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ABSTRACT
Good database design is typically a very difficult and costly
process. As database systems get more complex and as the
amount of data under management grows, the stakes in-
crease accordingly. Past research produced a number of de-
sign tools capable of automatically selecting secondary in-
dexes and materialized views for a known workload. How-
ever, a significant bulk of research on automated database
design has been done in the context of row-store DBMSes.
While this work has produced effective design tools, new
specialized database architectures demand a rethinking of
automated design algorithms.

In this paper, we present results for an automatic design
tool that is aimed at column-oriented DBMSes on OLAP
workloads. In particular, we have chosen a commercial col-
umn store DBMS that supports data sorting. In this set-
ting, the key problem is selecting proper sort orders and
compression schemes for the columns as well as appropriate
pre-join views. This paper describes our automatic design
algorithms as well as the results of some experiments using
it on realistic data sets.

Categories and Subject Descriptors
H.2 [Database Management]: Physical Design, Systems—
Relational DBs

General Terms
Design, Algorithms, Performance

1. INTRODUCTION
As the cost of hardware falls, application demands grow.

After all, if it is feasible to buy a 100 machine cluster, then
that level of horsepower can potentially enable much more
demanding data processing capabilities. Complex hardware
coupled with new and complex application demands has dra-
matically increased the cost of administration. In order to
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offset this cost, there has been recent interest in no-knobs
systems that can, in effect, administer themselves.

There has also been a recent trend toward specialized
database systems that are architected to perform really well
for specific workloads. For example, column-store archi-
tectures are particularly well-suited to OLAP workloads.
Each new architecture brings with it a set of physical design
choices that are different from those of previous systems. It
is our belief that we must therefore revisit the topic of au-
tomated physical design to address these new choices and
thus exploit fully their benefits.

Physical database design is well-known to be a difficult
problem [14, 9]. Many competing demands must be bal-
anced, and there is a very large space of potential designs.
The goal is to create a system that can produce all or part of
a design automatically, or at least with a minimum amount
of intervention from the DBA. We aim to produce designs
that are competitive with what a human might produce
since, in practice, we know that designs produced by such a
tool are often used as a starting point.

Others have approached this problem by building tools
that perform automatic secondary index selection [6, 7] or
automatic data partitioning [22]. All of this work has been
done in the context of traditional row-stores. In this pa-
per, we describe the problem of automatic physical design in
the context of a column-store that supports clustering (i.e.,
sorting). We call such systems Clustered Column Stores
(CCS). The most prominent CCS examples are C-Store [24],
its commercial realization, Vertica [4, 20] and the work done
in [17]. We will use a commercial CCS referred to as C-Store
throughout this paper. In Section 2 we discuss additional
architectural features of C-Store such as compression and
insert-handling that must be considered as well.

Column-stores can perform dramatically better than row-
stores in data warehousing environments where the workload
is dominated by read-only queries. A typical data warehouse
query reads a small fraction of the columns of each table.
Thus, a column-store performs far less I/O since it will only
read the columns needed by a query. Physical design for
our column-store can be challenging since it must determine
column sort orders, individual column compression schemes,
and materialized join views.

In this work, for simplicity we assume that queries are
star (or snowflake) compliant - or that it is possible to split
the user queries to make them star-compliant. That is to
say, joins must be based on a PK-FK relation with a single
underlying fact table (see Sections 2.1 and 5.2 for more de-
tails). If a query contains a join that does not comply with
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this condition, it must be split into pieces that do (e.g., [25]).
To our knowledge, such adjustments are easily performed in
most OLAP applications.

Our algorithm builds design candidates consisting of ma-
terialized views and corresponding clustering indexes. We
will discuss why this makes sense in this setting. Our algo-
rithm does not support materialized aggregate views. Ag-
gregate views make sense when the query workload is very
predictable; however, in the face of ad hoc queries, they
may not provide enough advantage to outweigh their main-
tenance cost.

From a very high-level, all automatic design algorithms
do the same thing. They generate alternative designs, ap-
ply a cost model to each one, and pick the design with the
lowest cost. Of course, the space of all possible designs is
very large making an exhaustive search impractical. Thus,
all such design tools use heuristics to prune the space of de-
signs that are considered. We will show that good designs in
our column-store are different from good row store designs.
Using row store heuristics to prune the search space is likely
to miss the best column-store choices.

We will discuss at length the features of a C-Store physical
design that make it different from a conventional row-store
design. We will also show that some of the key C-Store
considerations can also have a positive effect on a row-store
design although they are less dramatic in the row-store set-
ting. Note that here and throughout the rest of the paper
“database design” always refers to the physical database de-
sign.

Contributions:

• We present and evaluate an accurate, correlation-aware
cost model for a clustered column-store DBMS with
compression.

• We present an algorithm for single-query MV candi-
date design that is sensitive to the query disk access
pattern.

• We present an improved approach for merging indexes
– an algorithm that designs new MV candidates based
on workload query groups.

• We present a framework for incorporating inserts into
a clustered column-store that employs insert buffering.
We also use an LP solver to provide a solution that
accounts for insert-heavy workload.

• We present a comprehensive design algorithm for a
clustered column-store DBMS.

The paper proceeds as follows. We first describe relevant
features of the C-Store architecture. We then give a precise
description of the problem. Next, we describe our algorithm
in detail and the rationale for its design. We present an
experimental analysis of its performance, and close with a
comparison with previous work on automatic design tools
and provide some ideas for future work.

2. THE CLUSTERED COLUMN-STORE
In this section we give an overview of the features of C-

Store that must be considered in formulating a physical de-
sign.

2.1 Sorted Materialized Views
C-Store is a column-store in that it stores each column of

a relation separately with its own sort order. If column A

is sorted by itself we write (A | A) and say that this rep-
resents column A sorted by column A. Of course, a column
can be sorted by some other column as in (A | B) which rep-
resents column A sorted by column B. We can then group
all columns with the same sort order as in (A B C | A) which
is the three columns A, B, and C, all sorted by A. We call
such a column grouping a sorted Materialized View (MV).
Note that an MV still preserves the separate storage of each
column. An MV can also be sorted on multiple columns
as in (A B C | A B). It must be emphasized that an MV
with these three columns is not the same as a three-column
relation in a row store. Here, each column is in a separate,
autonomous file.

The columns in an MV need not all come from the same
logical relation. An MV that has columns from multiple base
relations is a materialized JOIN view. With star schemas,
we typically create one or more materialized JOIN view with
the Fact table. Given the 1:n foreign-key relationships, the
number of rows in these MVs is the same as that of the Fact
table. In a non-Star Schema, queries might use more than
one Fact table. In order to accommodate such queries, we
break them up into multiple queries - one per fact table (as
is done in [19]).

Every column in an MV is stored in the same order and
thus C-Store does not require explicit RowIDs or join in-
dexes to match fields belonging to the same row in an MV.
The offset position of each field value in the column serves as
an implicit RowID. In order to reconstruct the complete ith

row in an MV we need to retrieve values at the ith position
in every column in that MV.

2.2 Column Compression
Every sorted column is stored in a sequence of large disk

pages (64K) each containing a consecutive range of column
values (based on the sort order). In order to access a value,
C-Store uses a sparse index that locates the right page. We
need such an index for every column in an MV.

Each C-Store disk page has some compression technique
applied to it. The default is Lempel-Ziv-Oberhumer (LZO)
[27], but for a column whose domain has a small number of
values compared to the cardinality of the relation, we can
do much better. For example, for the MV P = (A B C |
A), if A is few-valued, since it is also self-sorted we can use
Run-Length Encoding (RLE) to compress it.

RLE represents a sorted column as a set of (value, run-
length) pairs. Thus, a column with a domain of cardinality
n will require n pairs in its RLE representation. If a column
contains order 1000 values, then a column with hundreds of
millions of rows will compress into a single page. Even if a
few-valued column is not first in the sort order, RLE will
still compress columns into a small number of blocks as long
as the column cardinality is low. For example in an MV (A
B C | A B) where cardinality of B is 50 and A is 1000, RLE
compression would reduce B to 50K RLE pairs which would
take approximately 7 (64K) disk pages, regardless of how
many rows the MV contains.

Several additional standard compression techniques can
be applied to the data pages when it is deemed to be more
effective than LZO. For unsorted low cardinality columns,
dictionary compression can be applied to every page. Delta
compression can be used for a many-valued, sorted column.

The space that is saved through compression can be used
to store columns redundantly but in different sort orders.
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Thus, it might make sense to store (A B C | A) and (A C
| C) in the same physical design. Each of these MVs would
serve a different class of query.

MVs can have a composite sort order, which loosely cor-
responds to a composite clustered index in a row store. The
sort order also determines the compression scheme that we
are able to apply to a column. Because of compression and
because sort columns contain the actual data, we can use
the sorted columns more effectively than a composite B-tree
index. A predicate on any subset of the sort order columns
will benefit as opposed to restrictions to a prefix of the sort
order as in composite B-tree indices. This will be illustrated
in the discussion of our cost model (Section 4).

2.3 Managing Inserts in CCS
C-Store is designed for data warehouse applications in

which the workload is read-mostly. Thus, storing many
redundant sort orders is good in general to accelerate the
largest number of query types. The potential downside of
MV proliferation is that inserts could put a heavier burden
on the system.

Performing inserts in-place is not practical in a column-
store architecture. Consider a 17 column fact table from
SSB Benchmark [21]). A single insert into this table re-
quires updating 17 non-contiguous pages. Moreover, if the
column-store supports page-based compression then each of
these 17 pages will need to be de-compressed, updated and
re-compressed before being written back to disk. Appending
new rows is more practical, but is not possible in a column-
store that supports data sorting. Recent work in [17] de-
scribes one possible approach to handling inserts in a CCS.

C-Store addresses this issue by batching inserts in main
memory unsorted, and then (eventually) sorting and writing
large groups of tuples to disk as a single operation. This
amortizes the overhead of the sort and the I/O.

We call the sorted columns that are stored on disk the
Read-Only-Store (ROS), and the memory-resident MVs are
called the Write-Only-Store (WOS). Each MV in the ROS
has an analogue in the WOS. Inserts are transactionally ap-
pended to the WOS MVs. When a main memory limit is
exceeded, some MVs in the WOS are sorted and written to
disk.

The sorted WOS tuples are first written as a separate
structure called a mini-ROS in a step called a move-out.
A background process will merge the mini-ROS’s in a step
called a merge-out. Similar buffering approaches have been
used in other systems [3] although, in these cases, data is
always merged into a single structure (thus it is equivalent
to having at most one mini-ROS at all times). C-Store’s
buffering approach amortizes the cost of performing a full
data merge, which can be extremely expensive. However, it
causes MVs to be stored in multiple fragments: each query
needs to process all fragments of the MV it uses. A back-
ground process is responsible for gradually merging such MV
fragments.

Although C-Store approach is different from the one pre-
sented in [17] the idea of batching inserts in memory remains
the same. A discussion of batch merging policies is beyond
the scope of this paper. Here, we only consider the immedi-
ate penalty associated with the insert cost. In Section 4, we
explain how we estimate the insert cost penalty.

2.4 Covering Indexes in Row-Stores
The existing research on automatic design largely focuses

on the design of secondary indexes. It is also well known that
secondary indexes are not effective in the data warehouse
setting. Therefore, a common practice is to build covering
indexes, which are secondary indexes that include a superset
of the columns that a query needs.

SELECT MAX(B)

FROM T
WHERE A=5;

A B

5

1
A ... B ...

5

2

Table T

A ... B ...

5

3

Table T

B

Q:

A

5

4
B ... B ...

Table T

Figure 1: Secondary Indexes - 4 options

Consider query Q in Figure 1 that accesses column B and
has a predicate on column A. The best structure is index
type 1 which is the MV (A,B) clustered on A. The corre-
sponding secondary index would be index type 2, but the
cost to follow the index pointers into table T is likely to
degenerate into a full table scan. Index type 3 represents a
covering index. The advantage of the covering index is that
query Q does not need to follow the index pointers (which
are still there) as it did with index type 2. In other words,
a query can be answered by using the index alone. Note
that this structure is very similar to the MV in index type
1, since the secondary index is sorted (i.e., clustered) on its
own key.

Maintaining a long composite key is expensive in a row
store. Therefore, several commercial database systems sup-
port a special variation of the secondary index (e.g., included
columns in MS SQL Server [1]) as shown in index type 4.
The data from column B is physically stored with the index
over attribute A, but is not included in the index key. Type
4 is an explicit implementation of type 3 and can therefore
be considered to be a covering index as well as types 3 and
4 and equivalent to type 1. In a data warehouse setting, in-
dexes of type 1, type 3 and type 4 can be effectively used as
materialized views. Thus, there is little difference between
the design of our sorted MVs and the design of secondary
indexes of type 3 and type 4. We will later show that our
techniques are applicable for designing MVs (in particular
covering indexes) in row-stores.

3. THE PROBLEM
Briefly, the problem can be stated as follows. The follow-

ing inputs are given.

1. A relational schema S.

2. A set of n training queries with associated weights:
TS = (Qi, Wi) for 0 ≤ i ≤ n with each Qi over S.
The weights can be interpreted as an indication of the
relative frequency or importance of each query.

3. A disk space budget B (in MBs).

4. An expected level of insert batching, Ib (rows/batch).
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5. An expected number of batches per workload, Ic.

6. Initial estimates of dataset sizes, column domain cardi-
nalities, and column selectivities (or a sample dataset
from which these statistics can be gathered).

The problem is to produce a set of projections Pd such
that X

i≤n

(Wi × Cost(Qi)) + (Ic × Cost(Ib)) (1)

is minimized. The first part of equation 1 is the read work-
load cost and the rest is the cost of the inserts. We discuss
estimating the cost of a query and an insert batch in Sec-
tion 4. The design must fit into the disk space budget B.
Furthermore, any legal query Q over schema S that is not in
the training set can still be processed. There are no guar-
antees about the performance of a query that is outside the
training set; however, we would like a design to be resilient
in the sense that there exist large classes of ad hoc queries
that will still perform well.

The training set of queries TS represents an expected
workload over some period of time. One proposed way to
acquire such a set is to log all queries over several days. In-
creasing a weight gives us the ability to treat some queries as
more important than others (e.g., a query from the boss).

4. COST MODEL
Automatic design relies on the ability to generate a num-

ber of feasible design candidates. An accurate cost model
is necessary to evaluate the relative merits of these design
candidates. In addition, the same principles that underlie
the cost model also serve as a foundation for the heuristic
algorithms used in MV candidate design (Section 5.3).

Consider an example MV (A B C D E F | A B C) shown
in Figure 2. Column A splits the MV rows into 2 buckets.
Column B splits each of the 2 buckets into 3 buckets, for a
total of 6. And, finally, column C brings the total bucket
count to 12.

A C D E F

1

2

a

c

b

F

T

F

T

T

F

SELECT SUM(D), MAX(E)
FROM MV

B

a

c

b

Q:

WHERE A = 2, AND C = ’T’;

Figure 2: Cost Model Example - MV Access

Observe that the product of the cardinalities of the sort
order columns determines the number of buckets (12) – one
bucket for each unique combination of values in columns
A, B and C. Of course, if correlations exist between these
columns, the combined cardinality, and thus the number of
buckets could be smaller. The number of buckets is therefore
determined by the effective cardinality of the composite sort
order.

Query predicates determine which of these 12 buckets
need to be accessed (3 in this case). Query Q in Figure 2
selects the 2nd half of column A which corresponds to the
final 6 buckets. The predicate on column C selects three of
these 6 buckets. We refer to the pattern of buckets to read
as a read bitmap. The read bitmap determines the cost to
access all subsequent columns such as columns D and E in
Figure 2.

Once the bitmap pattern is determined, the cost to read
the subsequent columns accessed by query Q is a function
of the physical column size on disk. Thus, in our example,
if column D takes 4 pages on disk to store 12 buckets, and
these buckets are the same size, each page would contain 3
buckets. Q would then have to read 2 of these disk pages (or
50%). However, the same column D with size of 40 pages
with the same assumptions would require reading about 10
pages (or 25%) with 2 seeks to relocate between buckets.
The same column can take on a different size depending on
a particular compression techinque applied to that column
(we discuss choosing column encoding in Section 5.3.1). In
general, the cost model computes the cost of the sequence
of reads and seeks as applied to each accessed column. Note
that it is important to consider the seek time since in a
column store the number of seeks to read the relevant part of
each column is multiplied by the number of columns accessed
by the query. This can make seeks a dominant part of the
overall cost. We use physical disk parameters (e.g., seek
time, I/O time) to combine read cost and seek cost into a
single estimated time.

RB Read Bitmap.
PT The size of column T (pages, post-compression).
Buckets Cardinality of the composite key (see Figure 2).

B Bucket size in pages ( PT
Buckets

).
Cseek The cost to do a disk seek.
Cread The cost to read a single disk page.
RUNSa The set of all bit sequence lengths in a bitmap.

(e.g. RUNS1([1,1,0,0,0,1,1,1,1,0,0,1]) = (2,4,1)
DTables The set of dimension tables joined by an insert.

Table 1: Cost Model Variables

Table 1 lists the variables that are considered in determin-
ing the cost to access a column T as expressed in equation 2.
For every consecutive run of ones we estimate the amount
of data that the query will scan. For every sequence of zeros
in a bitmap, we take the lesser between the cost to seek over
or to read the unneeded data. Note that the seek cost is
roughly an order of magnitude higher than the cost to read
a single page. For example, a read bitmap that accesses one
in every 10 pages will have a similar cost to a column scan.

ColumnCost(T ) =
X

x∈RUNS1(RB)

dx ∗Be ∗ Cread

+
X

y∈RUNS0(RB)

min(dy ∗Be ∗ Cread, Cseek) (2)

The cost of a query Q is then

Cost(Q) =
X

T∈Columns(Q)

ColumnCost(T ) (3)

Recall that inserts are handled by placing new tuples with
the appropriate pre-join in the WOS. This requires accessing
each dimension table to perform the join. Thus, the cost
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of a single insert batch is equivalent to the cost of reading
all relevant dimension tables. DTables is the union of all
dimension tables used by the physical design MVs (without
pre-joins that set is empty) and equation 4 summarizes the
cost of each insert batch (more on this in Section 5.5).

Cost(Ib) =
X

DT∈DTables

(
X

T∈Columns(DT )

ColumnCost(T )) (4)

5. THE DESIGN ALGORITHM

5.1 Overview
At some very high level all database design algorithms,

including ours, follow the same basic steps. As these al-
gorithms progress, they generate a growing pool of design
candidates. A final design will be chosen from this pool.
The steps are characterized as follows:

1. For each training query, heuristically generate one or
more physical candidate structures (e.g., indexes, MVs)
that enhance that query’s performance.

2. Generate shared candidate structures based on groups
of similar queries that can serve multiple queries si-
multaneously. This step is typically to save space or
to reduce maintenance cost

3. Pick a set of candidate structures that minimize to-
tal query runtime and do not violate the user (space)
budget constraints. These candidates are added to the
growing pool of candidates.

4. Repeat steps #2 and #3, until we do not see significant
improvement from one iteration to the next.

A number of simple greedy techniques can produce a rea-
sonably good result for step #3, particularly for limited
space budgets because smaller budgets tend to result in de-
signs with fewer candidates. The Greedy(m,k) technique,
described in [11], introduces a greedy search over a candi-
date set produced by a limited (by parameter m) exhaustive
enumeration. Our algorithm uses an ILP solution (Section
5.4) that will, for most problems, produce the optimal solu-
tion with respect to the candidate set in a reasonable period
of time. Notice therefore, that the choice of good candidates
is critical which is why we emphasize candidate generation
in our approach.

Algorithm 1 Overall Design Algorithm

1: ∆Runtime ← X% {Stopping condition}
2: queryGroups ← {(Q1), (Q2)...(Qn)}
3: MVPool ← {}
4: (Design, Runtime) ← ({BaseTables},{QueryRuntime})
5: repeat
6: newQGSet ← groupQueries(queryGroups, maxJoins)
7: for QGroupi in newQGSet do
8: MVPool ← MVPool ∪ buildCandidates(QGroupi)
9: end for

10: queryGroups ← queryGroups ∪ newQGSet
11: oldRuntime ← Runtime
12: (Design, Runtime) ← BuildDesign(MVPool)
13: until (oldRuntime-Runtime)< ∆Runtime
14: return Design

In algorithm 1, on each iteration, we group the training
queries such that each group represents queries that are sim-
ilar in some respect. We anticipate that such groups will

have similar needs. Therefore, we use these query groups to
produce MV candidates.

Note that quality of designs produced at each iteration is
monotonic since we only add candidates. The iteration stops
when the overall training set runtime improvement over the
previous iteration is less than some threshold. There are no
hard rules for how to choose a good value of this threshold,
particularly because it is affected by how good the previous
pass was, but we found by trial and error that anywhere
between 1% and 3% will normally not miss good designs
and will complete in a reasonable amount of time. For the
remainder of this paper, we set it to 2%.

The algorithm performs the following steps: first, it gen-
erates a set of query groups to serve as the basis for MV
candidate generation (line 6). The details and the justifi-
cation of query grouping are covered in Section 5.2; we can
use the maxJoins parameter to control the number of candi-
dates that are generated (more details in Section 5.2). This
number is approximated based on the total number of can-
didates that the CPLEX solver can handle.

Once the new set of query groups has been generated, we
proceed to build MV candidates. Our approach to MV can-
didate generation is discussed in Section 5.3. The new MV
candidates are appended to the overall candidate pool (line
8). We then record the new query groups for the following
iteration (line 10), cache the last known design (produced
prior to the addition of the new candidates) and create the
new optimal design (line 12) using the ILP solver. The de-
tails of applying the ILP solver are explained in Section 5.4.

5.2 Query Grouping
In this section, we discuss query grouping as the basis for

MV candidate design. We defer the discussion of how to
generate MV candidates given a query group until the next
section. A query group is a set of similar queries (in the
training set) that can all benefit from a single shared MV.

Previous work [8] has created designs by first generating
candidates for a single query and then merging these candi-
dates to reduce the total number of MV’s in the design. In
contrast, we group queries that are similar and design MVs
for each group. In Section 5.3.2 we will explain why our ap-
proach is better than the approach sketched above for our
setting. Several parts of our query grouping method have
been adopted from the work in [19].

Intuitively, since we are looking for queries that will be
well served by a shared MV, finding queries with similar
predicates is important. In order to detect query similar-
ity, we represent each query with a selectivity vector. The
selectivity vector has one dimension (slot) for each of the
M attributes in the schema. If query Q uses N distinct at-
tributes (ignoring the join keys), it will be represented by
an M-dimension vector with N non-default entries (default
= 1), one for each attribute’s selectivity (between 0.0 and
1.0). All other dimensions will be set to one, although for
brevity, we omit these default values in the examples. Using
the SSB [21] Query 2.1:

SELECT SUM(lo revenue), d year, p brand1
FROM lineorder, dwdate, part, supplier
WHERE ... PK-FK joins ...
AND p category = ’MFGR#12’
AND s region = ’AMERICA’
GROUP BY d year, p brand1
ORDER BY d year, p brand1;
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the selectivity vector might look as follows:

QV2.1 = (p category : 0.025, s region : 0.2, d year : 1.0,

p brand1 : 1.0, lo revenue : 1.0)
If attribute A is correlated with attribute B, then the se-

lectivity of attribute B is dependent on the selectivity of
attribute A. To address this, we apply selectivity propaga-
tion using the correlation data. The process of collecting
correlation data and selectivity propagation is described in
more detail in [19]. Briefly, for a uniform distribution, the
selectivity of an attribute B that is correlated with attribute

A is the Selectivity(A)× Card(AB)
Card(B)

. The significance of data

correlations for MV design will be explained in detail in Sec-
tion 5.3. The following selectivity adjustments can be made
to QV2.1 if there are two functional dependencies as shown.

QV2.1 = (p category : 0.025,→ p mfgr : 0.2,

s region : 0.2,→ s nation : 0.2, d year : 1.0,

p brand1 : 1.0, lo revenue)

A partially pre-joined MV might be a better design can-
didate compared to the full pre-join either because it takes
less space on disk or because it has a lower maintenance
cost. Thus, we extend the framework adopted from [19] to
support partially pre-joined MVs. Intuitively, if query Q1
accesses dimension tables D1, D2, and D3, and Q2 accesses
dimension table D1, D4, and D5, then these queries are un-
likely to be similar since they have only one dimension in
common. However, if we are only considering a partial pre-
join of the Fact table with D1, then in that context Q1 and
Q2 would likely be similar. To capture this similarity we
introduce a projection operator that lets us focus on the
attributes relevant to a specific pre-join.

Here a projection of the selectivity vector eliminates at-
tributes that are not available in the pre-join. It does so by
setting all other attributes in the vector to 1. To use the
same example query, a possible vector for Q2.1 is:

QV2.1[lineorder, dwdate] = (d year : 1.0, lo revenue : 1.0)

In this case we want to capture a similarity that is relative
to the join between lineorder and dwdate.

We now use these vectors to form query groups. For each
considered pre-join, we use hierarchical clustering [15] to
build a merge tree thereby generating new query groups,
one for each node in the tree. When possible we consider the
exhaustive set of pre-joins; the allowed maximum is provided
as an input in algorithm 1.

Q1 Q2 Q3 Q4

Q2Q3

Q2Q3Q4

Q2Q3Q4Q1
Pre-Join: Fact, D1, D2

New Query
Groups

Figure 3: Query Merging - A Single Merge Pass

We begin with a known set of query groups (initially, sin-
gleton groups) and perform pair-wise merging based on a
distance function that we will describe shortly. A single
merge pass (Figure 3) produces a fully merged tree. Al-
gorithm 1 will perform a new merge pass with all groups

formed so far until it reaches the stopping condition. Fig-
ure 3 shows a hypothetical 4-query set that is being merged
conditioned on a particular pre-join. If we were to perform
a second merge pass, the new groups would be added to the
initial merge set (i.e., the leaves). At every merge step the
closest pair of query groups (i.e., most similar according to
our distance function) is merged. In order to produce inter-
esting new candidates, we avoid merging overlapping query
groups. The distance between query groups is based on stan-
dard Cartesian distance normalized using the expected size
of the MV candidate for each query group. It is impossible
to compute the exact candidate size since the candidates are
not yet generated. However, we use the LZO-compression
estimate for all attributes in order to approximate the size.
For example, d year compresses to approximately 1.00 byte
per row, while lo revenue compresses to 3.74 bytes per row.
The distance function is therefore:

D(V1, V2) = Cartesian(V1, V2)× LZO(V1 ∪ V2)

LZO(V1) + LZO(V2)
The absolute value of this distance does not have a con-

crete meaning; however, we expect that queries that are
similar will have lower distances than queries that are not.
The idea of merging similar structures has already been es-
tablished by [8]. Even though we merge queries instead of
merging MVs (as is done in [8]), there are some conceptual
similarities. In the case of [8], the basic similarity measure
is the overall query penalty (i.e., performance deterioration)
resulting from MV merge. This similarity measure is nor-
malized by the estimated size penalty resulting from that
merge. In our algorithm we choose to merge queries instead
of MVs, since important merging information may be lost
when a user query is“transformed”into a dedicated MV (Ex-
periment 2 in Section 6 demonstrates the dangers of merging
MVs directly). In the next section, we will discuss a number
of reasons why that is the case and detail our approach to
generating MVs for a query grouping.

5.3 Generating Candidate MVs
In this section we present our approach to generating MV

candidates that are tailored to a specific group of queries.
First, we explain how single-query (i.e., dedicated) MVs are
generated and then we extend our approach to the genera-
tion of multi-query MVs. Row-store literature typically ap-
proaches these two tasks in a fundamentally different man-
ner: dedicated MVs are generated with heuristic query anal-
ysis and shared MVs are generated by merging the already-
generated MVs [7]. Before we move on to explain multi-
query MV design, we present the shortcomings of the MV
merging strategy in the context of C-Store.

5.3.1 Single-Query Candidate MVs
The problem of picking tables to pre-join is not very dif-

ferent in C-Store as compared to a typical row-store. Even
though query execution in C-Store differs significantly, the
strategy for minimizing the cost of a join remains the same
and consists of a) minimizing the I/O cost for reading the
tables and MVs that are being joined and b) minimizing
the size of the intermediate join results. In our work we
try to consider all possible pre-joins limited by the thresh-
old that was discussed in the previous section. Thus, in the
following discussion we will concentrate on the problem of
choosing the MV clustering key (i.e., sort order) for a given
pre-join.
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In order to avoid the well-known problem of secondary
indexes for data warehouses, the typical use of B-Trees in
this context is to create a covering index with a composite
clustering key. Composite B-Trees support arbitrary predi-
cate evaluation over the first attribute in the index. Multi-
attribute access demands (1) that a prefix of the key must
be used, (2) all but the last of the queried attributes in the
prefix have an equality predicate. Thus, the clustering key
for a dedicated MV for a particular query, should contain
all of the equality predicates from that query followed by
the single lowest-selectivity range predicate. This indexing
strategy minimizes the amount of data that the query ac-
cesses thereby proving the single best answer to designing a
dedicated composite index in a row-store.

The same problem is far more complex in C-Store. The
expected quality of an index is hard to anticipate both be-
cause the index attributes are RLE-compressed and because
index and target columns are accessed individually. Each of
these factors affects index performance in its own way. RLE
compression means that most of the RLE-encoded attributes
are cheap to read (few I/O’s) and process. Column-store ar-
chitecture allows reading just the columns that are needed -
which makes index access more flexible than in a row-store.
However, each column read requires a seek to a different
file. We will explain the impact of both of these factors as
we explain the algorithm pseudo-code.

Algorithm 2 MV Design Algorithm (single query)

1: Parameters: Query, PreJoin
2: ModQuery ← Query [PreJoin]
3: Prefixes ← buildPrefixes(ModQuery)
4: for Prefix in Prefixes do
5: cost = 0
6: for Attri in ModQuery.Attrs do
7: cost = cost + evalPrefix(Attri, Prefix)
8: end for
9: bestPrefix ← record lowest cost prefix

10: end for
11: Suffix ← {}
12: RankedAttrs← rank (ModQuery.Attrs−bestPrefix.Attrs)

(rank the non-prefix attributes using Equation 5)
13: while Cardinality(Prefix + Suffix) < MV Rows

3
do

14: Suffix.add(RankedAttrs.best())
15: end while
16: newMV ← ModQuery.Attrs sorted on (Prefix+Suffix)
17: for Attri in (ModQuery.Attrs − (Prefix + Suffix)) do
18: newMV.AssignEncoding(Attri)
19: end for
20: return newMV

Algorithm 2 describes the design process for a single MV
with an already specified pre-join. For purposes of designing
a sort order, we will ignore the attributes not covered by the
specified pre-join (line 2) and introduce the necessary foreign
keys. Next we generate all possible prefixes (line 3), where
a prefix is the leading part of the sort order that determines
the read bitmap as described in Section 4. We add columns
to the composite sort order until the resulting bucket size is
equal to one disk page (since that is the I/O unit). As we
generate prefixes, we apply a number of filtering heuristics
(e.g., equality predicate will always result in better perfor-
mance compared to a range predicate). The space of all
possible prefixes is limited, because the number of pages per
column is relatively small due to compression. For example,

a column with 10M integer values can easily fit into about
100 disk pages (without resorting to RLE) and prefix gen-
erated can stop when the number of buckets exceeds 100.
This means that prefixes will in general be fairly shallow.
In lines 4-10 we evaluate the set of prefixes and select the
one with the lowest cost. The evalPrefix function in line 7
is a cost model call that estimates the expected read bitmap
cost for each column accessed by the query.

Once the best prefix is chosen, we extend that prefix by
adding more columns (building a Suffix or the rest of the
sort order) to further improve column compression through
RLE. We do not have the space to present the evidence, but
the C-Store update framework (Section 2.3) nearly elimi-
nates the penalty associated with long composite indexes
that we see in row-stores. Therefore, we extend the sort or-
der to the maximum length for which RLE still provides any
compression benefits (line 13): RLE compression is effective
as long as we are encoding runs of at least 3 identical values.
We use the following equation

AttrBenefit =
(1− Selectivitypredicate)

Log(Cardinalityattribute)
(5)

to rank the remaining query attributes in line 12 of algo-
rithm 2. The intuition here is as follows - the numerator of
the formula minimizes the selectivity value as is important
in a row-store. The denominator accounts for the fact that
the maximum length of the sort order is constrained by its
composite cardinality (condition in line 13). Therefore, at-
tributes with lower cardinality are preferable since more of
them can be added to the sort order. This is a heuristic ap-
proximation which has shown to do reasonably well in our
experiments.

Finally, we need to assign individual column encoding
schemes for the remaining (i.e., non-RLE) columns (lines
17-19). We choose a custom compression scheme (e.g., dic-
tionary or delta compression) based on the data type and
the cardinality of the column. The estimated size of each
compression scheme is compared against the default LZO
compression. Recall that compression in C-Store is page-
based, therefore we estimate dictionary compression using
per-page cardinality rather than general attribute cardinal-
ity. The per-page cardinality may decrease due to correla-
tion with the sort order - for example if the MV is sorted
on state then each page in the city column is going to have
fewer unique values (e.g., the first 2% of the cities are going
to be from AL only and so on).

Our algorithm has been tailored to C-Store, but our tech-
niques can be applied in row-stores, since row-store DBMSes
have some similar features. For example, Oracle’s skip-scan
mechanism is a way to query an index with more than one
range predicate. This is done by replacing the leading range
predicate by a number of equality queries (e.g. using “(A=5
AND B>10) OR (A=6 AND B>10)” instead of “5≤A≤6
AND B>10”). See Figure 5 in Section 6 for an example.
A more general approach to efficiently apply multiple predi-
cates is through using bitmap indexes for the columns in the
sort order. Such a bitmap index would also be very amenable
to compression because matching values are collocated.

5.3.2 Merging Materialized Views
Row-store designers typically merge MVs in order to limit

the total number of MVs in the design. We discuss some of
the possible pitfalls of merging MVs in C-Store. An MV
is a combination of a pre-join and a sort order. Merging a
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pre-join is not difficult. The problem of merging indexes has
been covered in [13] and the accepted solution in a row-store
is to concatenate the two parent index keys eliminating any
redundant attributes. Row-stores cannot access individual
columns of the index, interleaving of the index attributes
has a very deleterious effect on all of the queries that were
helped by the original indexes. In contrast, since column-
stores can access columns individually, interleaving of index
attributes is often a better choice than simple concatenation.
Evaluation of all feasible attribute interleavings is expensive
– therefore we choose to build a new MV for each group
of queries (Section 5.3.3) that we encounter. For us, query
grouping substitutes for index merging.

In some cases, even a row-store may benefit from attribute
reordering during index merging. For example, a common
second attribute that appears in both parent indexes could
be beneficial as the first attribute in the merged child index.
Thus, our approach of reconstructing the index based on the
queries may be useful in a row-store.

5.3.3 Multi-Query Candidate MVs
Next, we present our approach to generating MVs for a

multi-query group. We extend Algorithm 2 presented in Sec-
tion 5.3.1. Most of the algorithm can be used without any
modifications – we only need to make two adjustments.First,
we build a prefix for multiple queries. We do this by comput-
ing the average expected cost of each prefix over all queries
in the group. The candidate prefixes are chosen in the same
way as before.

The second necessary modification concerns the extension
of the sort order. In addition to averaging the attribute
ranking over all queries in the group, we also modify Equa-
tion 5 in the following way:

AttrBenQi
= Read(Prefix, Qi) ×

(1− Selectivitypred)

Log(Cardinalityattr)
(6)

This formula is augmented with an additional term that
accounts for the amount of data read by each query. In-
tuitively, a predicate with selectivity of 0.10 will eliminate
90% of column rows. However, if Qi only reads half of the
column based on the prefix, then the same predicate will
only filter out 45% of column rows since it is being applied
to half of the column.

5.4 Picking the Best Candidates
Using an ILP solver to find the optimal solution has been

proposed in [23] and [19]. The goal is always the same - pick
a subset of MV design candidates from the candidate pool,
subject to a budget. The summary of the variables that we
use in the problem formulation are listed in Table 2.

m An MVm from the candidate pool M .
q A query from query set Q. q = 1, 2, .., |Q|.
B Space budget.
sm Size of MVm.
tq,m Estimated runtime of query q using MV m.
pq,r r-th fastest MV for query q.

(r1 ≤ r2 ⇔ tq,pq,r1
≤ tq,pq,r2

).

xq,m Whether query q is penalized for
not having MV m. 0 ≤ xq,m ≤ 1

ym Whether MVm is chosen.

Table 2: ILP Formulation Variables

The ILP Objective function is:

X
q

0@tq,pq,1 +
X

r=2...|M|

xq,pq,r (tq,pq,r − tq,pq,r−1)

1A (7)

and it is subject to the following constraints:

1−
r−1X
k=1

ypq,k ≤ xq,pq,r ≤ 1 (8)

ym ∈ {0, 1} (9)

X
m

smym ≤ B (10)

The objective function is designed to minimize the total
runtime of the query workload. Intuitively, it sums up the
penalties incurred by each query depending on which MVs
were chosen. When every query gets its dedicated MV, the
sum of penalties is 0. If an inferior MV is used due to budget
constraints, then each (tq,pq,r − tq,pq,r−1) element represents

the penalty incurred as a result of choosing (r)th best MV
instead of (r-1)st. Equation 8 constraints xq,m based on
which MVs were chosen (ym). Equation 9 ensures that ym

is boolean, since MVm can is either chosen or not. Finally
equation 10 limits the total size of the chosen MVs to the
budget B.

We solve the stated ILP problem using a commercial LP
solver (ILOG CPlex [2]). The values of ym returned iden-
tify the ideal subset of MVs that will constitute the output
design.

5.5 Handling Inserts
Most data warehouse workloads contain inserts. The main-

tenance costs increase dramatically as the design size in-
creases. In fact, the space budget sometimes serves as a
metaphor for expected maintenance overhead. Note, as stated
earlier, we assume that inserts arrive in batches of known
size and frequency.

In row-stores, the insert cost is directly determined by
the number and size of indexes in the design. Indexes are
expensive to maintain because they keep data sorted and
each new insert is likely to touch a new disk page. C-Store
amortizes the maintenance cost both by buffering inserts in
memory (similar to what InnoDB [3] does) and by writing
these batches to disk. The amortized insert cost cannot be
estimated based on the size or number of MVs in the design
because MVs are not immediately updated.

We adapt our ILP solution to account for the insert costs
by partitioning the MV candidates based on which pre-joins
they require. We then run the ILP solver on each partition
to select the best design for that partition. For every design,
the widest (union of used dimension tables) required pre-
join will determine the immediate overhead incurred with
every inserted batch of rows. Intuitively, a design built from
the candidate partition that avoids pre-joins with a large
dimension table will incur lower insert overheads.

Inserts also incur move-out and merge-out penalties in
the long run. However, these costs are amortized and thus
negligible when compared to the immediate cost of the in-
serts. For example, assuming a 500MB WOS buffer, most
SSB designs would be able to buffer over 1M rows before
the first move-out has to be performed. Since a move-out
occurs infrequently and does not take significat time (e.g.,
a few seconds every hour), we can ignore this in our cost
formula.
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Figure 4: Different Sort Orders in C-Store

6. EXPERIMENTS
We ran our experiments using the C-Store on machines

running Fedora Core 6 with AMD64/3000+ processor, 2G
of RAM and a 320G 7200RPM SATA II disk. We flushed
the cache between runs by using the Linux /proc/sys/vm/-
drop caches mechanism. In order to get stable results we
averaged multiple (at least 3) repeated runs after remov-
ing outlier results. We use the SSB [21] benchmark, which
is a variation of the TPCH benchmark. Unless otherwise
specified, we use a Scale 4 sized dataset.

In some of our experiments we use a popular commer-
cial row-store DBMS to demonstrate the architectural dif-
ferences between column and row-stores. We will refer to
this row-store as DBMS-X. Both the DBMS-X and C-Store
results are normalized with respect to their respective base-
line performance, to avoid comparing row-store and column-
store performance directly. This baseline is computed dif-
ferently for each experiment (as specified in the text).
Experiment 1: The Effect of Sort Orders

In this experiment, we plot the runtimes of the following
query using the dataset described above.

SELECT SUM(revenue)
FROM lineorder, dwdate
WHERE ... joins ... AND DayNumInYear > 240
AND Quantity > 24 AND Discount > 2;

The cardinalities of DayNumInYear, Quantity, and Dis-
count are 365, 50 and 11 respectively, while the selectivities
are 0.3, 0.5 and 0.7, respectively. The goal here is to demon-
strate that unlike in a row store, the choice of the sort order
in C-Store will depend on the size of the MV columns on
disk. We don’t always want to use selectivity as a guide
when choosing the sort order because the read bitmap is of-
ten more important in determining how many I/O’s are re-
quired. As observed earlier, the mapping of the read bitmap
to physical pages changes as the physical size of the column
changes.

In this experiment, we generate 6 pre-joined MVs rep-
resenting all possible sort orders and run the same query
against each MV while varying the scale (# rows) of the
dataset. The sort orders are:

SO#1: DayNumInYear , Discount , Quantity

SO#2: DayNumInYear , Quantity , Discount

SO#3: Discount , DayNumInYear , Quantity

SO#4: Discount , Quantity , DayNumInYear

SO#5: Quantity , DayNumInYear , Discount

SO#6: Quantity , Discount , DayNumInYear
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Figure 5: Covering Indexes and with and without
skip-scan in DBMS-X

All runtimes in Figure 4 are normalized with respect to
MV #1 that uses the sort order based on selectivity (SO#1).
Note that at 24M rows, DayNumInYear is actually a good
leading choice (SOs #1 and #2 are doing well). However,
as the number of rows increases, other sort orders begin to
dominate. At 120M rows, MV #3 and MV #5 are winning
by 20%, and by the time we reach 240M rows MV #6 is the
best choice, while MV #1 and MV #2 are close to the worst
choices. The difference may not seem dramatic, but keep in
mind that in this case every column except for the revenue
column is RLE compressed. If the query had predicates over
more columns, some of these columns might not appear in
the RLE portion of the sort order making the performance
gap larger.

The reason for this variation in performance with dataset
scale is fragmentation. Intuitively, when the row count is
small, each accessed bucket is relatively small (compared to
the page size), so the number of pages read is commensurate
with the selectivity of the leading column in the sort order.
However, as the target column (i.e., revenue) becomes larger,
the buckets are large enough that the I/O cost of the query
will depend on the particular RLE prefix. Buckets will often
contain a high proportion of irrelevant data. In that case,
leading with a lower cardinality attribute is often a good
idea even if that attribute has a high selectivity.

Figure 5 shows how using skip-scan in a row-store also
benefits from our MV design technique. The set of bars on
the left show how DBMS-X performs using the same sort
orders as in Figure 4, while the bars on the right show what
happens with these sort orders when we simulate skip-scan
described in Section 5.3.1 (note: DBMS-X does not support
this directly). The better performance on the right is due
to the fact that the skip-scan can take advantage of the sort
orders that we design. Thus, a row-store designer could
benefit from our MV design technique as well, although not
as much as in our column-store.

Experiment 2: Merging Sort Orders
Consider the two queries Q1 and Q2 with two predicates
each as shown:

Q1:

SELECT SUM(revenue)
FROM ... WHERE
quantity BETWEEN 25 AND 30 AND
nation BETWEEN ’Germany’ AND ’Japan’;

Q2:

SELECT SUM(revenue)
FROM ... WHERE
orderdate BETWEEN 94-05-01 AND 94-06-25
city BETWEEN ’France 0’ and ’Japan 0’;
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Figure 6: Merging sort orders in C-Store

We use labels A=quantity, B=nation, X=orderdate, Y=city
to save space in the figure. Assume that the best sort orders
are as given (AB for Q1 and XY for Q2), and their perfor-
mance is labeled as “dedicated” in the figure. Now consider
the problem of merging these two sort orders. Recall that in
a column-store, it is easy to use a subset of the columns in
a sort order, so interleaving the two parent sort orders is a
viable option. Furthermore, we will show that the presence
of functional dependencies can have a significant effect on
the result.

We have produced indexes with different permutations of
the sort order columns from the example above. Figure 6
shows the real system runtimes in C-Store normalized by
the runtime of the dedicated indexes (i.e. we measure the
slowdown resulting from the merge). Note that the first
two merges (ABXY, XYAB) correspond to what a designer
would choose in a row-store. The results are as expected.
One of the queries (the one with the predicates that lead in
the merge) exhibits no slowdown and the second query slows
down by an order of magnitude. The two following indexes
are simple interleavings (AXBY, XAYB) and the average
performance of both is better than either of the concatenated
indexes. When indexes are interleaved, both queries slow
down, but each is able to benefit from the combined index to
some degree. Finally, we come to the most surprising result
of all. Notice that the average performance of the index
BYAX is much better than all other indexes, despite the
fact that the leading column of the merge is the 2nd column
of the first dedicated index followed by the 2nd column of the
second. This can be explained by a functional dependency
that exists between B and Y (city→nation). This reduces
the read bitmap fragmentation (as explained in Section 4)
by reducing the number of buckets induced by the sort order
prefix and lets Q2 benefit from the 2nd column of the sort
order (city) as if it were the leading column in the index. Or
to put it another way, because of the functional dependency
between city and nation, a predicate on the city column
carries an implied predicate on nation.

To confirm that the state-of-the-art wisdom about index
merging in a row store is accurate, we re-run the same com-
binations in DBMS-X. Figure 7 shows the corresponding
results. Interleaving indexes is not beneficial in a row-store.
Although in this case interleavings AXBY and XAYB slow
down the “winning” query only by a little (approximately
15%) it still does not benefit the “loser” query in any way.
The final interleaving (BYAX) is even worse.

Experiment 3: A Human DBA Evaluation
Next we compare our design for the SSB Benchmark to one
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Figure 7: Merging indexes in DBMS-X

produced by an experienced C-Store DBA. This particu-
lar DBA produced the physical design by partitioning the
queries into a different number of groups and producing one
fully pre-joined MV per group (i.e., 1 MV, 3MVs and 4MVs).
Figure 8 shows the design curve produced by our design tool
and the corresponding cost model estimate curve.

The designs compare pretty well as they were done by an
experienced DBA. However, the DBA did not consider de-
signs for budgets of less than 275MB. Note that the reason
one of the DBA designs stands out as a seemingly “bad”
design point (at 520MB), is, once again, compression. The
“bad” design point is a single materialized view (i.e. single
query group) and compresses relatively poorly. It is difficult
for the DBA to anticipate the final design size. We also in-
clude a curve that shows our cost model’s predicted runtime,
and it is shown to be extremely accurate.

Experiment 4: The Row-Store Strategy
In this experiment, we evaluate a popular MV design tech-
nique for row-stores in the context of our CCS. We build
the sort order based solely on predicate selectivity instead
of using our algorithm. Note that in the absence of special
DBMS functionality (such as skip-scan), this is a best choice
for a row-store (see Experiment 1).

As can be seen in Figure 9, row-style MVs design does not
produce good candidates in our setting. As we had argued
in Section 4 and demonstrated in Experiment 1, considering
the actual bitmap access pattern (which depends both on the
particular sort order prefix and the target size) is important
for designing a good sort order. Note that the designs do not
diverge immediately and are closer at smaller budgets. That
is because smaller MVs have fewer columns, thus there are
fewer opportunities to make a mistake ordering the columns
by selectivity.
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Figure 10: SSB Workload with High Insert Rate

Experiment 5: Insert Heavy Workloads
The design curve in Figure 10 shows the effect of high in-
sert rate on the workload runtime. We assume a workload
that, in addition to the read original queries, includes 12
batches of 10K row inserts. With a sufficiently high insert
rate, the insert component of the workload cost becomes
non-negligible (see Section 3). The first two curves are the
designs from Figure 8 that now include the insert penalty
caused by the pre-join penalty associated with every inserted
batch. The 3rd curve in Figure 10 corresponds to the design
built using a subset of MVs using the MV candidate parti-
tioning technique as described in Section 5.5. Although such
designs may be inferior when there are no inserts, avoid-
ing MV candidates that incorporate expensive pre-joins be-
comes an advantage in the presence of high insert rates.

7. RELATED WORK
There has been a lot of research on automatic database

design over the last decade. In fact, most commercial prod-
ucts have a tool or wizard that embodies some of that work.

The bulk of the previous work has been done in the con-
text of row-stores. As observed earlier, the bulk of the
problem lies in generating good design candidates. There
are some fundamental differences in the way we explore the
design space when we consider the problem in the context
of a column-store, and we have discussed these differences
throughout this paper.

Building a set of MVs in a column store is similar to pick-
ing materialized views and indexes in a row store. Selecting
a pre-join and a column set for a projection corresponds
to picking a materialized view, and generating sort orders
loosely corresponds to composite index selection. However,

in our work, we are essentially picking primary indices while
in previous work, attention has mostly been focused on sec-
ondary index selection. As we explain in Section 2.4, the
design of primary and covering secondary indexes is similar.

AutoAdmin [12] represents pioneering work in automatic
design. Their basic approach begins by generating the best
possible single-column indices. They then widen the space
by considering two-column indices that contain an already
generated one-column index. While in theory this process
could consider deeper keys, very wide composite secondary
indices do not work well in a row-store. In contrast, we
indirectly start with ideal MVs for each query as the base
clustering round, however, we never limit our sort orders
to a small number of columns (quite the contrary), and we
do not require that longer sort orders contain “good” prefix
orders.

AutoAdmin also does a post pass to merge MVs that were
created in the first phase. They do this as a way to account
for constrained space. For us, adding columns to the sort
order can actually make MVs smaller because of the effect
of RLE compression. Thus, we cannot separate the two
activities. It is tempting to say that view merging is like our
query clustering, but query clustering is done in advance of
sort order selection, and it is done using different metrics.

Workload compression has been studied in [26, 6, 10]
and allows clustering queries based on common features.
It merges queries that are similar to reduce the size of a
large workload. For example, a simple scheme would merge
queries that are identical except for constants. The AutoAd-
min [10] algorithm uses pre-processing to eliminate columns
that should have little impact. This is reminiscent of our
query clustering.

The work in [19] has used an approach similar to ours to
produce a design for a row-store. However, in the context
of a row store, the problem of designing dedicated MVs is
a trivial one. Kimura, et al. use a similar query grouping
mechanism, but rely on sort order merging to produce the
shared MVs. In our work, we also consider partial pre-joins
in order to improve our MV candidate pool and to handle
insert workloads (the latter does not require a special treat-
ment in a row store).

The DB2 Design Advisor [26] identifies dependencies be-
tween different features (such as Materialized Query Table
or Index) and searches the space accordingly, ensuring that
dependent features are searched in tandem. Virtual features
are enabled and plans are generated given the real and the
virtual features. If the plan makes use of one of the virtual
features, that feature is suggested as a possible addition to
the physical design. Different features are each given a dif-
ferent fraction of the space. The DB2 Design Advisor also
relies on query compression to reduce the need to re-compute
estimated query cost with every step.

The work in [18] presented a mechanism for dynamically
reorganizing data in the column store context. The column
data is partially sorted based on what is accessed by query
workload. That approach has the advantage of continuously
adapting to workloads, while the standard design requires
an expensive transition period to implement. However, it
also prevents the DBMS from taking advantage of the com-
pression opportunities.

MV selection has been studied at length [14, 16]. This
work tends to explore MV’s with pre-computed aggregates.
It is the savings in aggregate computation that the MV is
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designed for. For us, MV’s are not lossy which is to say that
our MV’s do not reduce rows, and can, therefore, be used
for general queries. In [5, 16] a simple linear cost model is
used. This cost model estimates the number of rows a query
would have to process. Instead, we use an I/O based cost
model that estimates the number of disk blocks accessed and
seeks performed.

AutoPart [22] is concerned with choosing a good vertical
partitioning of large database tables to speed up queries.
In a column store the vertical partitioning is not an issue
since each column is partitioned separately. An MV looks a
little like a vertical partition, but it is important to remem-
ber that even though we write a list of columns together
to describe an MV, each column remains as a separate file.
The AutoPart algorithm also uses categorical attributes to
generate a horizontal partitioning. It then combines the hor-
izontal and vertical partitions to form composite fragments
that can be thought of as rectangular chunks of the table.

Recent work in [20] describes the architectural decisions
made by Vertica, including the differences with the original
C-Store paper [24]. Vertica includes a physical design tool,
but description of the internals of that tool was outside the
paper’s scope. When selecting the best encoding for non-
RLE columns, we rely on computing empirical compression
estimates, similar to the approach adopted in [20].

8. CONCLUSION AND FUTURE WORK
We have presented the design of a tool for automatically

producing physical database designs for a CCS. Our algo-
rithm selects effective materialized views with compound
sort orders. We have also showed the effect of compression
and the use of functional dependencies on these designs. We
demonstrated that even though our algorithms were inspired
by CCS’s, some of the techniques can be applied to row-store
designers as well. We also presented an experimental anal-
ysis of our algorithms and observations.

We are currently considering a number of extensions. Al-
though beyond the scope of this paper, we have done some
preliminary work for distributed database design. C-Store
relies on MV replication to achieve fault tolerance. The safe
but naive approach is to replicate the design as necessary.
However, the replicated MVs can have different sort orders
since the hash-partition key is typically orthogonal to the
sort order. Therefore, the idea of query grouping can also
be used to generate multiple sort orders.

We are also interested in building a tool that produces in-
cremental designs. The idea here is to produce a new design
that is “close” to the existing design. Since a warehouse can
contain hundreds of terabytes of data, it is infeasible to load
a new design every time query workload changes. Instead,
it would be better to create a new design that is easier to
achieve from the old one, and that can deliver, say, 80% of
the benefit of the best one.
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