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ABSTRACT
Multitenant databases achieve cost efficiency through the
consolidation of multiple small tenants. However, perfor-
mance isolation is an inherent problem in multitenant data-
bases due to resource sharing among the tenants. That is, a
bursty workload from a co-located tenant, i.e., a noisy neigh-
bor, may affect the performance of the other tenants sharing
the same system resources. We address this issue by using
a load balancing method that is based on database replica
swap. Unlike the traditional data migration-based load bal-
ancing, replica swap-based load balancing does not incur
data movement, which makes it highly resource- and time-
efficient. We propose a novel method of choosing which ten-
ants should be subject to swaps. Our experimental results
show that swap-based load balancing effectively reduces the
number of SLA violations, which is the main performance
metric we choose.

1. INTRODUCTION
Cloud computing has revolutionized the IT industry, with

the promise of on-demand infrastructure. Cloud service
providers often consolidate small or time-varying workloads
on a shared hardware to achieve economies of scale. Database
services in the cloud [1, 2] have successfully adopted this
strategy using multitenant databases, which has shown to
achieve the consolidation ratio of 6:1 to 17:1 [3]. Because
of such a potential, multitenant DBs have received a lot of
interest from the database research community [4, 5, 6, 7,
8, 9, 10, 3].

Multitenant databases, however, have an inherent prob-
lem, namely the lack of performance isolation. When a ten-
ant receives an increased workload, either temporarily or
permanently, the neighbor tenants within the same server
will suffer from the increased total workload [11]. There
can be many causes for the increased workload, where some
examples include: i) the growth of a company, leading to
a permanent traffic growth, ii) predicted infrequent traffic
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changes of a tenant, e.g., the bursty query traffic at a Web
site dedicated to the World Cup, iii) predicted frequent traf-
fic changes, such as daily or weekly workload pattern of a
company, iv) unpredicted traffic spikes by a flash crowd [12],
or any combination of these. No matter what the causes
or the patterns are, the impact of such overloading can be
highly damaging: neighbors of a noisy tenant can imme-
diately see violations on their performance Service Level
Agreements (SLAs), and in a severe case, the server and
all tenants therein may become completely unresponsive.
Hence, load balancing is an important feature to minimize
the impact of a heavily loaded tenant on the other co-located
tenants[13].

In this paper, we consider a load balancing technique
to address this overload problem, which is a major cause
of increased SLA violations in many real systems. While
load balancing is a popular technique used in general server
workload management, here we propose a new method tar-
geted for replicated multitenant databases. To explain our
method, we first introduce database replica swap, which is
used as a building block in our method. In most of to-
day’s database deployments in cloud oriented data center
environments, such as [1, 2], databases come with one or
more secondary replicas for fault tolerance and high avail-
ability purposes. Often times, primary replicas1 serve both
read and write queries and secondary replicas receive the
updates relayed from the primary replica for the purpose of
fault tolerance. Hence the primary replicas receive a larger
amount of workload compared to the secondary replicas: in
our experiment environment described in Section 4, we ob-
serve that a read-only workload incurs zero load on the sec-
ondary replicas and a write-only workload incurs about one
fourth of the primary’s I/O on the secondary. [1, 2] suggests
to leverage this difference for workload migration: by swap-
ping the roles of the primary and the secondary replicas,
workload can be effectively moved from the primary to the
secondary. This is typically fast and lightweight as it involve
no data movement. Using this replica swap as a basic oper-
ator, we propose a load balancing method, SWAT 2, which
finds a subset of tenants that should be subject to replica
swap to achieve the desired load balancing effect across the
system.

We acknowledge that our load balancing method does not
always guarantee to eliminate all types of overloads. It is

1We interchangeably use primary replica and master in this
paper, and also secondary replica and slave.
2Swap-based load balancing method.
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Figure 1: Overload Resolution Problem Space

known that the tenant workloads may change in various
ways, such as increased/decreased load, query distribution,
access patterns, and data distribution. Real systems employ
different methods to monitor and resolve overload situations
due to diverse reasons. Here, we present a lightweight and
effective method that take advantage of a feature that al-
ready exists in most shared-nothing architectures, namely;
replicated databases[14, 13]. The method can be used be-
fore resorting to heavier weight solutions, such as migration,
which is unavoidable in some cases. As we show in the ex-
periments and also observe in the implementation of the
method in our real products, the SWAT method works very
effectively in numerous situations.

Figure 1 shows the overload resolution problem space.
The top row indicates the overload problem instances where
additional servers are needed to eliminate the overload, mainly
because the total workload is too high compared to the ex-
isting cluster capacity. We need a capacity increase, followed
by tenant data migration into the new servers. The bottom
row refers to the cases where overload can be removed sim-
ply by re-balancing the load without a new server. The left
column, denoted as swap-resolvable, refers to the problem
instances where a set of tenant replica swaps can remove
overload without any tenant data migration. The right col-
umn, denoted as swap-irresolvable, refers to the cases where
we cannot achieve overload removal with replica swap alone
and some tenant data migration is needed to attain it. In
this problem space, the goal of SWAT is as follows. Given
Case 3, it aims at quickly removing all overloaded servers,
or hotspots, through the techniques called Hotspot Elimina-
tion and Load Leveling. Given Case 1 and Case 2, where
overload cannot be completely removed without data mi-
gration, SWAT aims at minimizing the amount of overload
through the technique called Hotspot Mitigation, so that the
overload becomes less severe until other solutions, such as
migration or new capacity addition, are applied for the com-
plete resolution of overload. Hence, we present SWAT as a
complimentary technique with migration and capacity plan-
ning for overload resolution.

Toward this goal, we make the following contributions in
this paper:
Replica swap-based workload migration Previous works
[1, 2] have suggested an idea of using replica swap for work-
load migration, but the details have not been explored. In
this paper, we design, implement, and evaluate replica swap
for the purpose of workload migration. We also propose a
technique for detecting and filtering out slow swaps, which
makes the overall load balancing faster.
Swap-based load balancing We present a load balanc-
ing method, SWAT, which chooses a subset of tenants to
swap to achieve a desired load balancing. SWAT tries to
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Figure 2: System Architecture

eliminate hotspots, if possible, or minimize it otherwise. We
formalize this as three different integer linear programming
(ILP) problems and show how SWAT combines the three
subproblems into a single framework. We also analyze the
scalability characteristics of the ILP solution.
Swap sequencing and parallelization Once we found a
set of tenants to swap, we need to execute them in a certain
order. This order needs to be carefully designed, otherwise it
may create temporary overloads during the execution. Also,
it is desired to execute some swaps in parallel when possible.
We develop a swap sequencing and parallelization algorithm
that minimizes temporary overload during the swap execu-
tion using the right level of parallel swap executions.
Evaluation We experimentally evaluate the effectiveness of
SWAT, using synthetic and real-world traces under various
workload configurations.

2. SYSTEM MODELING
Figure 2 shows the system architecture. A user workload

arrives at the middleware layer, where a workload dispatcher
routes it to the right DB server, which employ a shared-
nothing architecture [13]. The system and workload mon-
itor constantly observes the workload level for each tenant
and each server and sends information to the load balancing
logic module, which periodically runs the load balancing al-
gorithms that we present in this paper and sends a sequence
of swap operators to be executed to the load balancing ex-
ecutor. The executor runs the given swap operators sequen-
tially or in parallel as specified, achieving the balanced load.

2.1 Multitenancy
In recent years, various multitenant architecture options

have been explored, including private virtual machines, pri-
vate instances, private databases, private tables, and shared
tables [6, 15, 3]. While each option has pros and cons, we
focus on the private instance model, currently used in many
cloud offerings such as Amazon RDS[16]. We consider the
system model where each tenant’s data size and query work-
load can be served within a single server, similar to [1, 5].
Note that our system can also serve a bigger multi-server
tenant, as long as its data and workload are partitioned
across multiple servers so that all queries are served within a
single server. In this case, each partition can be considered
as an independent tenant and the techniques described here
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N Number of tenants
M Number of servers
Ti i-th tenant
TR Tenant of replica R
Ri/Rp

i /Rs
i Any/primary/secondary replica of Ti

RSj
The set of all replicas at server Sj

Sj j-th server
SR Server location of a replica R
Li,r/Lp

i,r/Ls
i,r Load of Ri/Rp

i /Rs
i on resource r, e.g., CPU, I/O.

(Note that we omit r when the discussion holds
for any given resource type.)

LT H Hotspot threshold
xi Binary variable for swapping Ti

(1: swap, 0: no swap)

Table 1: Notation

can be applied.

2.2 Replication
In our system, similar to [1], each tenant has one primary

replica and one or more secondary, asynchronous replicas for
the purpose of fault tolerance. The primary replica serves
all the queries (both read and write queries), while the sec-
ondary replica executes the update logs relayed from the
primary replica, in an asynchronous manner. As in [1], we
do not use secondary replicas for read query answering, to
provide strong consistency. This replicated database model,
and its close variations, are widely used in many commercial
settings and well-studied in the literature, including trans-
actional and availably properties during switching from the
primary to a secondary in the case of failures. We do not
make any additional assumptions nor modifications to al-
ready implemented product features and protocols in our
system.

2.3 Workload
We define the load of a tenant as the amount of server

resources needed to serve the tenant’s workload, as a per-
centage of the server capacity. The load information for each
tenant replica to be given as an input to the problem.

Table 1 shows the important system parameters used in
this paper3. Some of important specifications are as follows.
First, N ≥M as described above. Second, for a given tenant
Ti, its primary replica’s load is always greater than or equal
to its secondary replica’s load, i.e., Lp

i ≥ Ls
i . Note that

Ls
i = 0 when Ti has no write query workload.
In this paper, we use a linear additive model for individual

resource loads as in [5], e.g., if we co-locate two tenants with
CPU loads of 20% and 30%, they consume 50% together on
a single machine. We acknowledge that this model is reliable
for CPU, but less so for I/O [3]. However, additive model
for I/O is successfully used as a reasonable approximation
in numerous systems[5], mainly due to the lack of a widely
applicable model for I/O behavior. We also find that it
works well for the load balancing purpose as shown in our
experimental study.

2.4 Hotspot Threshold
To determine system capacity, or hotspot threshold, we

use a queueing-theoretic approach: we run a controlled ex-
periment involving a single server, with varying load levels.
As we keep increasing the arrival rate, we find a critical

3Here, we give the notations with a single secondary replica
to keep the formulations concise. It is straightforward to
consider multiple secondary replicas, which we considered
and tested in the experiments sections.
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Figure 3: Swap Procedure

point where the query response time explodes, and we use
this load level as the hotspot threshold. The corresponding
point effectively indicates the overload situation where the
queries arrive at the server faster than the speed the server
can process them. This method gave us a reasonably ac-
curate information about the system capacity, compared to
the one obtained by CPU/I/O utilization report of operating
system tools, which were often inaccurate and misleading.

3. SWAP-BASED LOAD BALANCING
In this section, we first describe the replica swap operator.

We then present a swap-based multitenant DB load balanc-
ing method, SWAT. SWAT consists of two subcomponents:
i) finding the optimal swap set that eliminates hotspots, and
ii) finding the sequencing and parallelization of swap execu-
tions.

3.1 Replica Swap Operator
Given a tenant that has a primary replica and a secondary

replica, the replica swap involves the following steps, out-
lined in Figure 3. The middleware layer first temporarily
holds the incoming write workloads in its per-tenant queue,
and allows the write queries running in the DBMS to fin-
ish. After that, it waits until the relay log at the pri-
mary replica (i.e., asynchronous delta) propagates to the
secondary and two replicas are synchronized. This may take
varying amount of time, depending on the log gap between
two replicas (see below) and the system utilization at the
two nodes, while it is quite fast in general from our experi-
mental study. Note that these two steps ensure the correct-
ness of transactions. Finally, the roles of the primary and
the secondary replicas are swapped and the workload dis-
patcher starts to send the read and write queries waiting in
the queue to the new primary replica, which used to be a sec-
ondary replica before the swap. The new secondary replica
starts to fetch log records from the new primary replica in
an asynchronous manner. Below we briefly discuss some
considerations with the SWAP protocol.

Primary-Secondary Log Gap Limit: Under a write-
intensive workload, a secondary replica may not be able to
catch up to the primary replica, especially when the sec-
ondary replica is located in an overloaded server and cannot
catch up to the speed of the primary replica’s write query
executions. In this case, the log gap may keep increasing
between the primary and the secondary.

To address this, we first check the log gap of all secondary
replicas against their primary, and eliminate those with log
gaps higher than a specific threshold from the swap candi-
date list. We parallelize these checks for tenants to mini-
mize the latency. The load balancing algorithm then uses
the tenants that pass the test for finding the load balance
solution. While this screening reduces the flexibility of the
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load balancing algorithm, it does not seem to affect the load
balancing quality much, for the following reason: from our
observations, the tenants with high log gaps often have their
second replicas in the overloaded servers, which means that
swapping those tenants does not directly reduce the load
levels of the overloaded servers.

Tenant Resource Usage Estimation: Estimating the
exact resource usage of tenants in all placements is an ex-
tremely difficult problem[3], mainly due to unpredictable in-
teractions among different sets of tenants in servers. How-
ever, it is important to recall that our problem is not the gen-
eral tenant placement problem. The only options we have
to place the primary of the tenant database is one of the
secondary replica locations, which is a relatively very small
number compared to the general case. Therefore, essen-
tially we need to pick the relatively better secondary replica
location, which is much more tractable and error-tolerant
problem.

Availability During the Swap: As we stated earlier,
we use standard primary-secondary asynchronous database
replication with specific database product (MySQL) features
without any additional assumptions or modifications. The
swap protocol is implemented as an ordinary handover by
using those features. Therefore any failure in the primary
or in the secondaries is handled by following the standard
protocols implemented in the product. The implementation
of this setting and failure handling are available in all major
database products.

3.2 Finding Optimal Swap Set
As mentioned above, SWAT is composed of two steps,

and here we discuss the first one, where it seeks to find the
subset of tenants for replica swap that achieves the desired
load balancing effect. The solution of this step, if any, is
passed to the second step where the execution order of the
found swaps are determined. The overall flow is shown in
Figure 4.

We divide the swap set finding problem into three sub-
problems and formally define each of three subproblems, and
then combine them within a global framework as in Figure 4.
First, we attempt load leveling where we seek to eliminate
hotspots and balance the load, if possible. The success of
load leveling is the best case of SWAT, so the algorithm ter-
minates successfully and return the found swap set. When
it is not possible to balance the load, but possible to elimi-
nate all hotspots, SWAT tries the second component, hotspot
elimination, where it tries to simply eliminate overloads at
all servers, without trying to balance the load evenly. If this
succeeds, SWAT again successfully terminates and returns
the solution. When both of the first two components fail
to find a solution, it means that there exists no solution for
swap-based hotspot elimination, i.e., case 1 or 2 in Figure 1.
In such cases, SWAT attempts its best effort solution, which
is hotspot mitigation, where it tries to minimize the overload,
rather than eliminating it.

In the following, we discuss the details of individual com-
ponents and show how each component is formulated as
an integer linear programming problem. Note that we first
present hotspot elimination, which is most straightforward
and ideal for an illustration purpose. We then move on to
hotspot mitigation and load leveling.

3.2.1 Hotspot Elimination

Load 
Leveling

Hotspot 
Elimination

failure

failure

success

success

System and Workload 
Information

swap set finding

Hotspot 
Mitigation

swap sequence

failure

success

No solution

failure

Seq & parallelization

swap set

Figure 4: SWAT Overview

Hotspot elimination aims at eliminating all overloaded
servers, i.e., servers whose aggregate load is above the hotspot
threshold, through replica swap. To be more specific, it finds
a set of swaps that remove overloads at all servers, if pos-
sible, while minimizing the total amount of workload being
interrupted by the swap.

We illustrate the key idea by using the example in Fig-
ure 5(a). Five tenants, T1 through T5 are placed on four
different servers, S1 through S4. Each tenant Ti has a pri-
mary replica, Rp

i , and a secondary replica, Rs
i . For brevity,

we consider a single resource example here, and the number
next to the server and replica labels represent their respec-
tive load, e.g., I/O, out of 100, the server capacity. The
labels next to the edges (e.g., T1:55) represent the potential
load transfer when the swap on the corresponding tenant is
executed. We consider a server as a hotspot, if its total load
is higher than a threshold a hotspot and try to reduce the
loads of hotspots through load balancing. In the example,
the hotspot threshold in Figure 5(a) is set to 80.

Figure 5(a) shows that the server S1 (with the load 100) is
a hotspot to eliminate, according to the hotspot threshold of
80. One of the possible solutions is to swap the two replicas
of T2 at S1 and S3, effectively transferring the load difference
of 30 from S1 to S3. If this swap is adopted, the after-swap
snapshot is shown in Figure 5(b), where all servers’ loads
are below the hotspot threshold of 80.

Next, for the sake of explanation, we assume that for some
reasons it is not possible to swap the replicas of the tenant
T2, e.g., due to the primary-secondary log gap limit criteria
mentioned above. Under such a restriction, another solution
is possible, as shown in Figure 5(c). The two replicas of T1

at S1 and S2 are swapped, and also the two replicas of T3

at S2 and S4 are swapped. After swapping T1’s replicas, we
eliminate the hotspot of S1 (i.e., from 100 to 50), but we
get another hotspot at S2 (i.e., from 55 to 110). In order
to eliminate this new hotspot, we also swap the replicas of
T3, effectively transferring the load difference of 45 from S2

to S4. Note that S4’s new total load of 75 is below the
threshold, which makes it a valid solution.

Now assume that we have a tighter threshold value, 70. In
this case, it is more difficult to find the hotspot elimination
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Figure 5: An Example for Hotspot Elimination (Hotspot Threshold=80)

plan than before: Solutions in Figure 5(b) and Figure 5(c)
are not feasible now since the highest loads are 75 in both
solutions, which are greater than the new hotspot threshold
value, 70. There exists, however, a solution: three swaps
that include the two in Figure 5(c) and an additional swap
on T5, between S1 and S4. Interestingly, in this solution
there exists a cycle among S1, S2, and S3.

Note that we have shown solutions that minimally affect
the tenant workloads in the sense that the sum of workload
interrupted by the swap is minimized. This is important
because a swap requires the asynchronous replica’s delta
catchup for full synchronization and therefore a swap in-
troduces a short service interruption during the full syn-
chronization. The level of such impacts is proportional to
the amount of write workload, which is equivalent to the
secondary replica’s load. Hence, we formulate the optimal
hotspot elimination problem as follows.

Definition 1. Hotspot elimination problem finds a set
of swaps that resolve the hotspots given a threshold, while
minimizing the sum of secondary replicas’ workload for the
swapped tenants.

We also define a term swap load impact as follows, used
for the problem formulation below.

Definition 2. Swap load impact LoadImpact(Ti, Sj , r)
is the potential load difference at the server Sj caused by
swapping the replicas of a tenant Ti at Sj, on the resource
r, e.g., CPU or I/O. LoadImpact(Ti, Sj , r) = Ls

i,r - Lp
i,r ≤

0, if Sj has a primary replica of Ti, and Lp
i,r - Ls

i,r ≥ 0, if
Sj has a secondary replica of Ti.

For example, assume a tenant T1 has a primary replica
of CPU load 60 located at S1, and a secondary replica of
CPU load 20 at S2. Then, LoadImpact(T1, S1, CPU)=-40
and LoadImpact(T1, S2, CPU)=40.

In the optimal swap set problem, we try to find a binary
variable assignment for xi, (1 ≤ i ≤ N), where xi = 1 means
Ti is swapped and xi = 0 means otherwise, so as to

min

NX
i=1

Ls
i,max × xi, where Ls

i,max = max
r

Ls
i,r (1)

subject toX
R∈RSj

[xR ∗ LoadImpact(TR, Sj , r) + LR] < LTH (2)

for each resource type r, where xi ∈ {0, 1}

Eqn 2 says that there should be no hotspot in any of
servers. We use xR to refer to the xi of the replica R’s
tenant Ti.

Example Following is the problem formulation for the
example given in Figure 5(a):

min(5x1 + 5x2 + 5x3 + 5x4 + 5x5)

2664
−55 −30 0 0 15
55 0 −45 0 0
0 30 0 −20 0
0 0 45 20 −15

3775
26664

x1

x2

x3

x4

x5

37775+

2664
100
55
40
30

3775 <

2664
80
80
80
80

3775
x1, x2, x3, x4, x5 ∈ {0, 1}

While this binary integer linear programming problem
(BILP) is NP-complete, in practice it often can be solved us-
ing highly efficient open source ILP solvers, such as lp solve
that we use in our experiments, up to several thousand vari-
ables. Moreover, since tenant migration (swapping) algo-
rithms are not interactive algorithms, their running times
are not as critical. Even with extremely large number of
tenants, typically the tenants are clustered and the migra-
tions are executed on the clusters rather than the whole data
center. Hence, the scalability of the ILP solution should gen-
erally be acceptable. We present a more detailed analysis in
the experiments section.

3.2.2 Hotspot Mitigation
While it is desired to eliminate all hotspots, there are

cases where this is simply not possible to achieve. Consider
the example in Figure 6(a). There are two servers with the
loads 160 and 20. Given a hotspot threshold of 80, there
is no feasible solution for eliminating the hotspot without
an additional server. In this case, our hotspot elimination
problem would report that there is no feasible solution.

However, it is still valuable to decrease the overload degree
of the hotspot server. In Figure 6(a), one tenant can be
swapped, reducing the load of hotspot from 160 to 105, while
keeping the other server still non-overloaded, at the load
of 75. This action is beneficial since the swapped tenant
would not be affected by the overload anymore, and the
remaining tenants there would also see reduced overloading,
which would somewhat improve the performance.

To achieve this, we modify the problem formulation of
hotspot elimination as follows. First, we drop the hotspot
removal constraints, i.e., Eqn 2, for the overloaded server-
resources, while keeping the constraints for the original non-
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overloaded server-resources. Second, we change the objec-
tive function of Eqn 1 into the sum of load impacts of all
overloaded server-resources. With these changes, we mini-
mize the overloading, rather than strictly requiring the over-
loading to be removed. Below is the modified problem for-
mulation.

min
X

R∈RSj

[xR ∗ LoadImpact(TR, Sj , r) + LR] (3)

for all currently overloaded resource type r of Sj , subject toX
R∈RSj

[xR ∗ LoadImpact(TR, Sj , r) + LR] < LTH (4)

for all non-overloaded resource type r of Sj , with binary xi.

3.2.3 Load Leveling
In the above two problems, we discussed a reactive load

balancing solution, where actions are taken only when there
are hotspots. It may, however, be desirable to take a proac-
tive action even before a hotspot is detected: whenever there
is some load unbalance among the servers, try to balance
them. To achieve such load leveling, we design an algorithm
as outlined in Algorithm 1.

First, we see if there is a significant load unbalance, using
a load skew limit, e.g., 50%: if the load of a server is greater
than the average load of all servers by the load skew limit
or more, or lower than the average by the load skew limit
or more. Consider the example in Figure 6(b). Two servers
originally have the loads of 70 and 10, respectively. With the
average load of 40 and load skew limit of 50%, we observe
load unbalance, i.e., 70/40=1.75>1.5 and 10/40=0.25<0.5.

Second, we try to minimize the load skew as follows. We
run the ILP solver in a very similar manner as above, but
with a minor difference on the constraints, i.e., Eqn 2. Rather
than using a hotspot threshold as the constraint right hand
side, we use the average load times the target load skew limit,
e.g., 1.1, 1.3, or 1.5. When this constraint is greater than
the hotspot threshold, we use the hotspot threshold instead.
We try with a tight target value first, e.g., 1.1, and apply the
solution if the solver succeeds in finding a solution. When it
fails we move on to a more relaxed target, 1.3 and 1.5, until
the solver succeeds. In Figure 6(b), there is no solution that
can satisfy the target load skew limit of 1.1, but 1.3 is satis-
fiable: by swapping one tenant, we reduce the load skew as
follows: 45/40=1.125 and 35/40=0.875.

Note that there’s a cost-benefit tradeoff involved in load
leveling, as in any proactive or preventive action in general:
we take an action to avoid or lessen a problem, before it ac-
tually happens. The action itself has a small cost associated,
and so the benefit of the load leveling action depends on the
likelihood of the overload on the currently high- (but not
over-) loaded servers, which in turn depends on the specific
workload pattern. In our case, the swap operator has a very
small cost in terms of SLO violations induced by it, so we
believe proactive approach is a good thing to do in general.
We evaluate the effectiveness in the experimental study.

3.2.4 Flexible Replica Configuration
In our problem definitions above, we assumed that each

tenant has exactly one secondary replica. In real systems,
this may not be true, because a DB service provider may
use more secondary replicas or a tenant may be allowed to
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Figure 6: Load Balancing Examples

choose its own number of secondary replicas at different ser-
vice prices.

With a higher number of secondary replicas, replica swap-
based load balancing becomes more powerful as there are
more swap choices for each tenant. We support this with
the following extension of problem formulation. Instead of
using one swap decision variable xi for each tenant Ti, we
can use a variable xi,k, for k-th secondary replica Rs,k

i of

Tenant Ti. xi,k = 1 means swapping Rs,k
i with Rp

i and

xi,k = 0 means no swapping for Rs,k
i .

Since the primary replica can be swapped with only one
of the secondary replicas, the following constraint is added
for each tenant:

KiX
k=1

xi,k ≤ 1 (5)

where Ki is the number of secondary replicas of tenant Ti.
Also we need to replace xR in the original problem formu-

lation’s constraints with xi,k if R is a secondary replica, or
KiP

k=1

xi,k, if R is a primary replica.

3.3 Swap Sequencing and Parallelization
Once we have found the optimal swap set, we need to

execute them in a certain sequence. However, a random
execution order may create undesirable temporary hotspots
during the swap executions. For instance, in Figure 5(c),
consider swapping T1 and then T3. Between the two ex-
ecutions, there will be a temporary hotspot in the server
S2. Hence, T3 should be swapped first and then T1, since
otherwise it would create a temporary hotspot in the server
S2. Another issue is parallel execution. Since a sequential
execution of all swaps may take too long to finish load bal-
ancing, parallel execution is desired. However, some swaps,
when executed in parallel, may again create some temporary
hotspot as above, in a non-deterministic fashion.

Our goal here is to minimize, or avoid if possible, the
temporary hotspots during the operator execution, while
minimizing the number of sequential steps through paral-
lelization. The key idea is to execute all swap operators in
parallel that will not make their destinations (i.e., the server
with the secondary replica) overloaded.

To solve this problem, we first construct a workload trans-
fer graph as follows: we model the servers as vertices in a
graph and an operator that swaps a primary replica at server
Si and a secondary replica at server Sj as an edge from Si

to Sj . The label of the edge is the corresponding load differ-
ence, i.e., primary replica’s load minus secondary replica’s
load. We traverse the workload transfer graph in a reverse
order: in each iteration, we take all the sink nodes of the
graph and execute all the swaps that transfer workload into
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Input : Workload information and current tenant placement
Input : Hotspot threshold LT H

Input : Load skew limit F , e.g., 1.5
Input : A list of load skew limit target values Ftgt, e.g., 1.1,

1.3, 1.5
Output: A set of swap operators
Lavg ← average of all servers loads
flag ← false foreach Sj of all servers do

if LSj
> Ftgt × Lavg then

flag ← true
end

end
if flag is false then

return ‘no action needed’
end
foreach Ft of Ftgt do

Solution← Hotspot elimination solution with Eqn 2’s rhs
as min(Lavg × Ft, LT H)
if Solution is feasible then

return Solution
end

end

return ‘no feasible solution’

Algorithm 1: Load Leveling

Input : Swap operators SWi, 1 ≤ i ≤ NSW that form DAG
Input : A set of servers Ssink involved in SWi, 1 ≤ i ≤ NS

Output: SwapOpSequence[j]
for j ← 1 to NS do

if Sj has no outgoing-edge swap then
Add Sj to the set Ssink

end

end
while Ssink 6= ∅ do

foreach Sj in Ssink do
Pick an incoming-edge swap SWi and append it to
SwapOpSequence[j]
Remove SWi from its destination server Sj and the
source server Sj2.
If Sj has no incoming edge, remove it from Ssink.
If Sj2 has no outgoing edge, add it to Ssink.

end
Append a null to SwapOpSequence[j], which means a
parallel execution boundary.

end

Algorithm 2: Swap Sequencing and Parallelization

the sink nodes, since the sink nodes do not get overloaded
even with these load increases. Also all these swaps can be
executed in parallel as they do not create overload. We move
on to the next iteration with the newly created sinks by re-
moving the swap-edges executed in the previous iteration,
and keep traversing the graph toward the original hotspots,
resolving them in the end. The algorithm is shown in Algo-
rithm 2, which works for DAG (Directed Acyclic Graph).

When there are cycles within the graph, we first find and
remove cycles, and then apply the DAG swap sequencing.
Cycles are detected using Tarjan’s algorithm [17]. For each
cycle, we compute the expected total load Lnew of each
server node comprising the cycle when all incoming-edge
swaps are executed. Among those nodes, we find the one
with the lowest Lnew and apply all its incoming-edge swaps,
and break the cycle.

Swap Execution In the end, the algorithm creates a load
balance solution instance, which consists of a sequence of
swap batches. Each swap batch contains one or more swap
operators that run in parallel. When all swap operators
within a batch finish, the next swap batch starts execution.
When all batches finish, the load balancing solution instance
is finished.

4. EXPERIMENTAL STUDY
In this section, we evaluate the effectiveness and the scal-

ability of our replica swap-based load balancing by system-
atically varying comprehensive set of relevant dimensions in
the system settings as follows: Workloads: 1) Benchmark
workloads, 2) Real workload traces. Spikes: 1) Controlled
spikes to test under different conditions, 2) Real workload
spikes. Read/Write Ratios: Varying read/write ratios
for all tenants, 2) Different read/write ratios among the ten-
ants. Resource Types: 1) Single bottleneck resource type,
2) Multiple bottleneck resource types. We executed the ex-
periments with multiple secondary replicas. We also report
on the individual features of SWAP and the scalibilty of the
ILP solution.

4.1 Experiment Setup
Systems We use six machines with Intel Xeon E5620

2.4GHz processors with 16GB of memory. Five are used
as database servers and one as a client machine. MySQL
5.5 is used with InnoDB and a 1GB bufferpool. Each tenant
replica uses a private MySQL instance. Each tenant has its
own separate query queue in the middleware with the simple
FCFS scheduling policy, and four connections per tenant are
used to execute queries on the private MySQL process, i.e.,
MPL=4. MySQL asynchronous replication is used, with one
master and one or two slaves for each tenant.

Database and Queries: We use TPC-W database, gen-
erated using 100,000 items and 300 emulated browsers (EB’s),
which makes 1GB of raw data size. We create 50 tenants,
each has two to three replicas and 1GB data per replica.
Tenants’ workload consist of one read and one updated query
from the TPC-W queries. We first use 50-50 mix of read
and write queries as the default, and later also vary the ra-
tio in some of the experiments to show the effect of varying
read/write mix ratios.

Traffic Trace: For a meaningful evaluation of load bal-
ancing methods, it is important to use a realistic multitenant
workload trace that has traffic changes and spikes over time.
Given that we use TPC-W dataset, it would be ideal to use
either TPC-W workload pattern, or a real-world traces from
an e-commerce site. The former is not suitable since TPC-
W workload is too smooth and does not capture fluctuating
real-workload pattern that we aim to address [18].

We used two setups as follows. First, we employ a syn-
thetic spike generator [12] to generate volume spikes of indi-
vidual tenants. This allows us to control several parameters
and create different spike patterns, which characterize the
increased workload and noisy neighbor situations discussed
before. The second is to use a real-world trace captured from
Yahoo Video site4, which is described in [19]. We obtained
the video item access counts over time, and use this as a traf-
fic trace for multiple tenants, such that a video item repre-
sents a tenant. The main value of this trace is the multi-item
popularity distribution and spikes in the real-world that is
a distinguishing characteristic of a multi-tenant DB. These
two traces provide arrival rate during a small time period
(e.g., 10 second), and we generate individual query arrival
time using the open-system model [20], and Poisson arrival.

Placement: We place 50 tenants, each with two to three
replicas, over 5 servers in a random fashion, while ensuring
that a single server contains at most one replica of a tenant.

4http://video.yahoo.com
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Figure 7: Spike Workload Multiplication Factor

Solver: We use lp solve 5.5.2.05, an open source mixed
integer linear programming (MILP) solver. It is written in
C, and we used Java wrapper provided at the lp solve web-
site to link it to our Java-based middleware. To make a fast
load balancing action, we limit the solver running time to
one second, which is the smallest possible timeout that this
specific solver allows. If there is an optimal or a subopti-
mal solution found within the time limit, it is used. Other-
wise, we consider it infeasible. As we report in Section 4.3.4,
lp solve finds high quality solutions even with this short time
budget.

Evaluation Metric: By considering the nature of cloud-
based service offerings, we focus on Service Level Agree-
ment (SLA) performance in terms of query response time.
Therefore the desired level of service, i.e., response time, de-
fines the provider’s Service Level Objective (SLO) and the
provider tries to conform to the SLOs. We use the SLO
achievement/violation percentage as our main performance
metric to show the effectiveness of our load balancing tech-
nique in reducing the SLO violations. To be more specific,
we count how many queries had a response time greater than
the SLO of x second, where we experimented with a range
of x values6.

4.2 Trace Type 1: Synthetic Spikes
In this subsection, we use synthetically generated spike

traces, based on [12]. We first decide baseline traffic inten-
sity by multiplying a constant so that 50 tenants on 5 servers
without a spike will be 50% CPU-saturated. Then we cre-
ate volume spikes, whose general pattern is shown in [12],
which is reproduced here in Figure 7 for convenience. The
spikes’ peak height is decided by a parameter SpikeHeight,
in the range of 10 to 30, in the following experiments. These
spikes provide a multiplication factor, which is multiplied to
the baseline traffic to generate spike workload.

For a given tenant, spikes are generated based on a pa-
rameter, i.e., SpikeProbability, which is defined as the prob-
ability of having a spike at a randomly chosen time instance.
We use the range of 10% to 30% for the variable in the ex-
periments below. We also control the duration of individual
spikes, using the parameter SpikeDuration, which takes the
value of 2 to 12 minutes. For the queries, We use the work-
load of 50-50 read-write mix with TPC-W queries mentioned
above.

Note that all tenants have the same baseline traffic and
spike characteristic, to keep it easy to analyze the workload
pattern, load balancing behavior, and query performance.
In the next subsection, where we use Yahoo Video trace,
we consider the case where different tenants have different
popularities. Also note that we use one primary and two
secondary replicas here, i.e., total of three replicas per ten-
ant.

Results with varying spike probability is shown in Fig-

5http://lpsolve.sourceforge.net/5.5/
6A survey on general user behaviors under the various sys-
tem response times can be found in[21].

ure 8(a), where SpikeHeight and SpikeDuration are fixed at
20 and 6 minutes. It shows average query response time and
SLO violation with 5 second SLO, for no load balancing and
swap. When the spike probability is 10% and the overall
load is low, both no load balancing, referred to as noLB,
and swap have very low SLO violation and response time.
When the spike probability is 15 to 30%, and the servers
are mostly saturated, swap effectively reduces SLO viola-
tion and response time, compared with noLB. Figure 8(b)
shows similar results as above, where we vary spike height,
with SpikeProbability and SpikeDuration fixed at 20% and
6 minutes. We also control SpikeDuration in Figure 8(c).
In case of no load balancing, longer spikes have a smaller
impact on performance, mainly due to the data caching ef-
fect. Under longer spikes, swap makes a bigger improvement
compared to noLB, as it benefits better from individual load
balancing actions under the longer-persisting load patterns.

In Figure 8(a), we implemented and compared with a
migration-based load balancing method. While there are
many different types of data migration methods as suggested
in [15], we consider a simple and fast method, stop-and-copy:
database migration with service interruption and data trans-
fer through file copy. We also use the greedy method pro-
posed in [22]: from the most overloaded server, we choose
a tenant with the highest load-divided-by-data-size, which
is called in BSR (Bandwidth-to-Size-Ratio), in the original
paper. We then move it to least-loaded server that can serve
this tenant without getting overloaded beyond the hotspot
threshold.

The results show that migration performs worse than noLB
in general, within the short time frame of 10 min run that
we use here. One exception is the case of SpikeProbabil-
ity=30%, where migration makes an adjustment of heavy
load imbalance that pays off. These results are consistent
with the expectations from the migration and our overload
resolution problem space discussed before. Therefore, in the
following experiments, we focus on the performance compar-
ison between noLB and swap as migration tends to perform
worse than noLB under the evaluation scenarios used.

4.3 Trace Type 2: Yahoo Video Access
Now we turn to another type of trace, the item access

count at Yahoo video site [19]. We use the 5 day worth
of the data set, between Oct. 3, 2007 4:30pm and Oct. 8,
2007, 4:30pm, collected by a crawler. It extracted the visitor
counts of individual video items every 30 mins, and took the
difference between two consecutive measurements to get the
video access count during the interval. Then, the length of
each video item is multiplied to its access count, to estimate
the server load, as done in [19].

We use the top 50 video items with the highest average
load to get the workload traces of 50 tenants. Later, we
also use the top 500 and the top 3000 to set up bigger size
problem instances for scalability evaluation. We use one pri-
mary and one secondary replica per tenant in the following
experiments. We tune the level of overall traffic intensity,
i.e., query arrival rate, so that the maximum aggregate load
would slightly overload the entire cluster under no load bal-
ancing, where we get about 2 to 5 % of queries violating the
SLO of 5 second response time, in a similar fashion to [9].

Since the observation is done every 30 minutes, there are
5*48=240 observations, or 240 intervals, over 5 days of wall-
clock time. Exact replay of the original trace would take 5
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Figure 8: Results for Spike Trace Workload (50% Write, 50 Tenants, Three Replicas, and 5 sec SLO)

days to run a single experiment, which is too long. So we
scale down the experiment by playing the workload of 30
minute interval during 30 seconds. With this 60-to-1 time
scale reduction, one run of the experiment takes 2 hours.
We repeat three runs and report the mean, and also the
standard deviation as error bars, whenever appropriate.

4.3.1 50-50 Read-Write Ratio
In this experiment, we use a 50-50 mix of read queries and

update queries. We observe that this specific mix uses CPU
and I/O capacities similarly, a bit heavier on the I/O. Given
that I/O is the dominant resource here that creates the bot-
tleneck, we run our load balancing based I/O only in this
experiment. Note that later in Section 4.3.3, we run exper-
iments where multiple resources may become a bottleneck,
and use load balancing based on multiple resources.

Summary Figure 9 shows the SLO performance with a
various SLOs. Focusing on 5-sec SLO, noLB violates SLO
for 2.3% of queries. Swap-based load balancing effectively
lowers the SLO violation down to 0.30% with 5-sec SLO,
achieving 7.7 times reduction of violation when compared
with noLB. As expected, main strengths of swap opera-
tors are: i) small latencies for individual swap operations
and ii) little resource contention with the regular workload
queries. Across all SLOs, swap significantly reduces the vi-
olation count compared with noLB. Also note that no load
balancing has the average response time of 399 msec, while
it is 169 msec for swap.

Figure 10 shows the cumulative distribution of swap op-
erator durations, swap batch durations, and swap-based load
balancing instance durations, which are defined in Section 3.3.
It shows a long tail pattern, where most of them finish
quickly, while small portion takes a longer time to finish
mainly for the resource contention on CPU and I/O with
the regular workload. 95% of individual swap operators take
613 ms or less, and 95% of a single load balancing instance
take 1642 ms or less.

Fine-granularity Performance Here we present fine
granularity experiments by zooming in to specific parts of
the workload. These parts are good representatives of many
common workload types that can be observed in real appli-
cation environments. Figure 11 shows three different parts
of read-write mix workload results. The X-axis shows the
real time since the beginning of the trace. The line of query
count indicates the total query count that arrived during
each 5 second interval. The lines of noLB violation and
swap violation refer to the respective numbers of SLO viola-
tions, out of the given query count. Swap detects a hotspot,

3

4

5

6

S
LO

 V
io

la
ti

o
n

 (
%

)

noLB

swap

0

1

2

1 2 3 4 5 6 7 8 9 10

S
LO

 V
io

la
ti

o
n

 (
%

)

SLO (sec)SLO (sec)

Figure 9: Yahoo Video Trace 50% Write Workload
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Figure 10: Yahoo Video Trace Swap Duration

and based on its hotspot mitigation, it executes 11 replica
swaps, which takes 761 ms. After this quick resolution, the
single overloaded server gets a reduced load, which is still
slightly over the hotspot threshold, but low enough to avoid
actual SLO violation. Figure 11(b) shows the case where
both noLB and swap experience violations. Here the over-
all traffic is so high that load balancing cannot help. Swap
applies a solution of hotspot mitigation here, running two
swaps during 905 ms. This drops the loads somewhat on
the three overloaded servers, by transferring some workload
to the non-overloaded servers. As a result, the graph area
below swap curve is a bit smaller than that below noLB
curve.

Features of Swap-based Load Balancing We evalu-
ate the effectiveness of individual features in the swap-based
load balancing as in Figure 12. The left four bars show the
effect of load leveling of Section 3.2.3 and hotspot mitiga-
tion of Section 3.2.2. As we compare default (i.e., using
both load leveling and hotspot mitigation) and noLL (i.e.,
default, but without load leveling), we see that load leveling
does not affect the average SLO violation, but reduces vari-
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Figure 14: Yahoo Video Trace CPU utilization (Server 2)
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Figure 11: Yahoo Video Trace Workload Zoom-in
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Figure 12: Features of Swap-based Load Balancing

ance across multiple runs in our experiment. It seems that
load leveling contributes to the stable performance results
due to its load balancing action even before the actual over-
load and performance degradation. default vs. noHM (i.e.,
default, but without hotspot mitigation) shows that hotspot
mitigation significantly contributes to the reduction of SLO
violation, as expected. default vs. noLL/HM (i.e., default,
but without load leveling and hotspot mitigation) shows the
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Figure 13: Yahoo Video Trace with Varying Read-
Write Ratios (3 runs with 5 sec SLO)

combined effect of missing load leveling and hotspot miti-
gation, which is increased average violation and increased
variance.

Default vs. no-log-gap-limit shows the effect of primary-
secondary log gap limit of Section 3.1. Note that we use
10,000 statements as the log gap limit between the pri-
mary and the secondary replicas, which seems to work well.
Clearly, performance improves when we exclude the tenants
with the high log gap from the swap candidate list.

Default, all-serial, and all-parallel show the effect of batch
parallel execution discussed in Section 3.3. Note that full se-
quential execution (serial-exec) use the same swap sequenc-
ing mentioned in Section 3.3 except parallelization, and single-
batch full parallel (full-par-exec) runs all swap operators in
parallel. Both serial-exec and full-par-exec increase SLO vi-
olations: the former takes too long to finish the swap, and
the latter adds temporary hotspots on some server nodes.
Our batch-parallel scheduling shortens the entire duration,
while ensuring that each server node does not get temporar-
ily overloaded during the swap.

4.3.2 Varying Read-Write Ratios
We now vary the write query ratio in the workloads to

see the effect of I/O on the load balance performance. Fig-
ure 13 shows the results for three different write ratios, 25%,
50% (reported earlier), and 100%. We note that real OLTP
workloads often have the write ratio between 5 and 50%,
and 100% workload is a rather extreme case that we use to
stress-test our method. Here we use a load balancing based
on the single dominant resource, namely CPU for 25% write,
and I/O for 100% write.

Swap-based load balancing consistently outperforms the
others. However, the improvement margin reduces with a
high write ratio. Through close-up observation, we reveal
the following reason for that. When we stop sending the
write workload to the master node, it suddenly becomes a
quiet MySQL instance, other than that it now needs to act
as a slave node and execute the relay log received from the
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new master. This work is handled by MySQL slave thread
and the master thread that handles the regular workload
suddenly becomes idle. With the master thread being idle,
MySQL kicks in dirty page flushing from memory to the
disk, to better utilize the idle I/O cycle. However, this is
not true in our multitenant system, because there are other
MySQL instances running within the same server, which
are often busy with their own I/O workloads. Therefore,
MySQL temporarily creates I/O resource contention within
the server, which our swap-based load balancing algorithm
does not take into consideration. Because of this, we tend
to encounter some unexpected SLO violations.

We envision two possible solutions for this. One is to ex-
tend the framework of swap-based load balancing to cope
with such temporary I/O spikes right after the swap opera-
tion, which is an interesting future work to pursue. Another
option is to consider a different multitenancy architecture
that fundamentally avoids this problem, namely shared in-
stance multitenancy. We plan to investigate these directions
in the future.

4.3.3 Tenants with Different Read-Write Ratios
In the previous experiments, we have used various work-

load mixes across different experiments, while all tenants
shared the same mix within an experiment. Hence, hotspots
were caused by a single dominant resource type within an
experiment, e.g., I/O for the write-only mix. We now con-
sider a case where different tenants have different workload
mixes, i.e., one half of tenants run the read-only workload
and another half run the write-only workload. Now different
resources can create hotspots at different times, which we
verified by checking the resource usage statistics discussed
below. Swap again effectively reduces SLA violations, from
3.22% to 1.86%.

Here we also examine the low-level resource consumption
on the servers. Due to the space limitation, out of five
servers used, we pick one server that experiences the most
frequent overloads and report its resource utilization during
the first third of the experiment run, i.e., first 2400 sec, in
Figure 14. Note that we show only CPU here, due to the
space limitation, while the I/O statistics are omitted. Each
point is a 10 second average CPU utilization. The figure
shows the load placed on the server by the initial placement,
relative to its capacity (i.e., noLB). Without load balancing
the initial placement hits 100% utilization, e.g., at 1100 sec,
which leads to SLO violations. Swap quickly detects the
overload situations and manages to drop the CPU utiliza-
tion, thereby reducing SLO violations.

4.3.4 ILP Solver Scalability
SWAT formulates load leveling, hotspot elimination, and

hotspot mitigation as ILP. Since ILP is an NP-complete
problem, we accept the solution if a solver finds one within
the time limit. Otherwise we declare the problem infeasi-
ble. In this subsection, we examine the impact of various
timeout budgets and the effect of increasing number of ten-
ants on the solution quality. We use three different problem
scales: we sort all 3087 tenants available in the trace data,
and pick the top 50 tenants, 500 tenants, and 3000 tenants,
respectively, to create three different scales of experiments.
In each case, we use 5 servers, 13 servers, and 15 servers,
respectively, to keep the per-server average workload at the
similar level. Note that the first case is the same setup used
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Figure 15: ILP Avg Elapsed Time under Timeout

in the previous experiments.
Figure 15 shows the average elapsed time of the solver. 50

tenant scale runs the fastest, with 14.6, 24.1, 47.4, and 68.6
msec under the timeout of 1 sec, 2 sec, 5 sec, and 10 sec,
respectively. As the problem scale grows, the solver time
also grows, in a logarithmic fashion.

Figure 16 shows the solution types with the varying levels
of timeouts. There are four different solution types: i) there
is no solution that satisfies the given ILP (infeasible), ii)
the ILP is feasible, and an optimal solution is found, iii) the
ILP is feasible, and a suboptimal solution is found due to the
timeout, and iv) the solver could neither declare the infeasi-
bility nor find any solution within the timeout (timeout). 50
tenant case in Figure 16(a) shows i) zero timeout cases under
a very short timeout budgets, e.g., 1 sec, ii) high chances of
finding optimal solutions (about 90% among feasible cases)
even under the short timeout budgets like 1 second. With
the larger scales in Figure 16(b) and Figure 16(c), we get a
small portion of timeouts and also the portion of subopti-
mal solutions among feasible cases increase. Note that the
increased timeout improves the solution, but only in an slow,
incremental fashion.

To further examine the quality of suboptimal solutions,
we look at the value of the objective functions from the ob-
tained solutions. While we omit the detailed result due to
the space limitation, the highlight is as follows: the solver
finds solutions of reasonably good quality under short time-
out of 1 second, which incurs less than 40% of extra workload
interruption due to the swaps, compared to the solution with
a very large time budget of 1000 sec, at the large scale of
3000 tenants.

It is important to note that as tenant migration (swap-
ping) algorithms are not interactive algorithms, their run-
ning times are not as critical. Even with extremely large
number of tenants, typically the tenants are clustered and
the migrations are executed on the clusters rather than the
whole data center. Hence, the scalability of the ILP solution
should generally be acceptable.

5. RELATED WORK
Load Balancing on Shared-Nothing Recently, database

migration has been studied in the context of multitenant
databases [15]. The main focus is on migration options and
costs within various multitenant architectures. Also, [14]
discusses migration-based load balancing in the context of
multitenant DBs, suggesting an approach of on-demand mi-
gration, where the migration lazily moves the data as it is
needed at the destination. [13] proposed a novel and efficient
live migration method, where both source and destination
nodes are used for executing transactions during the migra-
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Figure 16: ILP Solution Optimality under Various Timeout Budgets

tion. This type of live migration can be employed for the
case where SWAT cannot completely eliminate hotspots.

Multitenant DBMS Microsoft SQL Azure [1, 2] and
Amazon RDS support multitenant DBMS as a service, where
each tenant is replicated and runs on a private instance,
which are very similar to our system architecture. Notably,
[1, 2] suggest that replica swap can be used for load balanc-
ing in multitenant databases, but they do not discuss any
specific load balancing problem definition or a solution.

6. CONCLUSION
In this paper, we have proposed SWAT, a novel load bal-

ancing method for multitenant databases. Using replica
role-swap and an ILP-based load balance method, it quickly
finds and realizes load balancing in a lightweight manner.
We have shown the effectiveness of SWAT using real trace
data from Yahoo Video site, where our method significantly
reduces the SLO violations compared with no load balancing
and migration-based load balancing.

7. ACKNOWLEDGEMENT
We thank Michael Carey, Hector Garcia-Molina, and Jef-

frey Naughton for the insightful discussions and the contri-
butions.

8. REFERENCES
[1] D. G. Campbell, G. Kakivaya, and N. Ellis, “Extreme scale

with full sql language support in microsoft sql azure,” in
SIGMOD Conference, 2010.

[2] P. Bernstein, I. Cseri, N. Dani, N. Ellis, G. Kakivaya,
A. Kalhan, D. Lomet, R. Manne, L. Novik, and T. Talius,
“Adapting microsoft sql server for cloud computing,” in
ICDE, 2011.

[3] C. Curino, E. P. C. Jones, S. Madden, and
H. Balakrishnan, “Workload-aware database monitoring
and consolidation,” in SIGMOD, 2011.

[4] H. Hacigumus, J. Tatemura, W.-P. Hsiung, H. J. Moon,
O. Po, A. Sawires, Y. Chi, and H. Jafarpour, “Clouddb:
One size fits all revived,” in IEEE SERVICES, 2010.

[5] F. Yang, J. Shanmugasundaram, and R. Yemeni, “A
scalable data platform for a large number of small
applications,” in CIDR, 2009.

[6] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and
J. Rittinger, “Multi-tenant databases for software as a
service: schema-mapping techniques,” in SIGMOD
Conference, 2008.

[7] S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold, “A
comparison of flexible schemas for software as a service,” in
SIGMOD Conference, 2009.

[8] M. Hui, D. Jiang, G. Li, and Y. Zhou, “Supporting
database applications as a service,” in ICDE, 2009.

[9] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner,
and A. Zeier, “Predicting in-memory database performance
for automating cluster management tasks,” in ICDE, 2011.

[10] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigumus, “Intelligent management of virtualized
resources for database management systems in cloud
environment,” in ICDE, 2011.

[11] A. Williamson, “Has amazon ec2 become over subscribed?
http://alan.blog-
city.com/has amazon ec2 become over subscribed.htm,”
2010.

[12] P. Bod́ık, A. Fox, M. J. Franklin, M. I. Jordan, and D. A.
Patterson, “Characterizing, modeling, and generating
workload spikes for stateful services,” in SoCC, 2010, pp.
241–252.

[13] A. Elmore, S. Das, D. Agrawal, and A. E. Abbadi, “Zephyr:
Live migration in shared nothing databases for elastic cloud
platforms,” in SIGMOD, 2011.

[14] C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu,
S. Madden, H. Balakrishnan, and N. Zeldovich, “Relational
cloud: a database service for the cloud,” in CIDR, 2011.

[15] A. Elmore, S. Das, D. Agrawal, and A. E. Abbadi, “Who’s
driving this cloud? towards efficient migration for elastic
and autonomic multitenant databases,” UCSB CS Dept
Technical Report, 2010.

[16] “Amazon Relational Database Service.
http://aws.amazon.com/rds/.”

[17] R. Tarjan, “Depth-first search and linear graph algorithms,”
SIAM Journal on Computing, vol. 1, no. 2, pp. 146–160,
1972. [Online]. Available:
http://link.aip.org/link/?SMJ/1/146/1

[18] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting
realistic burstiness to a traditional client-server
benchmark,” in ICAC, 2009.

[19] X. Kang, H. Zhang, G. Jiang, H. Chen, X. Meng, and
K. Yoshihira, “Understanding internet video sharing site
workload: A view from data center design,” Journal of
Visual Communication and Image Representation, vol. 21,
no. 2, pp. 129 – 138, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/B6WMK-
4WP47N9-1/2/807b970ad06411a4026c2e6d33dbe600

[20] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Closed
versus open system models: a cautionary tale,” in NSDI,
2006.

[21] B. Shneiderman, “Response time and display rate in human
performance with computers,” ACM Comput. Surv.,
vol. 16, pp. 265–285, September 1984. [Online]. Available:
http://doi.acm.org/10.1145/2514.2517

[22] V. Sundaram, T. Wood, and P. J. Shenoy, “Efficient data
migration in self-managing storage systems,” in ICAC,
2006.

76




