depend on the used concurrency control mechanism. ProRea as-
sumes snapshot isolation [4], which enforces the following two
rules [18]:

1. A transaction T reads the latest committed tuple version that
exists at the time T started, i. e. it never sees changes of
concurrently running transactions.

2. A transaction T aborts if a concurrent transaction of T has
already committed a version of a tuple which T wants to write
(First Committer Wins).

In practice, snapshot isolation is implemented by multi-version
concurrency control (MVCC) [21]. Typical MVCC implementations

...

Figure 1: System Architecture

55

maintain several versions of one tuple in a chronologically arranged
version chain. This version chain is traversable and may span
multiple pages. A page provides information where to find the
previous or later version of each tuple it contains. Thus, the access
of a specific version of a tuple may require following its version
chain, which may cause multiple page accesses.

For instance, PostgreSQL uses a non-overwriting storage manager
and a forward chaining approach that allows traversing all tuple
versions starting from the oldest version. For this purpose, a tuple
stores a reference to its successor with respect to time. By contrast,
Oracle’s database software updates tuples in place and stores older
versions in so-called undo segments. At this, it uses a backward
chaining approach that allows traversing tuple versions starting from
the newest version. The InnoDB storage manager of MySQL and
MS SQL Server use similar approaches.

Instead of the First Committer Wins rule, typical implementations
enforce a slightly different rule, referred to as First Updater Wins
rule. This rule prevents a transaction from modifying a tuple if a
concurrent transaction has already modified it, usually by means of
locking, preferably tuple-level locking. If the first updater commits
and releases locks, the waiter aborts. If the first updater aborts and
releases locks, the waiter may modify the tuple. Hence, the First
Updater Wins rule eventually leads to the same effect as the First
Committer Wins rule.

To sum up, the boundary conditions on which the design of
ProRea bases are:

• a RDBMS cluster with shared nothing system architecture
and database location transparency,

• snapshot isolation based on MVCC and the First Updater
Wins rule as concurrency control mechanism,

• mainly small tenants, such that one machine usually serves
multiple tenants (> 10),

• OLTP workloads that mainly consist of short-running transac-
tions,

• and reliable, order-preserving, message-based communication
channels having exactly-once semantics.

3.2 Basic Concept
ProRea runs in five successive phases: 1. Preparation, 2. Hot

Page Push, 3. Parallel Page Access, 4. Cold Page Pull and 5.
Cleanup. Figure 2 outlines the interaction of the source and the
destination in each phase. First, Preparation initializes migration at
the source and the destination. Thereafter, Hot Page Push proactively
pushes all hot pages, i. e. pages in the buffer pool, from the source
to the destination. During Hot Page Push, each transaction that runs
modification operations on a already transferred page sends suitable
modification records to the destination. The destination applies the
modification records to be consistent with the source. Next, the
source hands over transaction processing to the destination. From
now, the destination processes newly arriving transactions. During
Parallel Page Access, transactions run concurrently at the source
and at the destination. If a transaction at the destination requires
a page which has not been transferred yet, it synchronously pulls
the page from the source. After the last transaction at the source
completes, Parallel Page Access transitions to Cold Page Push. Cold
Page Push pushes the data which has not been transferred yet, the
potentially cold data, to the destination. Finally, migration finishes
with cleaning up used resources.

During migration, we use the concept of page ownership to syn-
chronize page access between the source and the destination. If a

Dm The database to be migrated.
Ts/Td Transactions at the source/destination.
Bs/Bd Buffer pool of the source/destination.
o(P) Ownership of page P .
S(T) Start timestamp of transaction T .
C(T) Commit timestamp of transaction T .

Table 1: Notations.

node owns a page, it has the current version. Moreover, only the
node that owns the page may modify it. This implies that if the
ownership of a page is passed from one node to another node, the
new version of the page or at least appropriate delta records have to
be passed as well, such that the new owner of the page also has the
newest version of it. Note that the ownership concept is a low-level
concept that ensures consistent, synchronized page access across the
source and the destination. That is, the ownership concept serializes
modifications of a page in order to preserve its physical integrity.
On the contrary, transaction-level synchronization is accomplished
by snapshot isolation which builds upon multi-version concurrency
control and tuple-level locks.

Subsequently, we dive into the details of each phase using the
notations listed in Table 1.

3.2.1 Preparation and Hot Page Push
To prepare migration, the source sets up local data structures

and migration infrastructure, e. g. processes and communication
channels. Thereafter, it sends an initial message to the destination.
This message includes the meta data of the database, e. g. table
definitions, index definitions, user and role definitions and so forth.
From this information, the destination creates an empty database
and sets up its local migration infrastruture. Finally, it acknowledges
preparation which triggers transitioning to Hot Page Push.

Hot Page Push scans through all pages in Bs. At this, it transfers
each page P ∈ Dm ∩ Bs ∧ o(P) = source, i. e. the hot pages
which are not transferred, to the destination and changes o(P) to
destination, i. e. the destination obtains the ownership of P . The des-
tination inserts the retrieved page in the buffer pool using standard
buffer allocation methods.

If a transaction accesses an already transferred page P for modi-
fication, it requests temporal ownership for P . As the destination
does not run transactions of Dm during Hot Page Push, the request
simplifies to changing o(P) to temporal ownership at the source.
However, to maintain a consistent image of P at the destination,
each modification operation of P creates a modification record
which it sends to the destination. The modification record contains
all information required to synchronize the image of P at the desti-
nation. In practice, page-level logical operations, i. e. physiological
operations, lend themselves. If the RDBMS already creates such
records for logging or replication, it simply has to capture records
for P and ship them to the destination. The destination applies
the retrieved record on P which ensures that the image of P at the
destination is consistent to the image at the source.

The set of contained pages in Bs may change while the migration
process scans Bs for hot pages; some pages in Bs give way to new
pages. Therefore, Bd does not necessarily contain the actual set
of hot pages of Dm after the described pass over Bs. To obtain a
higher similarity, further passes over Bs that transfer hot pages of
Dm which are not transferred yet may be useful.

Our current implementation simply scans the buffer pool two
times. We have not considered more sophisticated termination
conditions so far. Nevertheless, we assume that the change of the

56

Prepare

Push Page P

Push Changes of P

Migration

Foreach Hot Page P

Hand over database

run-time state

Migration

Transaction

Migration Migration

Transaction Transaction

Migration Migration

Transaction

1. Preparation, 2. Hot Page Push 3. Parallel Page Access 4. Cold Page Pull, 5. Cleanup

Push Page P

Foreach Untransferred Page P

Pull Page

Source Destination Source Destination Source Destination

Pull Page

Cleanup

Acquire Tuple Lock

Push Changes of P

Request Temporal

Ownership of P

Push Commit

3. Parallel Page Access follows ... 4. Cold Page Pull follows ...

Figure 2: Sequential diagram for the algorithmic phases of ProRea.

difference of transferred pages in two consecutive passes represents
a good start. If the change converges to zero, there is no noteworthy
progress anymore with respect to obtaining a higher similarity.

After the last pass, Hot Page Push hands over transaction pro-
cessing to the destination. To ensure valid transaction processing,
the destination requires the same database run-time state as the
source. The database run-time state includes the state information
that is globally visible such as currently running transactions, the
identifier of the next transaction, and the lock table. The source
adds the database run-time state to a handover message. To obtain a
consistent state at the source and the destination, the source freezes
the database run-time state while preparing the handover message.
This prevents starting new transactions, modifying Dm and com-
pleting running transactions. The destination delays starting new
transactions until it has received the handover message and has taken
over the contained database run-time state. Directly after handover,
the source and the destination run transactions on Dm concurrently,
with which Parallel Page Access deals.

Existing and newly arriving clients have to be informed about
the new location of the database. For this purpose, the migration
task updates the cluster management instance with the new location
of Dm. In addition to that, the source notifies clients which want
to access Dm about its new location. Thus, the client library is
able to connect to the destination directly, without querying the
cluster management. This approach enables updating the cluster
management asynchronously.

3.2.2 Parallel Page Access
As transactions on Dm run concurrently at the source and the

destination, Parallel Page Access requires synchronization between
both of them in order to comply to the concurrency protocol. Sub-
sequently, we briefly describe the algorithm to achieve snapshot
isolation, but defer discussing its correctness to a separate section
(see Sec. 3.3).

To complete successfully, transactions which run at the source
may require accessing pages that have been already transferred to the
destination. The destination could have modified the page already,
by what the source does not have the current image of the page. To
take into account this situation, the source accesses a tuple using the
steps which algorithm 1 shows in pseudo code notation. The listing
just shows the case of reading and updating a tuple.

Algorithm 1 Access of a tuple in page P at the source.
1: if access = read then
2: read(P, tuple)
3: else
4: if acquireTupleLock(tuple) = failed then . Request tuple

lock(includes destination).
5: abort
6: end if
7: if o(P) = source then
8: (P,Recmod)← update(P, tuple)
9: else . Destination already owns page P .

10: res← requestTemporalOwnership(P)
11: if includesPage(res) then . Response may include current

version of P .
12: P ← getPage(res)
13: end if
14: (P,Recmod, status)← update(P, tuple)
15: returnOwnership(P,Recmod)
16: if status = failed then
17: abort
18: end if
19: end if
20: end if

The source primarily acquires an exclusive lock for the tuple
which it wants to modify. If the source obtains the tuple lock locally,
it also acquires the lock at the destination. Thus, the destination has
the global view with respect to acquired locks. Acquiring the lock
may fail if the destination already locked the tuple under concern.
Note that it is essential to acquire the lock at the destination even if
the source still owns the ownership. This is because the ownership
of the page may change although the source holds the tuple lock. In
this case, the destination has to know about the tuple lock to discover
potential update conflicts of concurrently running transactions.

If the source has already transferred the page, it requests tem-
poral ownership of the page from the destination. The destination
tracks temporal ownership of the source and sends an appropriate
response. The response includes the current image of the page if
a transaction at the destination already modified the page. After
updating the page, the source returns ownership to the destination
and piggybacks the corresponding modification record. The source
proactively returns ownership since the probability that several trans-
actions of the source access the same page is low, in the case of

57

short-running transactions (more details follow in Sec. 4.1).
Note that the methods which actually read or update the tuple

(line 2, 8 and 14) may require following the version chain of the
tuple. This yields accesses of tuple version in other pages, which
run similar to the previous description.

Furthermore, if a transaction completes at the source, it sends a
message that includes its completion status to the destination. This
ensures that the destination knows about completion of all transac-
tions, which it requires to release locks related to the transaction and
ensure valid snapshots for new transactions.

Tuple access at the destination is simpler (see algorithm 2). Trans-
actions at the destination primarily check the ownership of a page
when accessing it. If it already owns the page, no additional efforts
are necessary. If the source still owns the page, the destination
pulls the page from the source. If the source temporarily obtained
ownership of the page, the destination waits until the source returns
the ownership.

Algorithm 2 Access of a tuple in Page P at the destination.
1: if o(P) = source then
2: pullFromSource(P) . Page not transferred yet.
3: end if
4: if o(P) = temporalsource then
5: waitForOwnership(P) . Wait till source returns ownership.
6: end if
7: if access = read then
8: read(P, tuple)
9: else

10: acquireTupleLock(tuple)
11: (P,Recmod, status)← update(P, tuple)
12: if status = failed then
13: abort
14: end if
15: end if

3.2.3 Cold Page Pull and Cleanup
Cold Page Pull starts as soon as the last transaction at the source

completes. Analogous to Parallel Page Access, the destination pulls
pages which it requires but that have not been transferred yet from
the source. To finish migration, the source additionally pushes pages
which have not been transferred during Hot Page Push or as response
of a pull request from the destination.

Finally, after the destination owns all pages, migration cleans up
used resources and completes by a handshake between the source
and the destination.

3.3 Snapshot Isolation during Parallel Page
Access

During Parallel Page Access, concurrency control has to span
the source and the destination since both of them run transactions
concurrently. For this reason, the concurrency control measures are
different to the standard measures done without migration. Note
that the standard measures are totally sufficient during Hot Page
Push and Cold Page Pull.

In a RDBMS that promotes the ACID principle, concurrency
control must work properly even during migration. To foster the
trust in the correctness of ProRea, we subsequently present a semi-
formal proof that Parallel Page Access ensures snapshot isolation.
For this, we assume the following prerequisites: Snapshot isolation
runs correctly without migration (Prereq. 1). The source and the
destination access the same pages as they would without migration
(Prereq. 2). The ownership concept works correctly (Prereq. 3).
Recall that the ownership concept synchronizes page access. The

ownership concept ensures that the node which owns the page has
its current version and this node is the only one which is allowed to
modify the page.

LEMMA 3.1. During Parallel Page Access, a transaction Ts ∈
Ts sees the latest committed tuple version that existed when Ts

started.

PROOF. As the source does not start new transactions anymore,
C(Td) > S(Ts), ∀Td ∈ Td holds. Therefore, Ts never has to see
tuple versions created by Td. Hence, the latest committed tuple
version which Ts has to see must exist at the source and is therefore
visible to Ts.

LEMMA 3.2. During Parallel Page Access, a transaction Td ∈
Td sees the latest committed version of a tuple t that existed when
Td started.

PROOF. We prove this by contradiction. Let us assume that
there exists the latest committed tuple version vTs of transaction Ts,
C(Ts) < S(Td), and vTs is not visible to Td. Prereq. 1 and prereq.
3 directly yield that Ts had to run at the source, thus Ts ∈ Ts.

If Ts modified pages P1 and P2 with o(P1) = source and
o(P2) = source to write vTs into P1, Td pulls page P1 (or P2

in case of a forward version chain). Thus, contrary to the assump-
tion, it has to see vTs (either directly or, in case of a forward chain,
by following the version chain to P1 which Td also pulls in this
case).

If Ts modified a page P1 and P2 with o(P1) = temporalsource
and o(P2) = temporalsource to write vTs into P1, Ts returns
ownership to the destination with modification records that ensure
that the images of P1 and P2 are consistent at the source and the
destination. As the modification records are applied before the
ownership transitions to the destination, Td waits until the image of
P1 is consistent to the source. Thus, contrary to the assumption, it
has to see vTs (either directly or by following the version to P1 for
whose consistency TD again waits).

The remaining cases are analogous to the previous cases.
Thus, in all cases, Td sees vTs .

LEMMA 3.3. During Parallel Page Access, a transactions Ts ∈
Ts aborts if the version vTs of a tuple t which it wants to create
conflicts with an already existing version vTd of t created by a
concurrent transaction Td ∈ Td.

PROOF. Td acquires an exclusive lock for t in order to write vTd

into page P . If Ts is unable to obtain the lock at the destination
since Td still holds the lock, Ts aborts. If Ts acquires the lock
(which implies that Td has committed or aborted), it eventually gets
the current image of P that contains vTd in the response to the
ownership request (analogous to Lemma 2). Hence, Ts sees vTd

and, thus, aborts.

LEMMA 3.4. During Parallel Page Access, a transaction Td ∈
Td aborts if the version vTd of a tuple t which it wants to create
conflicts with an already existing version vTs of t created by Ts ∈ Ts
with C(Ts) > S(Td).

PROOF. If Ts still runs at the source, it still holds an exclusive
lock for t at the destination in order to write vTs . The exclusive lock
semantics ensure that Td is unable to get the lock for t. Thus Td

has to recognize the conflict and wait for completion of Ts. As Ts

notifies the destination about its completion, strict 2-phase locking
ensures that Td gets the lock for t not until it is able to inspect the
state of Ts. If Ts has committed, Td aborts. Note that this also
applies if Ts has already completed at the time Td acquires the tuple
lock.

58

THEOREM 3.5. ProRea ensures snapshot isolation during Par-
allel Page Access.

PROOF. From Lemma 3.1 and Lemma 3.2 together with Prereq.
1 follows that a transaction T ∈ Ts ∪ Td sees the latest committed
tuple versions that existed when T started. Thus, rule 1 of snapshot
isolation holds during Parallel Page Access.

Prereq. 1 implies that local conflicts, i. e. conflicts between
transactions at the same node, are recognized. Lemma 3.3 ensures
that a transaction Ts ∈ Ts aborts, if there exists a potential conflict
with a transaction Td ∈ Td. Lemma 3.4 ensures that a transaction
Td ∈ Td aborts if it conflicts with a transaction Ts ∈ Ts and
C(Ts) > S(Td). Hence, a transaction will successfully commit
only if its updates do not conflict with any updates performed by
transactions that committed since the transaction under concern
started. As consequence, rule 2 of snapshot isolation holds during
Parallel Page Access.

Thus, Parallel Page Access meets rule 1 and rule 2 of snapshot
isolation.

Note that Lemma 3.3 is more restrictive than required to accom-
plish snapshot isolation. If transaction Ts observes a conflict with
a still running transaction Td, it aborts even if Td eventually fails
(which Ts does not know). That is, transactions at the source do not
wait for tuple locks or check completion status of other transactions
at the destination during Parallel Page Access. From the perspective
of Ts, this constitutes a pessimistic decision, as it aborts although it
has the chance to commit successfully (in most cases a chance with
quite low probability). We argue that this design decision simplifies
ProRea considerably. This prevents synchronizing lock release from
the destination back to the source. In addition to that, it prevents
synchronizing completion of transactions from the destination to the
source. Finally, it prevents more complicated deadlock detection
and management, as a deadlock cycle can never span the source and
the destination.

4. ANALYSIS AND IMPROVEMENTS
This section embarks upon analyzing run-time costs and provid-

ing design rationales for ProRea. Thereafter, it presents an improved
buffer pool handling approach.

4.1 Analysis and Design Rationales of ProRea

4.1.1 Hot Page Push
Hot Page Push requires a shared latch on a page while transferring

it, which blocks writers of the page and thus ensure a physically con-
sistent copy of the page. Yet, the shared latch is very short if pages
are transferred asynchronously. The same holds for creating and
shipping the modification records. Note that modification records
are often created anyway for logging or replication. Therefore, we
regard the overhead at the source as negligible.

This is different at the destination, as it inserts retrieved pages and
applies retrieved modification records. If the pages under concern
are still in Bd, the load caused by applying the modification records
tends to be lower than transaction load at the source, with which the
destination should be able to deal anyway. In addition to that, the
destination has to insert pages into Bd which is assumed uncritical if
the destination has enough available buffer space. If the destination
has to free buffer space or has to write out retrieved pages, Hot
Page Push may cause severe load at the destination. We regard this
an important issue in down-scaling scenarios that requires further
evaluations.

4.1.2 Handover
Handover transaction processing from the source to the destina-

tion represents a critical part, as it blocks most operations on Dm.
The length of the blocking period mainly depends on the transfer
time of the handover message which in turn depends on its size and
the network latency. Recall that the handover message transfers
the database run-time state. During our tests, the main part of the
database run-time state consisted of the lock table and the owner-
ship map. Thus, we limit ourselves considering the size of the lock
table and the ownership map: A lock table with 500 lock identifiers
each having 64 bytes requires 32 Kb. This is a reasonable (perhaps
slightly overestimated) size, as we assume simple, short-running
transactions, which only update few tuples; a lock table with 500
entries approximates to 50 concurrent transactions each holding 10
locks. The ownership map requires two bits for the state of each
page. Thus, for a page size of 8 Kb and a database size of 5 GB, the
total size of the ownership map approximately amounts to 160 Kb.
Under these prerequisities, the total size of the handover message
is about 200 Kb which requires less than 3 ms transfer time in a
latency-free 1 Gbit/s ethernet network at half speed. In practice,
network latency adds to the transfer time. Yet, even if latency adds
additional 10 ms, the transfer of the handover message is short.
Thus, the blocking period during handover is short and, thus, its
impact is low.

4.1.3 Parallel Page Access
Parallel Page Access entails synchronization between the source

and the destination. The synchronization principles from the source
to the destination and the reverse direction differ; pages are syn-
chronized eagerly from the source to the destination, whereas the
reverse direction is done lazily. The lazy synchronization is justified
as eager synchronization of all modifications from the destination
to the source is obviously unnecessary. This is different the inverse
way. As the destination requires the current image of the page for
future transactions, eager synchronization of pages from the source
to the destination is useful.

A side effect of the lazy synchronization is the fact that the desti-
nation returns the whole image of a already modified page only if
the source asks for its ownership. At the time the source requires
the page, the destination need not have the previous page image
anymore. Therefore, it is unable to create the corresponding mod-
ification records. It may indeed search the log (if existent) for the
corresponding records, but this is more complicated than simply
returning the page and may even require additional disk I/O.

The source directly returns the ownership of the page after its
modification. It might be objected that the source may keep the
ownership such that other transactions at the source may also modify
the page without requesting the ownership from the destination
again. However, Parallel Page Access is short and transactions
only update few tuples. The probability that multiple transactions
at the source require writing the same page is in general low and
will further decrease in the future. Hence, page ownership would
eventually return to the destination without additional accesses at
the source in most cases. For this reason, it is useful to take the
chance to create modification records, send them directly to the
destination and piggyback return of ownership.

The total synchronization overhead during migration highly de-
pends on the write share, page contention and network latency. A
high write share and high page contention increase the probability
that a transaction at the source and a transaction at the destination
desire to write the same page. For example, if all transactions insert
tuples in ascending order, many transactions want to write to the
same page. This requires transferring the page back and forth be-

59

tween the source and the destination. However, Parallel Page Access
is short, as transactions are short. Thus, in practice the amount of
pages that is transferred back and forth should be small.

4.1.4 Cold Page Pull
During Cold Page Pull, two operations affect overall performance:

page push from the source to the destination and page pull by the
destination.

The former operation requires reading a huge part of the database
at the source and writing it at the destination. Although the opera-
tions cause mainly sequential disk I/O, their impact is usually too
high to run them full speed ahead. Therefore, limiting the through-
put of these operations is essential to limit its impact on overall
performance. [26] shows how the overall performance depends
on the throughput of reading and writing the database. Based on
these results, they propose a control-theoretic approach to limit the
performance impact due to migration. Their results also hold for
pushing the pages during Cold Page Pull.

If a transaction at the destination pulls a page from the source,
the access time of the page includes network transfer time and
network latency. Let us assume that the network overhead adds
1 ms. Compared to a disk access which may easily require 10 ms
on a moderately utilized machine, the network overhead is low.
However, compared to a buffer pool access which may take about
0.2-0.5 ms, the network overhead is high. As ProRea transfers the
hot pages during Hot Page Push, a page fault typically entails a disk
access at the source why we consider the relative degradation by the
network overhead as tolerable.

4.2 Index Migration
Note that our previous description of ProRea is not limited to a

certain storage structure. For this reason, ProRea works for an index
like the primary storage (the storage which stores the actual tuples
of the table) if the index uses MVCC, as described in 3.1, in order
to serialize access to its tuples.

Alternatively, an index may index all visible versions of a tuple in
the primary storage. An index access then implies an access of the
looked up tuple in the primary storage to determine its visibility. In
this case, locks for index tuples are unnecessary and only latches are
required to ensure the physical integrity of index pages. PostgreSQL
being an example of such an implementation. As the ownership
concept used in ProRea ensures the physical integrity of pages,
ProRea is usable for this kind of index implementation as well.

4.3 Improved Buffer Handling
Common buffer pool replacement strategies require to know the

access history of a page, e. g. usage counters, to take the right
decisions which buffer pages to replace. To save this information,
the migration task also transfers the related meta data of a page.
Naturally, all phases of ProRea maintain the meta data suitably. For
example, if the source requests temporal ownership for a page, the
destination also increments the usage counter of the page when
granting ownership.

In a Shared Process multi-tenancy model, multiple databases,
i. e. multiple tenants, share available buffer pool space. Either all
databases share the whole buffer pool space equally or each database
obtains a reserved amount of buffer pool space dedicated to it. In
both cases, if a database frees buffer pool space, other databases
will be able to allocate more space. For example, if ten databases
equally share 4 GB of buffer pool space and one is shutdown, the
remaining nine database may allocate about 11 % more buffer pool
space. For this reason, ProRea frees Bs ∩ Dm directly after Parallel
Page Access, i. e. after all transactions at the source have completed.

To free the buffer pool space, dirty pages require writing out,
which causes considerable random disk I/O. However, if a page has
been already transferred to the destination and the source does not
change the page anymore, it is safe to skip the page immediately
from the buffer pool without writing it out. From a conceptual view,
the transfer of the page replaces writing out the page to disk. Note
that this does not violate durability; the recovery protocol ensures
durability.

5. EXPERIMENTAL EVALUATION
We built a prototypical implementation of ProRea integrated into

PostgreSQL 8.4 [20], which provides snapshot isolation. Further-
more, we implemented a simple testbed to evaluate the run-time
characteristics of our prototypical implementation. For comparison
with a purely reactive approach, we used an implementation without
Hot Page Push and optimized buffer pool handling, which we refer
to as Pure Rea.

5.1 Test Environment

5.1.1 Testbed Implementation
The schema of our testbed consists of one table and one index:

the Customer table of the TPC-C benchmark and an index for the
primary key. Based on this schema, we generated three databases,
each having a total size of about 5.1 GB.

The load simulator of the testbed runs a mix of simple select and
update transactions, each accessing a single tuple by its primary
key. The load simulator takes parameters for the access pattern, the
read/write ratio, and the number of transactions to be issued per
second (tps). The access pattern parameter specifies the percentage
of transactions that access a certain percentage of the data, e. g. 80 %
of transactions access 20 % of the data and 20 % of transactions ac-
cess 80 % of the data. Within the resulting data ranges, transactions
access data uniformly random. We refer to the respective access
pattern by transaction percentage/data percentage, e. g. 80/20.

The load simulator begins each run with a ramp up phase that
starts a new worker thread every 30 seconds till it reaches 25 threads.
Each thread connects to all databases. The total warm up period
before migration starts is 70 minutes. After this period latencies
and throughput turned out to be quite stable for our tests. The
load simulator distributes the transactions uniformly random across
the configured databases and available worker threads. Hence, all
databases have to serve the same share of load. At the beginning, the
source serves all three databases. After 70 minutes, one database is
migrated from the source the destination. Thus, after migration, the
source serves two databases and the destination serves one database.

To limit the impact of pushing the pages during Cold Page Pull,
we throttled transfer throughput to 4 Mb/s. Moreover, we ran three
passes for each test, whereas each pass started on freshly booted
machines. As the results of each pass were similar and each pass
would lead to the same conclusions, we only report the results of
the last pass.

5.1.2 Test Systems
For our tests, we used two Dell Optiplex 755, one for the source

and the other for the destination. The machines were equipped with
an Intel Core2 Quad Q9300 CPU running at 2.50 GHz and 4 GB
of main memory. We stored the database and its log on two striped
250 GB SATA 3.0 GB/s hard drives spinning at 7.200 RPM. The
test machine ran a 64 bit 2.6.32 Linux kernel (Ubuntu release 10.04
Server), configured without swap space. The client machine on
which we ran our test tools was equipped with four Dual Core AMD
Opteron 875 CPUs running at 2.2 GHz and 32 GB of main memory.

60

0

5000

10000

15000

20000

25000

30000

35000

50/50
60/40

70/30
80/20

90/10

pa
ge

fa
ul

ts

access pattern

ProRea
Pure Rea

(a) Total page faults.

0

5

10

15

20

25

30

35

40

15 30 60

av
g.

bu
ffe

rs
w

rit
te

n/
s

write percentage

Optimized
Standard

(b) Avg. buffers written per second.

0

200

400

600

800

1000

15 30 60

99
%

tra
ns

.
re

sp
.

tim
e[

m
s]

write percentage

ProRea Migrated
Pure Rea Migrated
ProRea Remaining
Pure Rea Remaining

(c) 99 % transaction response times.

Figure 3: Figure 3a compares the page faults of ProRea with a purely reactive approach, called Pure Rea. The different data access patterns
entail increasing buffer pool hit ratio from left to right (80/20 means that 80 % of transactions access 20 % of the data). Figure 3b compares the
standard buffer handling strategy of PostgreSQL with our optimized strategy (Sec. 4.2) during migration. Figure 3c shows the 99 % quantile
of transaction response times during migration. Figure 3b and 3c shows the results for different write percentages and the access pattern 80/20.

The operating system was a 64 bit 2.6.18 Linux Kernel (CentOS
release 5.8). All machines were connected over a 1 GBit/s ethernet
network.

PostgreSQL’s buffer pool was configured to 1.5 GB at the source
and the destination. Autovacuuming, autoanalyze and checkpoints
have been disabled.

5.2 Measurements
To estimate the page fault reduction of ProRea with respect to

different buffer pool hit ratios, we started with tests that count the
page faults for different access patterns during migration. The results
presented in Fig. 3a show that the number of page faults decreases
with higher buffer pool hit ratio (from left to right) for ProRea and
Pure Rea. This is because higher buffer pool hit ratios yield lower
numbers of different pages that are accessed during the period of
migration. Obviously, the number of page faults caused by ProRea
reduces more relative to Pure Rea. ProRea produces about 16 %
less page faults for 50/50 and about 38 % less page faults for 90/10.
Thus, regarding page fault reduction, ProRea has it strengths for
workloads with good buffer pool hit ratio.

ProRea sends modification records during Hot Page Push to syn-
chronize already transferred Page. During our test, the number of
modification records scaled almost linearly with the write percent-
age. Compared to the number of reduced page faults, the number of
modification records was considerably lower (about 8200 less page
faults relative to Pure Rea and about 1300 additional modification
records for a write percentage of 30 % and access pattern 80/20).
Hence, ProRea reduces the total number of messages sent relative to
Pure Rea. Despite of the message reduction, ProRea often increases
the total amount of data sent across the network. This is because
modification records are typically considerably larger than page pull
requests. Our current implementation sends the whole modified
tuple why the additional amount of data depends on the average
tuple size, which was about 320 bytes. For example, the test for
30 % write percentage transferred approximately 420 Kb addition-
ally, which we regard negligible compared to the total database size
(5.1 GB). Moreover, the transfer of modification records is less time
critical than processing page faults, as it typically does not lead to
wait periods for transactions.

To estimate the effectiveness of the optimized buffer pool han-
dling, we measured the average number of buffers written per second
at the source during migration. Fig. 3b shows the results for the stan-
dard buffer handling strategy of PostgreSQL and for our optimized
buffer handling strategy. The results evidence that the optimized
buffer handling strategy reduces the number of buffers written at
the source. Naturally, the optimized buffer handling strategy mainly
takes effect for higher write percentages. Moreover, its effect is lim-
ited to the allocated space of the database that is migrated. Anyway,
it is a simple but effective optimization. For example, in our tests,
it reduces the average number of buffers written per second from
22 to 6 for a write percentage of 30 %. This reduced the average
number of disk I/O operations at the source by more than 10 %.

The reduction of disk I/O operations is in line with the 99 %
quantiles of transaction response times during migration, as Fig. 3c
depicts for ProRea and Pure Rea. The transaction response time is
the end-to-end execution time as difference from the time of issuing
the query to the time of retrieving the results. The difference between
the 99 % transaction response times for the remaining databases
of ProRea and Pure Rea is obvious and increases with the write
percentage. Interestingly, the 99 % response time of the migrated
database is nearly identical between ProRea and Pure Rea, although
Pure Rea has to cope with more page faults. This is because the
higher number of page faults did not cause a severe penalty in our
tests since the network connection between the nodes in our test
environment was very fast (< 0.1 ms latency).

Finally, we ran a test which mimics a typical outscaling sce-
nario. In this scenario, the transaction throughput increases from
100 to 150 transactions per second within a time window of 10 min-
utes. Note that the load is still equally distributed across the three
databases. That is, the number of issued transactions per second
with which the source has to deal remains the same, before and after
migration. The load was generated according to the access pattern
80/20. The write percentage was configured to 30 %. Three minutes
after starting with increasing load, migration starts. Fig. 4 depicts
the average transaction response time using a moving average over
one minute. About 2 minutes after start of migration, the migra-
tion task transitions to Cold Page Pull. As a result, the response

61

a v
er

ag
e

tra
ns

.
re

sp
.

tim
e[

m
s]

tr a
ns

ac
tio

ns
pe

r s
ec

on
d

time from start[min]

trans. resp. time of migrated database
trans. resp. time of remaining databases
transaction throughput

0

20

40

60

80

100

120

140

50 60 70 80 90 100 110 120
75

100

125

150

175

Figure 4: Outscaling scenario that increases transaction throughput from 100 transactions per second to 150 transactions per second. Each data
point is calculated as the moving average over the past minute. The grey-shaded box represents the migration window.

times reduce significantly. This is because of the buffer handling
that releases load at the source. As the load further increase the
response times increase as well, until the load reaches its maximum.
Thereafter, the graph shows that the response times of the migrated
database decrease with ongoing migration. This is because more
and more data is at the destination by what the number of page faults
reduces and, thus, the destination gets more and more independent
from the source. The response times of the remaining databases
degrade between 5 and 25 % compared to the response times be-
fore migration, although load at the source does not increase. This
results from reading pages to push them to the destination. After
migration, the response times improve due to the lower total data
volume with which the source has to deal. In another test, we ran the
same scenario but limited transfer throughput during Cold Page Pull
to 2 Mb/s. In this case, the average response times do not deteriorate
more than 10 %, but the migration time almost doubles.

6. SYSTEM FAILURES
Recovery from system failures represents a core functionality in a

RDBMS implementation to guarantee the ACID principle. Database
migration using ProRea faces recovery with a new challenge: the
consistent state of the database can be distributed over the source
and the destination in the event of a system failure. This section
provides a conceptual discussion about dealing with system failures
that occur during database migration with ProRea. This discussion
focuses on showing that recovery from system failures is feasible
without degrading migration performance significantly.

For this discussion, we assume a log-based recovery approach
that uses typical log replay techniques to restore the latest transac-
tion consistent database state before the system failure. Log-based
recovery is undoubtedly the most common recovery approach in
current RDBMS implementations.

6.1 General Reflections
To ensure common consenus about the current migration phase

even in the event of a system failure, the two-way handshake pro-
tocol presented in [10] is reasonable for ProRea as well. It asserts
permanence of the current phase by logging the sending and receiv-
ing of messages related to phase transition.

The handover of the database run-time state does not require to be
synchronized with the update of the database location at the cluster

management (different to [10]). This is because the source notifies
clients about the new location of the database. Thus, the source
may update the cluster management instance asynchronously using
the same two-way handshake protocol as used for phase transition.
Migration certainly can only finish after this update.

In the event of a system failure during Prepare or Hot Page Push,
the aborting of the migration represents the most obvious choice.
The work done so far is low and aborting of the migration only
requires cleaning up few data structures, e. g. meta data entries. A
significant advantage of aborting the migration is flexibility. This
is due to the fact that the source still owns solely the consistent
database image. Moreover, the source and the destination can decide
to abort the migration alone due to the common consensus about
the migration phase. Hence, if the destination fails, the system can
decide to start another migration from the source to an alternative
destination without waiting for the failed destination. In Parallel
Page Access and later phases, the consistent database image spans
the source and the destination, by what both of them have to be
alive for successful recovery. This case offers the continuation of
the migration which requires restoring its state. The subsequent
sections discuss how to enable restoring the state of migration.

6.2 Logging
Just as the database state, the database log gets distributed over

the source and the destination after handover. The source logs only
updates of page P if o(P) = source, i. e. if it actually owns
P . The destination logs updates of P if o(P) = destination or
o(P) = temporalsource. The latter case is accomplished because
the destination logs applying modification records retrieved from
the source, but not until handover. The source and the destination
independently maintain the latest log sequence number (LSN) (see
Sec. 6.3) which a transaction ts ∈ Ts caused at the source and
the destination respectively. Before ts is allowed to commit, the
source and the destination flush their respective local log up to the
respective latest LSN of ts.

The descibed logging approach ensures that all log entries belong-
ing to transaction ts are flushed, partially at the souce and partially at
the destination. This is sufficient for a system which runs a selective
redo approach; PostgreSQL being an example of such a system.

An Aries-style [17] recovery approach however mandates a com-
plete redo that repeats all changes of a page in chronological order

62

(referred to as repeating history), independent of the completion
status of the related transaction. Therefore, the previously sketched
logging approach additionally requires flushing log entries related to
a page before its transfer to the destination. During Hot Page Push,
this is actually not required because all transaction still run at the
source and hand over of database run-time state flushes the log due
to the phase transition anyway. Hence, only Parallel Page Access is
affected. As Parallel Page Access is short, we consider the resulting
additional overhead as negligible.

6.3 Log Sequence Numbers
The LSNs increase independently at the source and the desti-

nation, why they only provide local chronological ordering of log
entries. Yet, ProRea implies that all log entries related to a page P
at the source are chronologically before all log entries related to P
at the destination. This is because, after hand over of the database
run-time state, the first transfer of a page P to the destination irre-
versibly transfers the responsibility for logging modifications of P
to the destination. Hence, with respect to P , arranging the log en-
tries from the source before the log entries at the destination creates
a partial order that relates entries of P in chronological order, which
suffices for page-oriented redo and page-oriented undo. A special
marker LSN allows indicating a reference to the latest log entry at
the source. After the receipt of a page, the destination resets the LSN
recorded in the page to this special marker LSN. During recovery, a
special marker LSN in a page indicates that the destination has to
apply all existing log records for the page.

Recall that a transaction ts ∈ Ts creates log entries at the source
and at the destination during Parallel Page Access. For transaction-
oriented logical undo, the chronological order of log entries caused
by ts has to be preserved. The previously induced partial order does
not preserve this order. For this reason, additional measures are
necessary to enable transaction-oriented logical undo. For instance,
overlaying a logical order over the log entries caused by ts is one
approach. The identifiers which establish the order are attached
to all log entries caused by ts (at the source and the destination).
Standard messages of the ProRea protocol piggy back the identifiers
for related log entries at the destination. Alternatively, logical LSNs
(at least partially) allow relating a LSN to the node which produced
it, e. g. as done in [29] for similar purposes. This allows building a
chronologically ordered chain per transaction, but it requires syn-
chronously shipping and applying of modification records from the
source to the destination.

6.4 Durability of Migration State
The goal is to preserve most work of the migration in the event

of a system failure, but without severe impact on its run-time per-
formance. The two obvious, extreme approaches are: (I) discard all
work done and start the migration from scratch or (II) flush each
retrieved page to disk and log its receipt. The first approach has no
run-time efforts, but it loses most work done. The second causes
a considerable amount of disk I/O requests, which yields a perfor-
mance loss during run-time. These approaches are naturally far
from the desired goal.

Therefore, we propose an approach in which the buffer pool
manager at the destination creates a log entry for the successful
completion of writing out a page. The corresponding log entry is not
forced to stable storage immediately, but it will be flushed to disk
prior to or with the subsequent commit entry. Logging the successful
write of a page is sometimes anyway done to minimize redo efforts.
In our case, it allows determining which pages have been transferred
and have been successfully written to stable storage.

After all pages have been transferred to the destination, the des-

tination runs a fuzzy checkpoint [12], which eventually creates a
page consistent database image at the destination. Thereafter, the
source is allowed to purge the database.

6.5 Recovery
During analyze of the log, the destination creates an ownership

map from the log entries the buffer pool manager has written. The
destination transfers this ownership map to the source. Thereafter,
the source starts redo for the pages it still owns. The destination
does the same for the page it owns. If the destination finds a log
entry related to a page it does not own, it has to fetch the page from
the source. Naturally, prior to this, the source has to apply all redo
log entries for this page. Thereafter, the undo pass starts. Each
node undoes transactions it has started. If the failure occured during
Parallel Page Access, this may require to ship undo logs or pages
from one node to the other and vice versa.

If only one node fails, only the failed node has to recover. How-
ever, in any case, the ownership map has to be transferred from the
destination to the source to ensure commen consensus about the
ownership of a page.

6.6 Summary
Although the previous discussion only briefly considers recovery

in the event of system failure, it shows that recovery is feasible with-
out significant run-time overheads. At this, Parallel Page Access
represents the most critical phase. It may require additional mea-
sures to ensure appropriate ordering of log entries. However, these
measures are limited to Parallel Page Access, which is assumed to
be short anyway.

Log-based recovery is a disscussable point by itself in highly
available system environments. In such environments, replicas of a
database lend themselves for recovery. [14] has shown that failover
and rebuild is efficiently feasible. Furthermore, highly available
system environments offer an interesting opportunity. If the source
fails, the migration may continue from a replica. The destination
simply has to ship the ownership map to the replica.

Even if recovery does not run log-based, the database log might be
useful for other features, at least partially. For example, [31] adopts
the undo log to implement point in time recovery without the need
of restoring a whole database image. Such functionality is quite
appealing in system environments that allow rare database back-
ups as highly available systems usually do. Hence, the previously
discussed points hold for a broader range than only recovery.

7. CONCLUSIONS AND FUTURE WORK
Live database migration allows satisfying increasing capacity

needs of a tenant by moving it to a node with higher capacity. Fur-
thermore, it allows minimizing costs by moving tenants physically
closer together during periods of low load. This makes live database
migration a compelling functionality to run a multi-tenant RDBMS
efficiently. Yet, live database migration constitutes a challenging
task, as it must not interrupt service processing or degrade service
performance significantly.

ProRea meets this challenge well. By combining proactive and
reactive measures to transfer the database state from one node to
another node, it provides efficient live migration for multi-tenant
RDBMS which fulfill snapshot isolation. The proactive measures in
conjunction with the improved buffer pool handling entail less page
faults and less disk I/O and, ultimately, less migration overhead
compared to a purely reactive approach. ProRea unburdens the
source very fast, as it switches transaction load from the source to
the destination early. This behavior is particularly useful to migrate
a tenant from an (almost) over-utilized node to a lowly utilized node.

63

As mentioned in the introduction, an autonomous controller ide-
ally decides when to migrate, which database to migrate and where
to migrate. In this case, ProRea is automatically initiated and filled
with required arguments. Alternatively, an administrator may initi-
ate ProRea manually if a tenant’s SLAs are violated or if a machine
requires maintenance. The decision on when, which and where to
migrate is difficult. Such decisions require to take into account typi-
cal capacity planning and tenant placement criteria: load patterns of
a tenant, the growth of a tenant, the associated penalty if a tenant’s
SLAs are violated, diurnal cycles of a tenant’s load and so forth.
Against this background, we consider an evaluation of existing ca-
pacity planning and tenant placement methods with regard to their
customization for migration decisions an interesting direction for
future work.

Although snapshot isolation became quite popular, it does not
avoid all concurrency anomalis. Recent research into serializable
snapshot isolation shows that guaranteeing true serializabiliy retains
most of the performance benefits of snapshot isolation [5]. A first
implementation of serializable snapshot isolation in a production
RDBMS release, namely PostgreSQL, underpins these results [19].
These results reveal a new direction for future work: the redesign
and clean reimplementation of ProRea to guarantee serializable
snapshot isolation during migration.

8. REFERENCES
[1] D. Agrawal, A. E. Abbadi, S. Das, and A. J. Elmore. Keynote:

Database scalability, elasticity, and autonomy in the cloud. In
DASFAA, 2011.

[2] Amazon. Amazon Relational Database Service.
http://aws.amazon.com/rds/, 2012.

[3] Aulbach et al. Multi-Tenant Databases for Software as a
Service: Schema-Mapping Techniques. In Proc. of SIGMOD
Conf., pages 1195–1206, 2008.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In Proc. of
SIGMOD Conf., pages 1–10, 1995.

[5] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. In Proc. of SIGMOD Conf.,
pages 729–738, 2008.

[6] F. Chong and G. Carraro. Architecture Strategies for Catching
the Long Tail. Microsoft Corp. Website, 2006.

[7] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich. Relational
Cloud: A Database Service for the Cloud. In Proc. of CIDR,
2011.

[8] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi.
Albatross: lightweight elasticity in shared storage databases
for the cloud using live data migration. Proc. VLDB Endow.,
4(8):494–505, May 2011.

[9] A. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Towards an
Elastic and Autonomic Multitenant Database. In Proc. of
NetDB Workshop, 2011.

[10] A. J. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Zephyr:
live migration in shared nothing databases for elastic cloud
platforms. In SIGMOD Conference, pages 301–312, 2011.

[11] G. C. Frederick Chong and R. Wolter. Multi-Tenant Data
Architecture. Microsoft Corp. Website, 2006.

[12] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[13] D. Jacobs and S. Aulbach. Ruminations on Multi-Tenant
Databases. In Proc. of BTW Conf., pages 514–521, 2007.

[14] E. Lau and S. Madden. An integrated approach to recovery
and high availability in an updatable, distributed data
warehouse. In In Proc. VLDB, pages 703–714, 2006.

[15] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. NIST, 53(6):50, 2009.

[16] Microsoft. Sql azure.
http://msdn.microsoft.com/en-us/library/ee336230.aspx.

[17] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[18] R. Normann and L. T. Ostby. A theoretical study of ’snapshot
isolation’. In Proc. of the 13th ICDT, 2010.

[19] D. R. K. Ports and K. Grittner. Serializable snapshot isolation
in PostgreSQL. In Proc. VLDB Endow., pages 1850–1861,
2012.

[20] PostgreSQL Global Development Group. PostgreSQL.
http://www.postgresql.org, 2012.

[21] D. P. Reed. Naming and synchronization in a decentralized
computer system. Technical report, Cambridge, MA, USA,
1978.

[22] B. Reinwald. Database support for multi-tenant applications.
In In IEEE Workshop on Information and Software as
Services, 2010.

[23] Salesforce.com. Salesforce. http://www.salesforce.com, June
2012.

[24] O. Schiller, A. Brodt, and B. Mitschang. Partitioned or
Non-Partitioned Table Storage?
Concepts and Performance for Multi-tenancy in RDBMS. In
Proc. of SEDE Conf., 2011.

[25] O. Schiller, B. Schiller, A. Brodt, and B. Mitschang. Native
support of multi-tenancy in RDBMS for software as a service.
In Proc. of EDBT Conf., pages 117–128, 2011.

[26] Sean Barker et al. "cut me some slack": Latency-aware live
migration for databases. In EDBT, 2012.

[27] G. H. Sockut and B. R. Iyer. Online reorganization of
databases. ACM Comput. Surv., 41:14:1–14:136, July 2009.

[28] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,
P. Kokosielis, and S. Kamath. Automatic virtual machine
configuration for database workloads. In SIGMOD
Conference, 2008.

[29] J. Speer and M. Kirchberg. D-aries: A distributed version of
the aries recovery algorithm. In ADBIS Research
Communications, 2005.

[30] SuccessFactors. Distinctive cloud technology platform.
http://www.successfactors.com/cloud/architecture/, March
2012.

[31] T. Talius, R. Dhamankar, A. Dumitrache, and H. Kodavalla.
Transaction log based application error recovery and point
in-time query. PVLDB, 5(12):1781–1789, 2012.

[32] Umar Farooq Minhas et al. Elastic scale-out for
partition-based database systems. In International Workshop
on Self-Managing Database Systems (SMDB ’12), ICDE
Workshops, 2012.

[33] C. D. Weissman and S. Bobrowski. The design of the
force.com multitenant internet application development
platform. In Proc. of SIGMOD Conf., pages 889–896, 2009.

[34] F. Yang, J. Shanmugasundaram, and R. Yerneni. A scalable
data platform for a large number of small applications. In
CIDR, 2009.

64

