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ABSTRACT

We introduce operations to safely update an anatomized
database. The result is a database where the view of the
server satisfies standards such as k-anonymity or l-diversity,
but the client is able to query and modify the original data.
By exposing data where possible, the server can perform
value-added services such as data analysis not possible with
fully encrypted data, while still being unable to violate pri-
vacy constraints. Update is a key challenge with this model;
näıve application of insertion and deletion operations reveals
the actual data to the server. This paper shows how data
can be safely inserted, deleted, and updated. The key ideas
are that data is inserted or updated into an encrypted tem-
porary table until enough data is available to safely decrypt,
and that sensitive information of deleted tuples is left behind
to ensure privacy of both deleted and undeleted individu-
als. This approach is proven effective in maintaining the
privacy constraint against an adversarial server. The pa-
per also gives empirical results on how much data remains
encrypted, and the resulting quality of the server’s (anato-
mized) view of the data, for various update and delete rates.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational da-

tabases; H.2.7 [Database Management]: Database Ad-
ministration—Security, integrity, and protection

1. INTRODUCTION
Data outsourcing is a growing business. Cloud computing

developments such as Amazon Relational Database Service
promise further reduced cost. However, use of such a service
can be constrained by privacy laws, requiring specialized
service agreements and data protection that could reduce
economies of scale and dramatically increase costs.

Most privacy laws apply to data “relating to an identified
or identifiable natural person”[10], data that cannot be di-
rectly or indirectly linked to an individual is not restricted.
Some laws are even more specific; the U.S. Healthcare laws
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apply only to identifiable health information[14]. A private
data outsourcing approach proposed in [20] encrypts the link
between identifying information and sensitive (protected) in-
formation, only the client has the key to decrypt this link.
As the server no longer has access to individually identifiable

protected information, it is not subject to privacy laws, and
can offer a service that does not need to be customized to
the needs of each country- or sector-specific requirements;
any risk of violating privacy through releasing sensitive in-
formation tied to an individual remains with the client.

The key idea behind [20] is that the server stores data
using the model of anatomy[30] (or fragmentation[8] – we
will use the term anatomy, as it does not have other mean-
ings in the database literature.) A tuple containing private
information is split between two tables, one containing iden-
tifying information, and the other containing sensitive infor-
mation. The server can join these tables at the group level
(as with anatomy); in addition, an actual sequence num-
ber is stored with each tuple, but encrypted in one table
so that only the client (who has the key) can join actual
values. An example is given in Figure 1. This supports
a variety of privacy models, including k-anonymity[24, 26],
l-diversity/discernibility[19, 22], and t-closeness[18]. This
paper will use the privacy principle underlying l-diversity:
the server should be able to determine the sensitive value
for an individual with probability at most 1/l.

The work in [20] provides safe and efficient means to sup-
port read queries (select/project/join/group by), but does
not discuss how to handle insert/update/delete. One way to
tackle this problem is to update the data in batches; while
there has been work in this area [7, 31, 5, 27, 23, 11, 29, 13],
it is based on a model where the data owner stores all of the
original data, and releases updated anonymized datasets pe-
riodically. While these are valuable approaches, they do not
support the database outsourcing model of [20]:

1. Previous incremental anonymization work assumes the
anonymizer has access to the entire original dataset. In
database outsourcing, requiring the client to keep the
entire dataset defeats the purpose of outsourcing.

2. Batch update may not be feasible. Data may need to
be available to other clients, and must be stored at the
server to ensure persistence.

We address issue 2 by keeping an encrypted table of in-
serted/updated data at the server until there is sufficient
data to form a group satisfying the privacy constraint. Dele-
tion removes only the identifying information for the tuple;
the sensitive value is left behind to avoid disclosing the sen-
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sitive data for the deleted individual and to ensure the 1/l
constraint is met for the remaining individuals. There are
further issues that complicate this basic approach. For ex-
ample, even though the data is encrypted, the server learns
when the (encrypted) data is inserted. In addition, the
server knows the old value for updated tuples, making it
more difficult to protect the new value. We give an example
that further demonstrates these issues in Section 1.3, after
we have given some additional background.

Our dynamic private data outsourcing model addresses all
these issues, with insert, update, and delete operations that

• provably preserve the privacy of an individual under
l-diversity,

• provide iterative anatomization,

• require data storage only at the server, and

• reduce client processing for anatomization.

We now expand on the threat model, and elaborate on
related work. We provide definitions and notations for an
anatomized database in Section 2. In Section 3, we show
how insert, delete and update operations can be performed
with low client-side cost, and prove that the privacy con-
straint is satisfied. Section 4 shows how to modify the query
processing of [20] to work in this model. We give empirical
results showing how rapidly data is decrypted (and other
impacts on the quality of the server’s anatomized view of
the data) in Section 5. Section 6 concludes our paper with
possible extensions for this private data outsourcing model.

1.1 Assumptions and Threat Model
Throughout the paper, we assume“server” is the data out-

sourcing service provider and “client” is the data owner.1

The client modifies and queries the data stored in the server,
and occasionally does housekeeping on the data. The out-
sourced data has finite domain where attributes are either
strings or integers. The client(s) in our model are lightweight
entities that have limited processing power and do not do
any data storage except for the key (e.g., mobile devices).
We assume that clients do not collude with the server, as
any client with access to the database is assumed to have a
key enabling full reconstruction of the data.

We assume the server has a directory enabling it to link
unencrypted identifying information in the database to the
actual individual. For updated data, we assume the server
can track a record even if it is encrypted (and knows the in-
dividual it applies to), so encryption alone would not protect
the old sensitive value.

We do not protect data integrity against a malicious ad-
versary. Our only concern is that through analysis of the
data, and of interactions with the client(s), the server could
infer information that would violate privacy policy. As such,
we provide privacy against a malicious adversary. We as-
sume that an adversary cannot generate fake tuples; this
could be detected through a (keyed) checksum of each tu-
ple and the uniqueness of the sequence number and group
ID (included in the checksum). Thus the only undetectable
malicious behavior on the part of the adversary is to fail to

1When there are multiple clients for a given database, all
share the decryption key. Access control is managed by the
server; this does raise some challenges that are left for future
work.

return tuples. As this would be equivalent to a sequence of
deletes/inserts causing the returned values to be the correct
answer, and the method protects privacy given an arbitrary
sequence of inserts/deletes/updates, the proofs given also
hold against such an adversary. For clarity of presentation,
we do not include the above details in the operations and al-
gorithms, and only give proofs for a semi-honest adversary.
In practice, the above approaches extend this to protection
against a rational adversary (as the server would be out of
business if it were discovered failing to correctly store data
and return query results); existing research on methods en-
suring integrity of outsourced data could also be applied.

1.2 Related Work
Private data outsourcing, also known as the database-as-

a-service (DAS) model, was introduced by Hacigumus et al.
[12]. They used bucketization over an encrypted database
to enable the server to partially execute queries. In [15] this
is extended to range queries. Damiani et al. [9] proposed
another technique that uses hashing for bucketization and
encrypted B+ trees for indexing, and introduce an aggregate
metric for data disclosure. However, an aggregate metric
fails to ensure the privacy of each individual.

Another approach is using searchable encryption for range
queries [25, 4, 2]. This only supports search; queries such
as group-by require processing all data at the client (includ-
ing expensive decryption). Kantarcioglu et al.[16] show that
an efficient private data outsourcing scheme based on en-
cryption cannot be proven to meet cryptography-style defi-
nitions. Instead, they outline an efficient private data out-
sourcing scheme using encryption with provable security that
uses tamper-resistance hardware at the server.

Aggarwal et al. [1] proposed vertical fragmentation in-
stead of encryption, specifically to hide functional depen-
dencies from an adversary. They require two non-colluding
servers. Since finding non-colluding servers may be imprac-
tical, Ciriani et al. [8] proposed to vertically fragment a ta-
ble and encrypt a portion of the data. This enables queries
involving only the unencrypted data to be executed at the
server. In this method the size of the database ism times the
original size where m is the number of fragments, and results
in complicated queries when both encrypted and plaintext
attributes are used. As with the model we use, the client
needs to decrypt the outcome and further process to get the
final result. They also suggest fragmenting the tables and
storing a small partition with sensitive values at the client.
They prove that finding the optimal partitioning is NP-hard.

Continuous data publishing has been widely studied over
the years. This is an orthogonal problem to data outsourc-
ing, but relevant to this work as in a sense we view data as
being“published”at the server. For a variety of reasons, con-
tinuous data publishing does not address the data outsourc-
ing problem. Some work addresses a very different problem,
for example, Wang et al. [27] supports releasing data for
different subsets of a global set of quasi-identifiers based on
k-anonymity, rather than changes to the data. Another ap-
proach is discussed in [11] where the release is protected
against inference channels due to the existence of identical
records across different releases; the primary issue here is
not the change to the data, but the change in how data is
grouped for anonymization.

Both [23] and [7] propose continues data publishing tech-
niques supporting (only) insertion. [31] supports insert and
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Patient Age City GID SEQ

Ike 41 Dayton 1 1
Eric 22 Richmond 1 2
Olga 30 Lafayette 2 3
Kelly 35 Lafayette 2 4
Faye 24 Richmond 3 5
Mike 47 Richmond 3 6
Jason 45 Lafayette 4 7
Max 31 Dayton 4 8

(a) PatientIT

HSEQ GID Disease

Hkh (1) 1 Cold
Hkh (2) 1 Fever
Hkh (3) 2 Flu
Hkh (4) 2 Cough
Hkh (5) 3 Flu
Hkh (6) 3 Fever
Hkh (7) 4 Cough
Hkh (8) 4 Cold

(b) PatientST

Figure 1: 2-diverse Patient Table

Patient Age City GID SEQ

Ike 41 Dayton 1 1

Olga 30 Lafayette 2 3
Kelly 36 Lafayette 2 4
Faye 24 Lafayette 3 5
Mike 47 Richmond 3 6
Jason 45 Lafayette 4 7
Max 31 Dayton 4 8

Michael 25 Richmond 4 9

(a) PatientIT

HSEQ GID Disease

Hkh (1) 1 Cold

Hkh (3) 2 Flu
Hkh (4) 2 Fever

Hkh (5) 3 Flu
Hkh (6) 3 Fever
Hkh (7) 4 Cough
Hkh (8) 4 Cold
Hkh (9) 4 Flu

(b) PatientST

Figure 2: Patient Table after Updates

delete by proposing a new generalization principle; m-invar-
iance. Bu et al.[5] proposes an anonymization approach for
serial publishing that considers both changing and perma-
nent sensitive values hence supports also updates. [13] pro-
poses a different type of attack called “value equivalence
attack” where knowledge of an individual’s sensitive value
can reveal sensitive values of other individuals who replace
that individual in a specific group in future increments and
the authors give a graph-based anonymization algorithm
against this type of attack. While the above works provide
some solutions for insert, update, and delete; all assume the
complete dataset is available. This is not appropriate for
data outsourcing; we provide a solution where incremental
anonymization requires the client to access only a subset of
the data. While we specifically address the model of [20],
this work could also be used to develop update methods for
the above approaches.

1.3 Example
We now demonstrate some of the challenges with update.

Figure 1 shows an outsourceable dataset based on the model
in [20]. The table after a delete, an insert, and some updates

is shown in Figure 2.
Knowing the old and new tables, the server can infer that

Michael has Flu. Deletion reveals not only the sensitive
value of the deleted tuple, but also increases the knowledge
about the remaining tuples in the group (potentially vio-
lating l-diversity.) For instance, Eric was deleted, revealing
that Eric had a Fever and now Ike has a Cold. When both
PatientIT and PatientST are simultaneously updated for the
same tuple, as with age and disease information for Kelly,
it reveals that Kelly had disease Cough but now has disease
Fever. (This also occurs with an update to PatientST based
on a selection on PatientIT.) Furthermore, patient Olga’s

disease is known with probability ≤
1

l − 1
. This problem

does not occur when the update operation takes place in
a single subtable (e.g., the update to Faye’s city does not
disclose Faye or Mike’s disease.)

To address these, we delay inserts until they can be safely
anonymized, see Figure 3. The idea is to cache recent changes
in an encrypted temporary table at the server (PatientI) and

Patient Age City GID ESEQ

Ike 41 Dayton 1 Ek (salt, 1)

Olga 30 Lafayette 2 Ek (salt, 3)

Faye 24 Lafayette 3 Ek (salt, 5)
Mike 47 Richmond 3 Ek (salt, 6)
Jason 45 Lafayette 4 Ek (salt, 7)
Max 31 Dayton 4 Ek (salt, 8)

(a) PatientIT

SEQ GID Disease

1 1 Cold
2 1 Fever
3 2 Flu
4 2 Cough
5 3 Flu
6 3 Fever
7 4 Cough
8 4 Cold

(b) PatientST
SEQ ENC SS

1 Ek (salt,Michael, 25,Richmond,Flu) 1

(c) PatientI
SEQ Patient Age City ENC S−

1 Kelly 36 Lafayette Ek (salt,Fever) {F lu, Cough}

(d) PatientU

Figure 3: Our Model

send it to the client for anatomization when it has enough
tuples, the result can then be merged into the published
data. (This table must also be sent to the client for decryp-
tion/processing on any query.) Since the server could track
updated tuples anyway, we disclose identifying information
for updates (PatientU), allowing some query processing to
be done at the server. Finally, we delete only the identifying
information, PatientST retains “dead” data to protect Ike ’s
privacy (again, somewhat complicating query processing).

There are still some subtle inference channels remaining.
For example, assume the tuples in Figure 3c and 3d are anat-
omized. Such anatomization creates only one group with
sensitive values, Flu and Fever, and each tuple has a 1/2
probability of having one of these sensitive values. However,
the fact that Kelly previously had Flu suggests it would not
be in the new group, violating 2-diversity. Specifically, let A
and A′ be the current and previous disease of Kelly. Then,

P{A = F lu} =P{A = F lu|A′ = F lu}P{A′ = F lu}

+P{A = F lu|A′ = Cough}P{A′ = Cough}

=0× 1/2 + 1/2× 1/2 = 1/4

P{A = Fever} =P{A = Fever|A′ = F lu}P{A′ = F lu}

+P{A = Fever|A′ = Cough}P{A′ = Cough}

=1× 1/2 + 1/2× 1/2 = 3/4

Since P{A = Fever} > 1/2, the new created group is not
2-diverse. To address this problem, we give a new anat-
omization algorithm that also considers sensitive values in
the previous groups of the updated tuples.

2. ANATOMIZED DATA OUTSOURCING
We now present relevant definitions and notations based

on the anatomized/encrypted data query processing work of
[20], with extensions to support data manipulation.

2.1 Definitions and Notations

Definition 2.1 (Person specific table). A table T

is said to be a person specific table for population P if each

tuple t ∈ T corresponds to a unique individual p ∈ P .

Throughout the paper, person specific table T has d iden-
tifier attributes, A1, . . . , Ad, and a sensitive attribute As.
We will use dot notation to refer to an attribute of a tu-
ple (e.g., for a tuple t ∈ T , t.Ai denotes t’s value for the
corresponding attribute where 1 ≤ i ≤ d or i = s).
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Definition 2.2 (Group/Equivalence class). A

group (also known as equivalence class) Gj is a subset of

tuples in table T such that T =
⋃m

j=1
Gj, and for any pair

(Gj1 , Gj2 ), where 1 ≤ j1 6= j2 ≤ m, Gj1 ∩Gj2 = ∅.

Definition 2.3 (l-diversity). A set of groups is said

to be l-diverse, iff ∀ groups Gj,

∀v ∈ πAsGj , freq(v,Gj)/|Gj | ≤ 1/l

where As is the sensitive attribute in T , freq(v,Gj) is the

frequency of v in Gj, and |Gj | is the number of tuples in Gj.

We only refer to a single sensitive attribute (or set of at-
tributes that can be treated as a single combined value);
having multiple sensitive attributes in a single table raises
issues such as correlated attributes beyond the scope of this
paper.

Anatomy is slightly redefined from [30, 20] to include the
encrypted link between tuples:

Definition 2.4 (Anatomy). Given a person specific ta-

ble T partitioned into m equivalence classes using l-diversity

without generalization, anatomy produces an identifier table

(IT) and a sensitive table (ST) as follows. IT has schema

(A1, . . . , Ad, GID,ESEQ)

where Ai ∈ IT for 1 ≤ i ≤ d = |IT |, IT is the set of identi-

fying attributes in T , GID is the group id of the equivalence

class and ESEQ is the encryption of a unique sequence num-

ber, SEQ. For each Gj ∈ T and each tuple t ∈ Gj (with

sequence number s), IT has a tuple of the form:

(t.A1, . . . , t.Ad, j,Ek (salt, s))

The ST has schema

(SEQ,GID,As)

where As is the sensitive attribute in T , GID is the group

id of the equivalence class and SEQ is a unique sequence

number for that tuple in ST , used as an input for the ESEQ

of the corresponding tuple in IT . For each Gj ∈ T and each

tuple t ∈ Gj , ST has a tuple of the form:

(s, j, t.As)

We will use IT d to refer to the IT when IT.ESEQ has
been decrypted at the client. Given IT d, (IT d)e is IT with
different ciphertext in ESEQ due to the random salts.

The difference between this definition and the one in [20]
is the technique used to hide the actual link between IT

and ST . Instead of using a hash function, a semantically
secure symmetric key encryption is used to enable non-1:1
mappings in the groups. The server needs to store whether a
group has 1:1 mapping or not since this information is used
in anatomization and query processing later on.

We now define the two new schema elements needed to
support data manipulation. These two tables hold inserted
and modified data until sufficient data is available to safely
disclose a group.

Definition 2.5 (Temporary Insert Table I). Given

a table T having the schema A1, . . . , Ad, As as in Definition

2.4, table I holds tuples that have been recently inserted. I

has three attributes, 〈S2, ENC2, SS〉, where S2 is a sequence

number serving as tuple id, ENC2 is the encryption of all

the fields of a tuple having T ’s schema, and SS is the snap-

shot index indicating when t is inserted into I.

For each tuple t /∈ IT d
✶ ST pointing to a unique indi-

vidual p ∈ P , I has initially a tuple of the form,

(s,Ek (salt, t.A1, . . . , t.Ad, t.As) , i)

(We assume only a single tuple referring to each individual,
i.e., the identifying information is a key.)

Note that update cannot be modeled simply as delete fol-
lowed by insert, as it would be apparent to the server that
the newly inserted tuple was probably a modification of the
deleted tuple. Given that the server can likely track up-
dates anyway, we expose the identifying information of the
updated tuple to the server, and keep further information to
ensure privacy constraints are met in spite of this exposed
information (this will be explained fully in Sections 3.3 and
3.4.) Now we give a similar definition to the one in [31]
for a group’s set of sensitive values which is used to ensure
privacy constraints for updated tuples.

Definition 2.6 (Signature of a group/tuple). Let

G be a group in IT and ST , the signature of G denoted by

G.S is the set of distinct sensitive values in G. Similarly,

let a tuple t be in a group G; the signature of t, t.S, equals
to G.S until t is updated such that t.As /∈ G.S.

In light of the findings in [31], SIke is {Cold, Fever} and it
must not change throughout the lifetime of the tuple repre-
senting Ike. We also introduce a negative signature, t.S−, to
support updating of a tuple’s sensitive value. t.S− indicates
that a tuple t has been updated such that t.As /∈ t.S any-
more and t must be in a group G satisfying G.S ∩ t.S− = ∅.

Definition 2.7 (Temporary Update Table, U).
Given a table T having the schema A1, . . . , Ad, As as in Def-

inition 2.4, table U holds tuples that have been updated. U

has d+3 attributes
〈

S1, A1, . . . , Ad, ENC1,S
−
〉

, where S1 is

a sequence number serving as tuple id, A1, . . . , Ad are as in

Definition 2.4, ENC1 is the encryption of As (i.e., sensitive

value), and S− as defined above restricts the possible S that

t’s future group can have.

When we insert a tuple u into U , where u is an update to

tuple t, t is removed from IT (but not ST ), and a new entry

u is made into U when u.As /∈ t.S (if u.As ∈ t.S, u can

remain in t.G once u.ESEQ is updated to reflect the new

sensitive value). The entry into U has the form:

(s, u.A1, . . . , u.Ad,Ek (salt, u.As) , G.S)

where s is a system generated unique id for tuple u and G.S
is the signature of the group t was in.

As with IT d, we use Id and Ud to refer to I and U re-
spectively with the attribute values decrypted at the client.
(Id)e and (Ud)e denotes I and U respectively with a dif-
ferent ciphertext in encrypted attributes. After an update
operation on a tuple t, we use to to refer to the old value of
t before the update.

It would appear that we could leave identifying informa-
tion decrypted in I as well as U . It turns out this poses
additional constraints; proof is omitted due to space con-
straints. Since the server is assumed to be able to track
tuples (and thus can infer which tuples are updated even if
encrypted), exposing identifying information in U does not
reveal additional information to the server and thus must be
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made safe; this also imposes restrictions on groups tuples in
U can go into. This will be shown in Section 3.4.

A note on encryption. Ek (·) is a symmetric key encryp-
tion (e.g., AES) under key k, salt is a pseudorandom num-
ber, and comma denotes concatenation. Note that these two
schemas are for an encryption of one block (e.g., 16 bytes
for AES), for larger tuple sizes, cipher-block chaining (CBC)
can be used. In that case the schema must also contain the
IV used in CBC. There is no need to encrypt values larger
than one block as long as the total number of distinct val-
ues for every attributes is bounded by one block size (e.g.,
28∗16). A simple numbering for every value eliminates the
need to encrypt more than one block.

While the above is sufficient to show how data manipula-
tions are performed, for use in proofs that the server cannot
violate privacy based on remembered history we introduce
notation for historical values:

Definition 2.8 (Table Snapshot). The i-th snapshot

of table T , denoted by T (i), represents the table after exactly

i incremental anatomizations. Similarly, IT , ST , U , and I

are denoted by IT (i), ST (i), U(i), and I(i) respectively dur-

ing the i-th incremental anatomization. Moreover, a tuple

t(i) in T (i) denotes an individual’s tuple during the i-th in-

cremental anatomization and each snapshot of t represents

the same individual.

As is common in the literature, we use T ∗ to refer to the
anatomized version of T . In our model, T ∗ is a set of tables,
{IT, ST, I, U}, rather than a single table. Similarly, (T ∗)d

refers to (IT d
✶ ST ) ∪ Id ∪ Ud which yields the table T .

2.2 Privacy Proof Technique
A final “definition”deals with the method we use to prove

that the privacy constraint is maintained. As stated before,
we are using the model of l-diversity as a privacy constraint.
We assume that the initial dataset (IT and ST ) meets this
constraint. We then use a simulation argument, similar to
that used in the secure multiparty computation literature,
to show that given a database meeting the constraint, the
data manipulation operations maintain the constraint. If
the information exposure (including history) from a dataset
after a set of operations is no greater than that from an l-
diverse anatomization on the whole dataset, then privacy of
individuals has been maintained. The information exposure
from the dataset that has been anatomized as a whole is
defined as follows:

Definition 2.9 (simple l-diverse distribution). An

l-diverse group G is said to have a simple l-diverse distribu-

tion if

∀p ∈ G and ∀v ∈ πAsG,P(p.As = v) = freq(v,Gj)/|Gj |

where p denotes an individual and As, freq(·) is as in Def-

inition 2.3.

A simple l-diverse distribution requires that no prior knowl-
edge affecting this distribution exists about the individu-
als in G. Therefore it is crucial to prevent any inference
channels that may exist between different snapshots of the
dataset since they may cause the distribution of sensitive
values in a group to not be simple l-diverse. This paper ex-
tends the technique of [31] to avoid such inference channels.
This technique, based on induction, assumes an initial state

where l-diversity is satisfied and provides the means to check
l-diversity of the current state by comparing it only with the
previous state. There is no need to store probability distri-
bution for the previous state, since every state has a simple
l-diverse distribution.

Now we give the privacy definition for our model ( similar
to security definitions in cryptography literature):

Definition 2.10 (Privacy). The proposed private data

outsourcing technique is secure if for every probabilistic pol-

ynomial-time algorithm A there exists a probabilistic pol-

ynomial-time algorithm A’ such that for every individual

p ∈ T (i − 1) ∪ T (i), every group G ∈ T ∗(i − 1) ∪ T ∗(i)
where p ∈ G, every pair of polynomially bounded functions

f, h : {0, 1}∗ → {0, 1}∗, every snapshot T ∗(i− 1) and T ∗(i),
every transaction history TH(i) between T ∗(i−1) and T ∗(i)

P{A(DAs , T
∗(i− 1), T ∗(i), TH(i), h(G)) = f(DAs , p.As)}

= P{A′(DAs ,⊥, T
∗(i),⊥, h(G)) = f(DAs , p.As)}

where DAs is the domain of the sensitive attribute in T , ⊥
in the equation indicates that T ∗(i) is the next snapshot after

T (0) = ∅, and all the transaction history is the insertion of

the tuples in T (i).

Instead of using computational indistinguishability as in
the cryptography literature, we require our model to pro-
duce an exact probability distribution consistent with the
ideal model (where anatomization is only done once). This
shows that our model provides the same guarantees with
the underlying data publishing technique (i.e., l-diversity for
this paper). Moreover, Definition 2.10 accepts partial infor-
mation about any individual p′ 6= p where p′ ∈ G denoted
by function h; this lets us show that our model preserves
the same privacy as l-diversity even when the server knows
partial information about an individual’s sensitive value.2

We assume that the anatomization algorithm is known by
the server, assuming a secret algorithm is too strong to be
practical based on Kerckhoffs’s principle [17]. This provides
resilience against attacks such as the minimality attack[28].

Theorem 2.1. If 〈IT (1), ST (1)〉 has a simple l-diverse

distribution in all groups and our model provides privacy as

in Definition 2.10 then all possible snapshots 〈IT (i), ST (i)〉
have simple l-diverse distribution where (1 ≤ i ≤ ∞).

Proof By Induction. Base: T ∗(1) already has simple
l-diverse distribution according to the theorem.

Induction: T ∗(i) without any knowledge of previous snap-
shot has simple l-diverse distribution since anatomization
is done based on l-diversity. According to Definition 2.10,
there is no difference to an adversary between knowing the
previous snapshot or not knowing it. Hence T ∗(i) has sim-
ple l-diverse distribution given that T ∗(i − 1) has simple
l-diverse distribution.

3. DATA MANIPULATION
We now formally define SQL insert, update, and delete for

our model, and prove that these operations do not violate
the re-identification privacy principle of l-diversity. Note
that this only includes insertion into the temporary I and U

tables; the decryption of data in those tables and insertion
into IT and ST will be discussed in Sections 3.4.
2Function h also models the equivalence-attack [13], an at-
tack based on partial knowledge about different individuals
in the same group across different snapshots.
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3.1 Insert
In our model, a new tuple is inserted into table I from

Definition 2.5, with values encrypted at the tuple level:

Definition 3.1 (Insert). Given an insert statement

INSERT INTO T VALUES (t.A1, ..., t.Ad, t.As)

whose values are compatible with the schema of T as in Def-

inition 2.4, the client translates the statement into

INSERT INTO I VALUES (s,Ek (salt, t.A1, . . . , t.Ad, t.As) , i)

where s is the next sequence number for I, salt is a pseudo-

random number to randomize the encryption Ek (·), and i is

the current snapshot of the dataset.

The current snapshot is stored each time a tuple is in-
serted, to keep track of tuples in I that might be left over
after an anatomization (which will be discussed further in
Section 3.4).

For example, the tuple identifying Michael is inserted into
table I in Figure 3c as a tuple of the form,

〈1,Ek (salt,Michael, 25,Richmond,Flu), 1〉

Given semantic security of the encryption, the only thing
learned by the server is the sequence number; in practice
this is maintained at and added to the insert by the server.

3.2 Delete
Deleting a new tuple that is stored in I or U is straight-

forward; the tuple is simply removed as with a traditional
delete operation. Since these tables reveal no information
about the sensitive value (due to the encryption), there is
no change in the ability of the server to link an individual
to a particular sensitive value and the privacy is unaffected.
However, if the tuple is in IT and ST , then only the part of
the tuple that is in IT is deleted. If the portion in ST were
deleted, the simultaneous removal would reveal the sensi-
tive value associated with the individual. Furthermore, any
other tuple in the same group will match to the remaining
sensitive values in the group with higher probability than
previously. By deleting only the portion of the tuple in IT ,
the sensitive information associated with any tuple is un-
changed. As an example to the deletion of a single tuple is
shown in Figure 3a where Eric’s tuple is deleted whereas his
disease, Fever, is not deleted.

Delete is limited to predicates on identifying information.
Deleting a tuple based on the sensitive value would reveal
the sensitive value associated with that individual. (The
mirror-image approach of deleting just the sensitive value
and leaving identifying information introduces numerous is-
sues, most obviously the reduction in diversity of values in
the group.) Therefore we restrict deletion as follows:

Definition 3.2 (IT Predicate). A predicate, P , is

said to be an ITPredicate (PIT ) if all the attributes in P

are from table IT .

The delete operation is as follows:

Definition 3.3 (Delete). Given a delete statement

DELETE FROM T WHERE PIT

where PIT is defined as in Definition 3.2, the client trans-

lates it to three substatements

DELETE FROM IT WHERE PIT (3.3.1)

Patient Age City GID ESEQ

Mike 47 Richmond 3 Ek (salt, 6)

(a) PatientIT

SEQ GID Disease

5 3 Flu
6 3 Fever

(b) PatientST
SEQ ENC SS

1 Ek (salt,Michael, 25,Richmond,Flu) 1

(c) PatientI

Figure 4: After Delete Operation

DELETE FROM U WHERE PIT (3.3.2)

SELECT ∗ FROM I

and sends them to the server. After executing delete state-

ment 3.3.1 and 3.3.2, the server marks all the groups in IT

where some tuples are deleted as having non-1:1 mapping (if

all tuples in a group are deleted, the server also deletes all

corresponding tuples of that group in ST ) and sends table I

to the client. After getting the results for the final selection,

the client decrypts I to get a set of sequence numbers, R:

R = SELECT SEQ FROM I
d
WHERE PIT

and issues a second delete statement to the server

DELETE FROM I WHERE SEQ = R1 OR . . . OR SEQ = Rm (3.3.3)

where m = |R|.

For example, assume that the client decides to no longer
provide service in Lafayette and Dayton. To delete these
patients, the client issues the delete statement to the server:

DELETE FROM T WHERE City = Lafayette OR City = Dayton

Based on Definition 3.3, outcome is shown in Figure 4.
If we are deleting only a single individual (and the client

knows this in advance), this can be optimized – if the delete
from IT or U succeeds, the second step involving I can be
ignored (since each individual appears only once.)

By deleting identifying information of individuals with-
out any correlation to their sensitive information, the server
gains no additional knowledge about the sensitive value as-
sociated with any individual. As will be discussed in Section
3.4, extra care must be taken during the anatomization of
groups where individuals have been deleted.

Lemma 3.1. Assuming an individual, p, who will be

deleted in group G can match any tuple in GST , deleting

the tuple representing p in GIT does not change the prob-

ability distribution of matching other individuals in GIT to

sensitive values in GST .

Proof. Let D be the probability distribution of matching
t ∈ GIT to the tuples in GST . When a tuple t′ ∈ GIT where
t 6= t′ is deleted, ∀s ∈ GST

P{t =⇒ s} = P{t =⇒ s|t′ 6=⇒ s}P{t′ 6=⇒ s}

+ P{t =⇒ s|t′ =⇒ s}P{t′ =⇒ s}

=
1

l − 1
·
l − 1

l
+ 0 ·

1

l
=

1

l

where l is the number of distinct sensitive values in GST .
Since the probabilities of matchings between tuples in GIT

and GST remains the same for any t ∈ GIT and s ∈ GST ,
the distribution D remains the same for every t ∈ GIT .
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Delete lets us show an interesting issue with background
knowledge. If the server knows t′ =⇒ s′, P{t =⇒ s} =
1/(l− 1) if s 6= s′ and P{t =⇒ s} = 0 otherwise. However,
this is true even if t′ is not deleted. Deletion does not change
the underlying probability distribution of G with respect to
the server’s background knowledge. This is critical, as it
is easy to develop mechanisms where insert/update/delete
meet privacy requirements in the absence of background
knowledge, but allow much stronger inference based on back-
ground knowledge than the static dataset would.

Theorem 3.1. Assuming there is no correlation between

PIT and sensitive values of the individuals satisfying PIT ,

the delete protocol defined in Definition 3.3 does not change

the probability distribution of the remaining tuples in IT ,

ST , I and U .

Proof. Statement 3.3.1 does not violate privacy by Lem-
ma 3.1. Statement 3.3.2 does not violate privacy since re-
vealing identifying information in U does not violate privacy.
Statement 3.3.3 is does not violate privacy since the fact
that all the remaining tuples in table I satisfy PIT when
decrypted does not change the probability distribution of
these tuples in the subsequent snapshots (proven in Section
3.4).

3.3 Update
Updates that can be translated into an update on just IT

or just ST (in other words, the predicate AND updated val-
ues are from the same subtable) can be performed directly
(with appropriate client-side operations on I and U to keep
them up to date), provided an update to ST preserves di-
versity (if not, this is treated like the update to a particular
individual below.) These either convey no new sensitive in-
formation, or no information distinguishing individuals, and
are thus safe. Any update to sensitive values of tuples in I

sets the attribute SS to the current snapshot of the dataset
for that tuple (the reason will be apparent in Section 3.4.)

The interesting case is an update to sensitive information
for a particular individual. If the tuple is in 〈IT, ST 〉 then
it is removed from IT only and inserted into the tempo-
rary encrypted table U , along with its new sensitive value
(encrypted) and previous group’s signature.

If the tuple is in U , the client decrypts the sensitive value
and updates it with the new encrypted value. If the tuple
to be updated is in I , the client decrypts the tuple, updates
it and then inserts it into I again.

Update operations changing the sensitive value for multi-
ple tuples (e.g., UPDATE T SET Disease = ‘Flu′ WHERE . . .) may
violate individual privacy. These update operations seem
safe since the sensitive values of the updated tuples are
stored encrypted in table U ; however, the sensitive values
of the update tuples in this operation would be revealed in
ST after the next anatomization and a simple intersection
of groups containing these tuples can reveal more informa-
tion than allowed by l-diversity. We disallow this kind of
update operation, assuming clients will be dealing with one
individual (e.g., patient or customer) at a time.

One likely case of multiple updates, global replacement,
is allowed (e.g.,
UPDATE T SET Disease = ‘Influenza′ WHERE Disease = ‘Flu′).
As previously described, updates that only involve IT or ST
do not pose a threat, provided updates to ST do not reduce
diversity of the group. This generalizes to updating the sen-
sitive value of multiple tuples with a function as depicted in

Definition 3.4. E.g., a sensitive salary value could be set to a
new value based on (identifying) job title and location. We
assume that the function for updating the sensitive value
cannot be deduced by the server based on the update oper-
ation.

Definition 3.4 (Update). Given an update statement

UPDATE T SETA,F WHERE PIT

where A is a set of value assignments for some attributes in

IT , F is a function updating the sensitive values in ST that

is independent of the sensitive values to be updated, and

PIT is defined as in Definition 3.2, the client first retrieves

the tuples to be updated:

R1 = SELECT ∗ FROM 〈IT, ST〉 3 WHERE PIT

R2 = SELECT ∗ FROM U WHERE PIT

SELECT ∗ FROM I

The client then decrypts I and computes:

R3 = SELECT ∗ FROM I
d
WHERE PIT

UPDATE R′
1
∪ R

d

2 ∪ R3 SETA,F

where table R′

1 consists of every tuple t ∈ R1 where Gt still

contains the new sensitive value of t and table R′

1
= R1−R′

1.

Assuming t.seq denotes the sequence number of the tuple in

ST representing the updated sensitive value of t in Gt, the

client sends to the server

DELETE FROM IT WHERE A1 = t
o
.A1 ∧ . . . ∧ Ad = t

o
.Ad, ∀t ∈ R′

1

and the server marks all the groups in IT where some tu-

ples are deleted or updated as having non-1:1 mapping (if

all tuples in a group are deleted, the server also deletes all

corresponding tuples of that group in ST ). Then the client

sends the following statements to the server to finalize the

update operation

UPDATE IT SETA, ESEQ = Ek (salt, t.seq)

WHERE A1 = t.A1 ∧ . . . ∧ Ad = t.Ad, ∀t ∈ R
′

1

INSERT INTO U VALUES

(s, t.A1, . . . , t.Ad,Ek (salt, t.As) , t.S), ∀t ∈ R′

1

UPDATE U SETA, ENC = Ek (salt, t.As) ,S
− = ∅

WHERE SEQ = t.SEQ, ∀t ∈ R
d
2

UPDATE I SET ENC = Ek (salt, t.A1, . . . , t.Ad, t.As) ,

SS = i WHERE SEQ = t.SEQ, ∀t ∈ R3

where i is the current snapshot counter.

For example, assume an (admittedly contrived) scenario
where people in Dayton were mistakenly listed as Lafayette
and having the wrong diagnosis. The client wants to execute

UPDATE T SET City = Dayton,F WHERE City = Lafayette

where F changes Disease from Flu, Fever, Cough, and Cold
to Fever, Cold, Flu, and Cough respectively. If the current
snapshot of the dataset in Figure 3 is 2, the outcome of this
update operation is illustrated in Figure 5.
3This is not a join operation, it is the selection
query described in [20] which is semantically equal to
SELECT ∗ FROM ITd, ST WHERE PIT and involves client-server
interaction in this private data outsourcing setting.
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Patient Age City GID ESEQ

Ike 41 Dayton 1 Ek (salt, 1)

Faye 24 Dayton 3 Ek (salt, 6)
Mike 47 Richmond 3 Ek (salt, 6)

Max 31 Dayton 4 Ek (salt, 8)

(a) PatientIT

SEQ GID Disease

1 1 Cold
2 1 Fever
5 3 Flu
6 3 Fever
7 4 Cough
8 4 Cold

(b) PatientST
SEQ ENC SS

1 Ek (salt,Michael, 25,Richmond,Flu) 1

(c) PatientI
SEQ Patient Age City ENC S−

1 Kelly 36 Dayton Ek (salt,Cold) ∅
2 Olga 30 Dayton Ek (salt,Fever) {Flu,Cough}
3 Jason 45 Dayton Ek (salt,Flu) {Cough, Cold}

(d) PatientU

Figure 5: After Update Operation

No change to sensitive information is visible to the server,
and no information is given about sensitive values for in-
dividuals inserted into I or U , so the probability that an
individual is linked to a particular sensitive value does not
change. While formal proof is omitted due to space con-
straints, the difficult parts essentially follow Theorem 3.1.

3.4 Anatomization Algorithm
We now give an anatomization algorithm that preserves

l-diversity in spite of the historical and update information
available to the server. Loosely speaking, the algorithm out-
put prevents the server from getting additional information
from the knowledge of write operations, satisfying Definition
2.10. We assume the adversary’s background knowledge is
limited to previous snapshots of the database. Knowing a
single individual’s data provides the same guarantee as l-
diversity: it reduces the privacy guarantee for other individ-
uals in the group to at worst l − 1-diversity.

The first inference channel is due to an update opera-
tion on both identifying and sensitive values. This inference
channel relies on the fact that updating the sensitive value
replaces the old value with a different sensitive value.

Theorem 3.2. Given a tuple t in a group with signature

S having simple l-diverse distribution, and an update oper-

ation modifying both identifying and sensitive information;

moving t into a group with S ′ where S ∩ S ′ 6= ∅, |S| = |S ′|,
and S 6= S′, causes the group to not have a simple l-diverse

distribution.

Proof. For a value v ∈ S ∩ S ′,

P{t.As = v} =
⋃

vo
∈S

P{t.As = v|to.As = v
o}P{to.As = v

o}

=
⋃

vo
∈S−S

′

P{t.As = v|to.As = v
o}P{to.As = v

o}

+
⋃

vo
∈S∩S

′
−{v}

P{t.As = v|to.As = v
o}P{to.As = v

o}

+ P{t.As = v|to.As = v}P{to.As = v}

= |S − S ′| ·
1

|S|
·

1

|S|

+ (|S ∩ S ′| − 1) ·
1

|S| − 1
·

1

|S|

+ 0

= |S − S ′| ·
1

|S|2

+ (|S ∩ S ′| − 1) ·

(

1

|S|
+

1

|S|2 − |S|

)

·
1

|S|

= |S − S ′| ·
1

|S|2
+ |S ∩ S ′| ·

1

|S|2
+
|S ∩ S′| − |S|

|S|2(|S| − 1)

=
1

|S|
+
|S ∩ S′| − |S|

|S|2(|S| − 1)
<

1

|S|

as long as S 6= S′. And for a value v ∈ S ′ − S ,

P{t.As = v} =
⋃

vo
∈S

P{t.As = v|to.As = v
o}P{to.As = v

o}

=
⋃

vo
∈S−S

′

P{t.As = v|to.As = v
o}P{to.As = v

o}

+
⋃

vo
∈S∩S

′

P{t.As = v|to.As = v
o}P{to.As = v

o}

= |S − S ′| ·
1

|S|
·

1

|S|
+ (|S ∩ S ′|) ·

1

|S| − 1
·

1

|S|

> (|S − S ′|+ |S ∩ S ′|) ·
1

|S|
·

1

|S|
=

1

|S|

Corollary 3.1. Given a tuple, t, in a group with sig-

nature S having simple l-diverse distribution and an update

operation modifying both identifying and sensitive informa-

tion such that t.As is still ∈ S; having t in a group with S ′

where S = S ′, maintains simple l-diverse distribution.

Proof. For a value v ∈ S ∩ S ′ = S ,

P{t.As = v} =
1

|S|
+
|S ∩ S′| − |S|

|S|2(|S| − 1)
=

1

|S|
+ 0 =

1

|S|

Corollary 3.2. Given a tuple t in a group with signa-

ture S having simple l-diverse distribution and an update

operation modifying both identifying and sensitive informa-

tion such that t.As /∈ S; having t in a group with S ′ where

S ∩ S ′ = ∅, maintains simple l-diverse distribution.

Proof. For a value v ∈ S ′ − S = S ′,

P{t.As = v} = |S − S ′| ·
1

|S|2
+ (|S ∩ S ′|) ·

1

|S| − 1
·

1

|S|

= |S| ·
1

|S|2
+ 0 ·

1

|S| − 1
·

1

|S|
=

1

|S|

The next challenge is the anatomization of inserted tuples.
A näıve approach would be to check for l-eligibility after
every insert; this is expensive given that the client does not
maintain any state. Instead, we anatomize inserted tuples
when a fixed number of tuples have been inserted. This
approach requires the anatomization algorithm to consider
left-over tuples that cannot be included in the anatomized
dataset since it is crucial to be able to use these left-over
tuples in later anatomization batches. The challenge is that
the fact that the tuples are left over shows that they could
not be included in the current batch, revealing something
about their possible values. The underlying model needs
to consider this fact and ensure this knowledge does not
enable the server to violate privacy of later anatomization
batches. Next, we show encrypting both identifying and
sensitive information achieves this goal.
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Definition 3.5 (Partial Anatomization). Given a

table I(i) as in Definition 2.5 and 2.8 where l-eligibility

is not required, a partial anatomization algorithm based on

l-diversity denoted by PA outputs groups having strictly l

number of tuples with distinct sensitive values and a small-

est set of encrypted tuples, I(i + 1) ⊆ I(i), that cannot be

anatomized since I(i+ 1) is not l-diverse.

Pseudocode for PA is given in Algorithm 2 based on the
anatomization algorithm in [30].

Definition 3.6 (Left-over Analyzer: LA). Given

PA(I(i)), PA(I(i+1)) and a group G ∈ PA(I(i+1)) where
i ≥ 1, a left-over analyzer algorithm denoted by LA outputs

a set of sensitive values, SLA ⊆ G.S, that left-over tuples in

I(i+ 1) can match.

For instance, assume another tuple with Flu is added into
I(1) in Figure 3c and then PA with l = 2 is run on I(1). All
the tuples are left-over changing I(1) to I(2). Now two more
tuples are added into I(2), one with Cold and the other with
Cough. This time PA outputs two anatomized groups such
that G1.S = {F lu, Cold} and G2.S = {F lu,Cough} (giving
no left-over tuples). In this case, LA(PA(I(1)), PA(I(2)),G1)
outputs {F lu} which is the only sensitive value that a left-
over tuple can take in group G1.

Lemma 3.2. Given PA and LA as in Definition 3.5 and

3.6 and a group G ∈ PA(I(i + 1)) as part of an input to

LA, the server can only match a tuple t ∈ GIT to a sensitive

value v ∈ SLA with 1/l confidence.

Proof. Let X = |SLA| and x be the actual number of
left-over tuples in G where 0 ≤ x ≤ X. For each t ∈ GIT

and v ∈ SLA,

P{t→ v} =
∑

0≤j≤X

P{t→ v|x = j}P{x = j}

For 0 ≤ j ≤ X,

P{t→ v|x = j} =
∑

m∈{0,1}

P{t→ v|f(t, v) = m,x = j}P{f(t, v) = m|x = j}

where f is a boolean function indicating whether 〈t, v〉 pair
is a left-over.

P{t→ v|x = j} =
1

l − j
·
l − j

l
·

(

X−1

j

)

(

X

j

) +
1

j
·
j

l
·

(

X−1

j−1

)

(

X

j

)

=
1

l

((

X−1

j

)

+
(

X−1

j−1

)

(

X

j

)

)

=
1

l

Since P{t→ v|x = j} does not change, then

P{t→ v} =
1

l
·

∑

0≤j≤X

P{x = j} =
1

l

Theorem 3.3. Assuming an algorithm PA as in Defini-

tion 3.5, and an encryption algorithm E having ciphertext

indistinguishability; a set of tuples I ′ ⊆ I(i) left over by

A(I(i)) can be used in the next run (i.e., snapshot i + 1)
of A without violating Definition 2.10 so long as the server

only sees E(t) for every t ∈ I ′.

Proof. Assume T ∗(i) satisfies simple l-diverse distribu-
tion (Definition 2.9). Including the output of LA in TH(i)
of Definition 2.10, Lemma 3.2 proves that any tuple t ∈ I ′

has simple l-diverse distribution once anatomized.

The correctness of Theorem 3.3 relies on the server not
knowing the identifying information of the left-over tuples.
As stated in Theorem 3.1, multi-tuple delete and update
operations cause the server to learn partial identifying in-
formation of tuples in I , specifically the server knows the
remaining tuples from delete and unchanged tuples from up-
date operations satisfy PIT that is used in these operations.
This knowledge can disrupt the uniformity of tuples being
a left-over in IT unless every tuple in a group in IT satis-
fies the same predicate. As a result, based on Lemma 3.2,
P{f(t, v) = m|x = j} values change and thus P{t → v} is
not 1/l for each t ∈ GIT and v ∈ SLA.

To maintain the correctness of Lemma 3.2, we anatomize
left-over tuples if the server does not even know their iden-
tifying information partially and that is why the snapshot
index is stored for each inserted tuple. An anatomization
algorithm can safely anatomize all the tuples in I having a
snapshot index greater than the one in which the last multi-
tuple delete or update operation has occurred. Note that
the possibility of being a left-over tuple in IT can only be
used if the server also knows the left-over sensitive values
in the same group. In case of updating the sensitive value
of a left-over tuple, any knowledge of the tuple in IT being
left-over is useless for the server. That is why the update
operation also updates SS field in I to the current snapshot
index when updating sensitive values in Definition 3.4.

Definition 2.10 also prevents us from converting non-1:1
mapping groups to 1:1 mapping groups. While needed for
some optimizations for projection and group-by operations
in [20], it raises the possibility that the server gains too much
information. Even if such groups become a 1:1 mapping
later, the server must not know it.

Based on Corollary 3.1, two groups, G1 and G2, that have
missing tuples can only be merged if G1.S = G2.S . Now we
show how to process merging of such groups.

Theorem 3.4. Given two groups, G1 and G2, that have

missing tuples and satisfy G1.S = G2.S; merging G1 and G2

is in accordance with Definition 2.10 if the server does not

know whether the outcome group has a 1:1 mapping.

Proof. Let t be a tuple that has been deleted from G1,
t.As = v, p be the individual represented by t, and G2 is
merged into G1. Since it is not known if outcome G1 has
1:1 mapping, P{t′.As = v} = 1/l for any t′ ∈ G2.

If p knows that G1 has 1:1 mapping after the merge then
P{t′.As = v} 6= 1/l, since there is at least one assignment
of sensitive values in G1.S to the tuples of G2 where v is
not assigned to any tuples of G2. That assignment becomes
impossible since at least one tuple from G2 must be assigned
to v in order to make G1 a 1:1 mapping.

The last problem is how to anatomize table U . All tuples
in U have a S− signature, and must be anatomized into
groups compatible with their signatures. The näıve solution
is to generate a S for updated tuples where S ∩S− = ∅ and
S has the same distribution as the dataset. However, this
solution violates Definition 2.10 since there might be some
sensitive values in DAs that are not possible during the time
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of anatomization. For instance, a tuple’s disease cannot be
updated to small pox in this era but the database itself might
have tuples having small pox. Instead, we compare each
updated tuple with every group having a non-1:1 mapping
to check if it can be inserted into an existing group.

We now show how to do this comparison and simulate it
to satisfy Definition 2.10.

Theorem 3.5. Given a tuple t ∈ U and an l-diverse group

g ∈ G where a) |DAs |− |t.S
−|− |g.S| ≥ l, b) t.S−∩g.S = ∅,

1. moving t into g and setting g as non-1:1 mapping if

t.As ∈ g.S

2. or updating t.S− = t.S− ∪ g.S otherwise

is in accordance with Definition 2.10 under l-diversity.

Proof. Assuming an adversary cannot get any informa-
tion about t.As other than t.As /∈ t.S− by examining all
previous history, case 1 only allows the adversary to learn
t.As ∈ g.S since condition b renders the information t.As /∈
t.S− useless based on Corollary 3.2. Case 2 does not hide the
fact that t.As /∈ g.S from the adversary by updating t.S−.
The adversary only updates t.As /∈ t.S− and l-diversity is
not violated since there are at least l possible sensitive values
for t.As due to the condition b.

Note that the condition b in Theorem 3.5 prevents the
algorithm from violating l-diversity since t.S− might get too
large without this condition and t.As can take less than l

values. Although this seems to cause a similar problem as
in the näıve approach (since some values t.As can take might
not be possible), the probability of satisfying t.S−∩g.S = ∅
is negligible when the size of t.S− and DAs are large enough
compared to l due to the birthday paradox.

Our anatomization algorithm is shown in Algorithm 1.

4. QUERY PROCESSING
In general, the query processing of [20] still applies with

our update model, with the addition that the encrypted tem-
porary tables I (and parts of U) must be sent to the client
for decryption and merging with the final results. There are
a few differences, mainly due to the invalid sensitive data left
behind during deletes. We outline these differences below.

Selection is straightforward. Processing proceeds as in
[20], except that I is sent to the client for decryption and pro-
cessing. When the selection criteria involves IT , the server
can perform selection on U and send only matching tuples,
otherwise U must be sent in its entirety. Invalid values in
ST resulting from deletion will automatically drop out, as
they won’t join with any of the corresponding tuples in IT

(but see projection, below.)
Projection can raise issues. Again, the table I is sent

completely, and projection on U can be done at the server.
However, deletion raises issues. If a projection includes at-
tributes from IT and ST , the deleted sensitive values will
“drop out” when the client joins the groups (as with selec-
tion.) However, if the projection is only to ST , the server
must also return the sequence numbers from correspond-
ing groups in IT (but only for groups having non-1:1 map-
ping).The client hashes these sequence numbers and com-
pares with the values in ST to determine which are valid.

A second issue arises with duplicate elimination. In [20],
some duplicate elimination can be done on the server. This

Algorithm 1: Anatomization of U and I

require: n number of tuples in U and I combined
input : Table U , I and the set of groups, G, from

table pair 〈IT, ST 〉 where ∀g ∈ G, g has non
1:1 mapping

output : A set of groups that is used to generate
〈IT, ST 〉 table pair

1 Gout=Anatomize(Id) // Algorithm 2

// Lines 2-4 merges groups with same signatures

2 put groups in G into buckets B based on their
signature;

3 foreach bucket b ∈ B do

4 merge groups in bucket b into one group g;

// Lines 5-10 moves updated tuples into groups

// if possible

5 foreach tuple t ∈ Ud do

6 foreach group g ∈ G where

|DAs | − |t.S
−| − |g.S| ≥ l and t.S− ∩ g.S = ∅ do

7 if t.As ∈ g.S then

8 move t from Ud into g;
9 else

10 t.S− = t.S− ∪ g.S ;

11 insert each group g ∈ G into Gout;
12 increment snapshot counter by 1;
13 return Gout

is challenging when the projected attributes come from both
IT and ST , as the actual matching is not known, and if
something is a duplicate may depend on which way the
match occurs. This is even more difficult with invalid sensi-
tive values left from deletion. However, the server can deter-
mine which groups may have invalid values as it knows which
groups have non-1:1 mappings; groups having non-1:1 map-
ping are removed from the server-side duplicate elimination
of [20] and returned to the client to complete processing.

Group-By queries face the same issues as duplicate elimi-
nation: deleted values must not be used in the result. The
work in [20] optimizes processing at the server side when all
of the tuples in a group have the same value with respect
to the grouping criterion. This cannot be done for groups
with deleted tuples; these (and I and U) must be processed
at the client. Note that the work in [20] already handles
client-side group-by processing for groups that have differ-
ent values with respect to the group-by criterion; this simply
adds additional data to the existing client-side processing.

5. EXPERIMENTS
We have proven that this approach preserves l-diversity

(and with a different anatomization algorithm, could sup-
port other privacy measures.) However, this does reduce
the ability of the server to efficiently process queries; less
processing can be done on U and non-1:1 mappings, and
none at all on I . How big a problem is this?

To evaluate this, we give a simulation using the first 100,000
individuals from the IPUMS Census data [3], the same data
used in [30]. The sensitive attribute can take 50 different
values. We anatomize the first 20k individuals, giving the
initial 〈IT, ST 〉 pair. The remaining 80k tuples are inserted,
along with updates and deletes at varying rates. Each up-
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Algorithm 2: Anatomize: Modified Anatomization

input : table Id

output : A set of l-diverse groups
1 i← the last snapshot of T ∗ that a multi-tuple delete

or update has been issued;
2 if i is the current snapshot of T ∗ then

3 I ′ ← SELECT ∗ FROM Id WHERE SS = i;
4 else

5 I ′ ← SELECT ∗ FROM Id WHERE SS > i;

6 put tuples in I ′ into buckets B based on As value;
7 while |B| ≥ l do

8 B′ ← largest l number of buckets in B;
9 create group g;

10 foreach bucket b ∈ B′ do

11 randomly select a tuple, t ∈ b;
12 put t into g;
13 send ‘DELETE FROM I WHERE SEQ = t.SEQ’;

14 put g into the set of groups G;

15 return G;

date or delete is done against a single randomly selected
tuple. Updates change the sensitive attribute to a randomly
selected value based on the distribution of the data. Update
and delete rates are per block of 200 inserts. Tables I and
U are anatomized every 200 inserts.

In each snapshot of T ∗, the simulation keeps track of the
number of tuples and groups as well as the number of groups
having 1:1 and non-1:1 mapping. In addition to reporting
average values, we will use C90 to denote the best of the
worst 10%, and C100 to denote the worst, of all measured
counts across the 400 anatomizations.

Figure 6: Ratio of tuples in groups having non-1:1 mapping
to the tuples in 〈IT, ST 〉 where D = 20

As mentioned in Section 4, both projection and group-by
benefit from groups having 1:1 mapping. Figure 6 shows
the average ratio of tuples in non-1:1 mapping groups to the
tuples in 〈IT, ST 〉. While this increases with update rate
(or l, as larger l gives larger groups), the ratio is logarithmic
with the increase of either since there is higher chance for a
tuple in a non-1:1 mapping group to get updated with the
increase of such tuples. As l increases, this ratio increases
rapidly but then converges. Moreover, C90 and C100 values
are roughly the same for any U,D, l value and close to the
average (e.g., average ratio is 0.73, both C90 and C100 ≈ 0.77
when l = 10, U = 100, D = 20). As both update and delete
can convert a 1:1 mapping group into a non-1:1 mapping,
and an anatomized update tuple only contributes 1 for the

non-1:1 mapping count, the effect of update and delete rate
on this ratio is similar.

Our experiment shows that the size of I is less than l

on average after each anatomization. When l = 10, the
max C100 for the size of I is 19 and the max C100 for the
duration an inserted tuple stays in I is 7 among different
U and D rates picked from {0, 20, . . . , 100}. Tuples in I do
not stay encrypted long provided the inserts are uniformly
distributed over the domain of the sensitive attribute.

Figure 7: Ratio of tuples in U to the tuples in T ∗ where
D = 20

Another issue that might effect the query processing is the
size of U , although only the sensitive value is encrypted in
U . Figure 7 shows that the ratio of the size of U to the size
of T ∗ is linear with the increase of either l or U . When l in-
creases, the S− of a tuple increases as well, which decreases
the chance an update tuple is anatomized since finding a
non-1:1 group with no intersection with S− is more diffi-
cult when the sets are larger due to the birthday paradox.
However, the delete rate does not have a major effect; the
average ratio is 0.079 when D = 0, U = 100, l = 10 and 0.085
when D = 100, U = 100, l = 10. Moreover, both C90 and
C100 for this ratio is close to the average value. For instance,
both C90 and C100 ≈ 0.1 when l = 10, U = 100, D = 100.

6. CONCLUSION AND FUTURE WORK
This paper presents a solution to updating outsourced pri-

vate data. This is the first solution to this problem that
does not assume either complete data encryption, or stor-
age of all of the original data at the client - both impracti-
cal assumptions in the developing data outsourcing market.
While there are still issues, such as dealing with multiple
tables (although this can largely be dealt with through the
anonymization methods of [21]), this brings us much closer
to practical private data outsourcing.

The results suggest that this model is primarily useful
where updates/deletes are rare. When inserts exceed 80% of
the data modifications, 95% of the data is visible, and there
is little dead data, allowing the server to perform substan-
tial query processing. There do remain opportunities to op-
timize the anonymization process, although we have shown
that in many cases, the approaches used are necessary to pre-
vent privacy-violating inference channels. Databases meet-
ing these criteria are not uncommon; Altoros Systems re-
cently developed a set of database benchmarks that includes
a workload with high insert/low update rate [6]. In particu-
lar, private data about individuals (e.g., transactional data,
financial records, or medical data) is often retained indefi-
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nitely, but regulations typically require individuals be given
the ability to correct and delete data.

Using this model the server can independently analyze
the data. Building data mining models from data with such
known types of inconsistencies poses an interesting challenge
for future research. In particular, when the models involve
combining the identifying and sensitive information, how to
effectively build models when the server only knows group-
level matching demands novel solutions.
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