
History Repeats Itself:

Sensible and NonsenSQL Aspects of the NoSQL Hoopla
 C. Mohan

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120, USA
+1 408 927 1733

cmohan@us.ibm.com

ABSTRACT

In this paper, I describe some of the recent developments in the

database management area, in particular the NoSQL phenomenon

and the hoopla associated with it. The goal of the paper is not to

do an exhaustive survey of NoSQL systems. The aim is to do a

broad brush analysis of what these developments mean - the good

and the bad aspects! Based on my more than three decades of

database systems work in the research and product arenas, I will

outline what are many of the pitfalls to avoid since there is

currently a mad rush to develop and adopt a plethora of NoSQL

systems in a segment of the IT population, including the research

community. In rushing to develop these systems to overcome

some of the shortcomings of the relational systems, many good

principles of the latter, which go beyond the relational model and

the SQL language, have been left by the wayside. Now many of

the features that were initially discarded as unnecessary in the

NoSQL systems are being brought in, but unfortunately in ad hoc

ways. Hopefully, the lessons learnt over three decades with

relational and other systems would not go to waste and we

wouldn’t let history repeat itself with respect to simple minded

approaches leading to enormous pain later on for developers as

well as users of the NoSQL systems!

Caveat: What I express in this paper are my personal opinions

and they do not necessarily reflect the opinions of my employer.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – distributed databases,

query processing, relational databases, transaction processing

General Terms

Algorithms, Design, Documentation, Languages, Management,

Measurement, Performance, Reliability, Standardization

Keywords

APIs, Data Models, DBMS, HBase, Hype, In-memory, JSON,

MongoDB, NoSQL, Optimization, RDBMS, SQL

1. INTRODUCTION
Over the last few years, many new types of database management

systems (DBMSs) have emerged which are being labeled as

NoSQL systems. These systems have different design points

compared to the relational DBMSs (RDBMSs), like DB2 and

Oracle, which have now existed for about 3 decades with SQL as

their query language. The NoSQL wave was initially triggered not

by the traditional software product companies but by the non-

traditional, namely the Web 2.0, companies like Amazon,

Facebook, Google and Yahoo. Some of the NoSQL systems

which have emerged from such companies are BigTable,

Cassandra [14], Dynamo and HBase. Different types of NoSQL

systems have emerged. Some of the types are: key-value stores,

document DBMSs, graph DBMSs and column-oriented stores.

There are older non-relational systems that are also being

classified these days as NoSQL systems: object-oriented

(OODBMSs) and XML DBMSs.

Of late, a good amount of the momentum for the NoSQL

developments is also being provided by a number of smaller

software companies which are fuelled by venture funding [22]

and/or the open-source movement. Some of the systems emerging

from such efforts are Aerospike (formerly Citrusleaf), Couchbase,

MongoDB and Riak. Oracle has also enhanced its previously

acquired product Berkeley DB Java Edition with additional

features that are found in many NoSQL products. This product is

called Oracle NoSQL Database [11]. For XML data and graph

data, IBM supports them via its enhancements to DB2 (pureXML

and SPARQL NoSQL Graph Store features). Also, HBase is

included as a component of the IBM InfoSphere BigInsights

product which is targeted at the big data market.

The goal of the paper is not to do an exhaustive survey of NoSQL

systems (see [10, 12, 13, 18, 21, 22] for more information on

them), nor is it to get into too many details of any specific

systems. The aim is to do a broad brush analysis of what these

NoSQL developments mean - the good (sensible) and the bad

(what I have termed in the title of the paper, in a tongue-in-cheek

way, as NonsenSQL) aspects! This paper is a follow up to my

year-ago series of blog posts focused on NoSQL systems [5].

Since that time, in spite of all the hype about NoSQL systems, it

has been good to see thoughtful articles like [20] which have tried

to provide some reality checks and bring about some sanity to the

discussions!

The emergence of the NoSQL systems has been triggered by a

number of considerations in the context of certain types of

applications, typically Web 2.0 ones, for which RDBMSs were

found to be inadequate for a number of reasons:

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

EDBT/ICDT '13, March 18–22, 2013, Genoa, Italy

Copyright 2013 ACM 978-1-4503-1597-5/13/03…$15.00.

11

• The limitations of the relational model for modeling the Web

2.0 kind of data were found to be the most problematic. Web

data like logs of activities in an e-commerce site or data

managed by social media applications like Facebook is not

very structured and, even when it is structured, the structure

changes a lot over time. For such data, the relational model is

found to be very rigid. Traditionally, RDBMSs haven’t been

very good in their support for schema evolution. More recent

enhancements to RDBMSs to support native storage of XML

and querying via XQuery aren’t considered as providing

sufficient flexibility by some people for their needs.

• Compared to when RDBMSs were originally developed

three decades ago, with the emergence of popular new

programming languages like Java, JavaScript, Perl and

Python, native support for data interchange or data storage

formats like JSON (JavaScript Object Notation) and BSON

(Binary JSON) were considered to be essential or at least

desirable in the modern DBMSs.

• Another perceived limitation of RDBMSs was the need for

the programmers writing data manipulation code having to

learn SQL for that purpose in addition to being experts in a

regular programming language in which the SQL calls would

be embedded. This is a programmer productivity argument

that favors a single language for both imperative

programming and persistent data manipulation. This is in

many ways a revival of the topic of persistent object systems

(POS) which have been worked on since the 1980s with

many conferences/workshops devoted to the topic! In fact,

[9] discusses in detail how concepts in the MUMPS

language from the 1960s have been used to produce two

products, GT.M (first deployed in 1986!) and InterSystems

Caché, which are presented as superior NoSQL products!

• In the minds of some people, access to the source code of the

DBMS being used and the freedom to be able to modify that

code to suit their specific needs were also relevant factors.

This encouraged the adoption of the open source paradigm in

the case of a number of NoSQL systems. For some users,

such open source software is attractive from a cost viewpoint

even if they have to pay for the services provided by a

software company that supports such a product. Companies

like 10Gen, Basho, Couchbase and DataStax are providing

commercial support for the open source NoSQL systems

MongoDB, Riak, Couchbase and Cassandra.

• For certain types of application requirements like very large

volumes of data to be handled and the response times that

needed to be provided for some simple data accesses,

RDMSs’ pathlengths and other costs were considered to be

unacceptable. This has caused a number of systems to adopt

various types of in-memory and data partitioning

(“sharding”) technologies and efficient access methods like

hashing for single data item accesses based on a primary key.

• With the emergence of cloud computing and huge data

centers being set up by the large Web 2.0 companies for their

own usage and sometimes for serving the compute and

storage needs of others via cloud services, the desire to use

commodity servers/disks has become a dominant theme. This

in conjunction with the need to handle much larger volumes

of heterogeneous, semi/unstructured data has, in the minds of

many people, warranted the development of much more

scalable databases compared to what RDBMSs have

traditionally supported.

• In conjunction with the desire to support databases scaling to

hundreds, if not thousands, of servers, arose the consequent

need to support more graceful ways of dealing with failures

of individual nodes via sophisticated replication schemes.

• The consistency requirements of the new types of

applications were also deemed to be less stringent than the

ones demanded by traditional OLTP style applications for

which the relational and non-relational transaction

processing systems of the past were designed.

I am not fundamentally against the emergence of NoSQL systems

or anything like that. I am glad that certain database requirements

that had long been ignored or not handled as effectively by

RDBMSs have been focused on by the NoSQL system builders.

My concern has much more to do with how the latter are being

architected and how the design choices being made are

documented and rationalized.

Not all of the concepts/ideas currently hyped about in the context

of NoSQL systems are that novel as their proponents would have

you believe. For some of the NoSQL people either their memory

is bad or they are too young to know personally from experience

about what has been done in the past and the lessons learnt as

different approaches were tried out. As I will discuss in detail

later, many of the supposedly-novel ideas have been around for a

long time.

In certain segments of the information technology (IT) and

venture capital (VC) communities, there is too much hoopla

associated with the NoSQL movement and some of that has also

impacted the traditional database research community in industry

and academia. At times there is an “anything goes” attitude

amongst a significant fraction of the people using and/or working

on such systems. Of late, it has become fashionable to discredit

RDBMSs, and a significant chunk of the technologies that have

been laboriously thought about and worked out over the last few

decades. Some inconvenient/inadequate features of RDBMSs in

certain contexts have been used as arguments to “throw the baby

with the bath water” while coming up with alternatives. As some

of us anticipated, many features which were initially considered

unnecessary/undesirable are now being retrofitted to the NoSQL

systems, in many cases in ad hoc and simple-minded ways which

could lead to problems, if not now, in due course of time.

Having worked in the database field for more than 3 decades with

a fair amount of impact on the research and commercial sides of

this field (see http://bit.ly/cmohan), it pains me to see the casual

way in which some recent system designs have been done and

some supposedly new ideas get proposed/implemented. Not

enough efforts are being made to relate these proposals to what

has been done in the past and benefit from the lessons learnt in the

context of RDBMSs. Not everything needs to be done differently

just because it is supposedly a very different world now!

In the rest of the paper, I will delve into various specific attributes

of the NoSQL systems and discuss where there are similarities to

systems designed decades ago and where legitimately new

approaches might be needed. The goal is to avoid the pitfalls with

starting out with simple designs and then, after realizing their

inadequacies, adding layers of patches to attempt to provide

advanced functionality. This is a recipe for bad architectures and

12

consequently problems in the long term. It would be unfortunate

if we don’t learn from the mistakes of the past and let history

repeat itself.

2. SOME HISTORICAL BACKGROUND
For the skeptical reader, it might be worth pointing out a few

things. I am not an RDBMS bigot! I am open-minded about new

ways of addressing problems and their solutions. I have invented

and transferred technologies to not only IBM and non-IBM

RDBMS products and prototypes but also to non-relational

systems like MQSeries messaging system, Lotus Notes

groupware/document system, WebSphere Application Server,

FlowMark workflow management system, and Parallel Sysplex

Coupling Facility in the mainframe and non-mainframe

environments [4].

I am not trying to claim that I know everything about our

industry/technologies or what matters when, or that I have

definitive ideas about what the right evolutionary path for DBMSs

is. I am merely trying to temper some of the marketing and

technical hype associated with NoSQL and related areas, and to

pass on some caveats and warnings based on my more than 3

decades of experience in the data management field. I am a very

details oriented database person who has worked mostly on

technologies relating to the core of different systems which

manage persistent data of different kinds in distributed and

clustered environments. In my writings and while designing my

algorithms, I have tried hard to dig into what has been done in the

past and document as much of my learning about the prior art and

related work in my papers, crediting the people who did the prior

work.

My comments aren’t targeted merely at one NoSQL system or one

set of people. I would like all sorts of people to give some

attention to what I have to convey regarding NoSQL systems:

entrepreneurs, end users, IT management, systems architects,

designers, marketers, students, industrial researchers,

academicians (pure and those who moonlight on the side as

entrepreneurs and consultants), established little/big industry

people, …

I have closely observed or taken part in the evolution of many

systems the designers of which initially designed their systems

thinking in a simple way but later on had to add more

sophisticated functionality which they found out was very hard to

do. Examples are IBM System/38’s database functionality which

was embedded in the horizontal and vertical microcode of the

system, Lotus Notes which from its beginnings in 1989 has been

architected in many ways like the NoSQL systems of today, and

RDBMSs like mainframe version of DB2, Sybase and SQLServer,

and OODBMs like ObjectStore which started out with page level

locking as the smallest granularity of locking.

S/38 was built from the ground up as an object oriented system

with a single level store concept. It had relational data

management concepts embedded in the guts of the machine even

though it didn’t support SQL for a long time. It relied on the

virtual memory paging subsystem and the file system for

accessing and caching data in memory. There was no buffer

manager as in other RDBMSs of that era. The granularity of

latching during a call to the data manager was an entire table

(locking was at record level). As the S/38 machines became more

powerful and SMPs came into existence, latch conflicts became

severe and the myriad things that took advantage of the table level

latch became very painful to deal with.

Until R5, Lotus Notes had very ad hoc ways of handling recovery,

no proper notion of transactions (as is the case with many NoSQL

systems now) and many non-scalable internal design elements.

Changing that system and adding log-based recovery and

transaction semantics in R5 was quite painful [5]. Initially, it also

didn’t have a buffer manager but instead relied on the file system

doing its caching and it used a single file for storing the whole

database which consisted of a mish-mash of data structures of

varying lengths.

Reducing the smallest granularity of locking from page size to

something smaller was quite painful in RDBMSs/OODBMSs like

DB2, Sybase, SQLServer and ObjectStore. The original lock

granularity had been taken advantage of in many places in

unobvious/subtle ways and those were very tricky to identify and

fix [8].

Transforming a system like DB2, which was originally designed

for a single SMP, to support a multi-system clustered environment

with shared disks was a non-trivial piece of work that required

major changes to the buffer/lock/log/recovery managers [4].

3. General Observations
I am really concerned about some of the design choices already

made or being made in the case of some NoSQL systems. As they

mature and what were initially considered as unnecessary features

start creeping in (due to the slippery slope that these systems are

on when they downsized significantly from the feature set of

RDBMSs), they are going to suffer a lot with growing pains along

the lines discussed for other systems in the last section. I am

unsure of the extent to which the designers of such systems are

conscious of these sorts of consequences of what they have

chosen to do initially, in many cases in simple minded ways.

I tried to demonstrate in our original ARIES paper [8] the benefits

to be had and the need for concurrently thinking about storage

management, locking and recovery, unlike some layered

approaches advocated in some earlier work. I also discussed

numerous approaches to locking and recovery implemented in

relational and non-relational systems which would be worth

paying attention to as NoSQL systems evolve or new ones are

built.

While there is a lot of talk by the NoSQL people about scalability,

elasticity, etc., such design criteria seem to be applied in a spotty

way in the design of their systems. For example, even systems

which support incremental updates, as opposed to batch updates,

don’t seem to think of having to scale along the concurrency

dimension by supporting finer granularity of locking/latching.

Way too much burden is being placed on the laps of the

application writers or database administrators since even

statement level atomicity isn’t guaranteed when a single statement

which updates more than one object encounters a failure of some

sort or the other. Of course, this is a non-issue for many systems

since only a few NoSQL systems support the functionality of

being able to update multiple objects in a single statement!

The lack of standards due to most NoSQL systems creating their

own APIs for data access and manipulation is also going to be a

nightmare in due course of time with respect to porting

applications from one NoSQL system to another. Whether it is an

13

open source system or a proprietary one, users will feel locked in.

All the decades of evangelization that went on about the goodness

of standards seems to have been forgotten in the context of

NoSQL systems. Similarly forgotten are the benefits of high level

query languages and application independence from access path

considerations with the DBMS’s optimizer worrying about such

matters. Most NoSQL systems don’t support high level query

languages with built-in query optimization. Instead, they expect

the application writer to worry about optimizing the execution of

their data access calls with joins or similar operations having to be

implemented in the application. Are application writers now going

to try to master all the decades of sophisticated optimization

technologies that have gone into query optimizers and then

choose to implement a subset of them outside of the DBMS with

all the restrictions that it entails? Even when some restricted SQL

like query functionality is provided and some optimizations are

also done by a NoSQL system, the optimizations are nowhere as

sophisticated as those found in mature RDBMSs. With NoSQL

systems supposedly being intended for managing vast amounts of

data, simple minded optimizations would put us back to the early

days of not-so-sophisticated RDBMS optimizers. We will have a

repetition of history!

4. INDEXING
Most key-value stores have relied on hashing as the indexing

mechanism which in turn has meant that they support only single

object operations and hence a single node of the cluster being

affected by a single API call. As they try to go beyond such a

limited functionality and support general indexing, they are

finding it that much harder to avoid having to access multiple

nodes in processing a single API call. They are rediscovering the

primary and secondary index concepts that have been supported

for a long time in systems like Tandem’s NonStop SQL and even

pre-relational systems like IBM’s IMS! Also, in the case of

partitioned tables in DB2, features like local and global indexes

have been implemented to provide partition independence,

whether or not the system is operating in a shared nothing fashion

[1]. These ideas are also being reinvented without reference to the

past work!

Even notions like delayed updating of indexes that some people

are reinventing now have been done in systems like Lotus Notes

for two decades. Of course, some research literature has also

explored such ideas even if not all of it was fully designed or

implemented.

Index locking and recovery are also so much easer when high

concurrency isn’t a goal! So some systems have chosen to do

some simple minded stuff and they will face hurdles in scaling

those initial approaches to higher concurrency situations since the

initial designs won’t make that job easy.

5. DATA MODELS
While simplicity was touted by some as the reason for going with

NoSQL compared to relational as the data model with SQL as the

query language, in fact some of the NoSQL systems’ data models

are pretty complicated. Unlike in the case RDBMSs, for which a

whole range of database design tools have been developed over

the decades to make the database administrator’s job easier for

making design choices, as far as I know no such tools are

available for the NoSQL systems with complex data models.

Development of such design tools would be good and perhaps

that is an area that the research community could focus on.

With widely varying data modeling constructs provided by the

different advanced NoSQL systems, migrating from one such

system to another would also be a nightmare. The tremendous

efforts that went into standardization with SQL and even XQuery

with the intention of making system migrations a lot easier seem

to have been forgotten by the NoSQL people. While the big Web

2.0 companies might have been able to get away with their

specialized software and the associated issues due to the

sophisticated internal developers available to them, other

enterprises, big or small, might not have the same luxury and

hence they need to be much more cautious about such

considerations in choosing their NoSQL systems for adoption.

While a company like Netflix took the step of migrating from its

own data center to a public cloud and in the process also chose to

migrate from an RDBMS to a NoSQL store [16], it is not clear

how many traditional organizations would be able to do such a

major transformation of their IT infrastructure that would also

require significant application changes and some fundamental

architectural changes. See [17] for the description of what all

problems and choices Netflix had to wrestle with for migrating its

applications.

6. DOCUMENT STORES
Document stores aren’t really new as some people would like you

to believe. Lotus Notes was first released in 1989. From the

beginning, it was designed as a document store with many

associated features like document level authorization, versioning,

indexing, workflow and distribution/replication. It has even had

field level authorization and encryption for security. It was

initially designed for use in small workgroup environments and so

the designers took some short cuts in terms of its various features

which became a big problem later on when scaling had to be

improved dramatically. Having suffered through those painful,

internal design transformations to add those scalability features, it

is troubling to see some of the NoSQL designers repeating those

sorts of mistakes. For example, MongoDB was built with a single

lock covering all the data in a node for concurrency control and

the system doesn’t have its own buffer manager but instead relies

on the file system for caching. It also uses a single writer process.

Couchbase, another document store, does replication of the whole

document even if only a small part of it is changed during an

update operation. While this might be acceptable for small

documents, when documents are really large, this simple approach

could have major performance consequences. Traditional content

management systems have many sophisticated features which are

missing in these modern-day document stores.

7. MYTHS ABOUT TRANSACTIONS
An often referred to distinguishing characteristic of NoSQL

systems compared to traditional DBMSs is that the former don’t

care for ACID transaction functionality. In other words, NoSQL

systems don’t need to support the transaction concept. This is an

oversimplification to say the least. As long as a NoSQL system

supports incremental updates by concurrent set of users (as

opposed to only single-threaded bulk or batch updates), even if

multi-API-calls transactions aren’t supported, at least within the

internals of such a system some notion of transaction is essential

to retain a certain level of sanity of the internal design and to keep

things consistent. This is even more important if the system

14

supports replication and/or the updating of multiple data

structures within the system even in a single API call (e.g., if there

are multiple access paths which have to be updated). Similar

points apply to locking and recovery semantics and functionality.

The above sorts of issues are real and were quite tricky to handle

in Lotus Notes, which used very ad hoc ways of dealing with the

associated complications, until log-based recovery and transaction

support were added in R5 [6]. From its first release in 1989, Notes

has supported replication and disconnected operations with the

consequent issues of potentially conflicting parallel updates

having to be dealt with. Even RDBMSs were late in dealing with

that kind of functionality.

Even if at the individual object level, high concurrency isn’t

important given the nature of a NoSQL application, it might still

be important from the viewpoint of the internal data structures of

the NoSQL system to support high concurrency or fine granularity

locking/latching (e.g., for dealing with concurrent accesses to the

space management related data structures [7]).

Vague discussions about NoSQL systems and ACID semantics

make many people think that RDBMSs enforce strong ACID

semantics all the time. This is completely wrong if by that people

imply serializability as the correctness property for handling

concurrent execution of transactions. Even from the very

beginning, RDBMSs (e.g., the original IBM Research relational

prototype System R and products that came from it) have

supported different degrees of isolation, in some cases even the

option of being able to read uncommitted data, and different

granularities of locking [2]. Even with respect to durability, in-

memory RDBMSs like TimeTen and SolidDB which came much

later, allowed soft commits, etc., trading off durability guarantees

for improved performance. Even the age-old Airline Control

Program (ACP, now called Transaction Processing Facility

(TPF)), which powers the bulk of the world’s airline reservation

systems, made such tradeoffs.

This whole space of data management is a tricky business. The

devil is in the details and it isn’t for the faint hearted :-) I don’t

believe in quick and dirty approaches to handling intrinsically

complicated issues. At the same time, I am not an ivory tower

researcher either! When I hear many presentations at various

conferences and meetings like the Hadoop User Group (HUG), I

have a tough time making sense of what is going on given the

high level nature of what is being presented with no serious

attempts being made to compare what is proposed with what has

been done before and about which much more is known.

Of course, NoSQL systems aren’t the only context in which such

things have happened in the past. A great number of people have

talked about optimistic concurrency control and recovery without

much of the details really having been worked out [3]. Even now

some of the so-called NewSQL systems’ designers make some tall

claims about how traditional recovery isn’t needed and that they

can get away without logging while still supporting SQL, etc. One

has to quiz them quite a bit to discover that they do in fact do

some bookkeeping that they choose not to describe as logging

and/or that they don’t support statement-level atomicity even

though they claim to support SQL and SQL requires it!

For some people, it might be very tempting to think that the

NoSQL applications are so much different from traditional

database applications that simple things are sufficient (“good

enough” being the often used phrase to describe such things) and

that overnight mastery of the relevant material is possible. Even in

the Web 2.0 space, if the application programmers are not to go

crazy, more of the burden has to be taken up by the designers of

the NoSQL systems. A case in point is how the Facebook

messaging system designers decided that the eventual consistency

semantics is too painful to deal with and hence they chose to go

with HBase [15]. To begin with, if the NoSQL systems have

vague semantics of what they support and subsequently, as they

evolve, if such things keep changing, users will be in big trouble!

Also, with no standards in place for these systems, if users want to

change systems for any number of reasons, applications might

require significant rewriting to keep end user semantics, whatever

it is, consistent over time.

8. SUMMARY
I fully realize that there are a variety of NoSQL systems and that

there are many differences between them with respect to the

functionality that they provide and the technologies that were

invented/leveraged/implemented to realize that functionality [18].

While not all the points that I have made in this paper would

necessarily apply to every one of those systems, my feeling is that

every point I have made would apply to at least a reasonable

subset of the systems. I hope the designers and users of NoSQL

systems would try to benefit from the contents of this paper.

Hopefully, more of the work of the past decades would be fully

leveraged to build more industrial-strength and easier to use

NoSQL systems for everybody’s benefit!

In the past, when alternatives to relational technology got some

momentum, native implementations of such alternatives were

developed and such systems got some popularity, RDBMS

vendors and researchers started extending RDBMSs with some of

the features of the alternatives. A couple of examples are the

object-oriented and XML extensions that were made to RDBMSs.

We are likely to see similar developments with some of the

NoSQL features being incorporated in RDBMSs.

In the past, we have seen certain highly hyped areas of database

management, which caused many new products or extensions to

existing products to be developed, subsequently not living up to

the hype in terms of actual adoption of such technologies by users

or vendors making enough money from the investments that were

made. This was the case with OODBMSs and XQuery.

At this point, there seems to be lot more momentum behind the

NoSQL phenomenon compared to the past when at times a few

alternatives to RDBMSs attained some popularity. At least with

respect to the startup scene in Silicon Valley and from the

perspective of the Web 2.0 style companies, the former appears to

be the case. Only time will tell whether this is a passing fad or a

long term phenomenon!

9. ACKNOWLEDGMENTS
I wish to express my sincere thanks to my past and present IBM

research and product collaborators during three decades who have

helped me gain insights into various systems’ internals and the

rationale behind the design choices that were made.

10. REFERENCES
[1] Choy, D., Mohan, C. Locking Protocols for Two-Tier

Indexing of Partitioned Data, Proc. International Workshop

15

on Advanced Transaction Models and Architectures, Goa,

August-September 1996.

[2] Mohan, C. Interactions Between Query Optimization and

Concurrency Control, Proc. 2nd International Workshop on

Research Issues on Data Engineering: Transaction and Query

Processing, Tempe, February 1992.

[3] Mohan, C. Less Optimism About Optimistic Concurrency

Control, Proc. 2nd International Workshop on Research

Issues on Data Engineering: Transaction and Query

Processing, Tempe, February 1992.

[4] Mohan, C. Repeating History Beyond ARIES, Proc. 25th

International Conference on Very Large Data Bases,

Edinburgh, September 1999.

[5] Mohan, C. The NoSQL Hoopla … What is NonsenSQL about

it, Series of blog posts, http://cmohan.tumblr.com/, April

2012.

[6] Mohan, C., Barber, R., Watts, S., Somani, A., Zaharioudakis,

M. Evolution of Groupware for Business Applications: A

Database Perspective on Lotus Domino/Notes, Proc. 26th

International Conference on Very Large Databases, Cairo,

September 2000.

[7] Mohan, C., Haderle, D. Algorithms for Flexible Space

Management in Transaction Systems Supporting Fine-

Granularity Locking, Proc. 4th International Conference on

Extending Database Technology, Cambridge, March 1994.

[8] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz,

P. ARIES: A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using Write-

Ahead Logging, ACM Transactions on Database Systems,

Vol. 17, No. 1, March 1992.

[9] Tweed, R., James, G. A Universal NoSQL Engine, Using a

Tried and Tested Technology,

http://www.mgateway.com/docs/universalNoSQL.pdf, 2010.

[10] Wikipedia. NoSQL, http://en.wikipedia.org/wiki/NoSQL

[11] Lamb, C. Oracle NoSQL Database, Presentation at

International Workshop on High Performance Transaction

Systems (HPTS), Asilomar, October 2011,

http://hpts.ws/sessions/cwl-hpts-for-website.pdf

[12] Marcus, A. The NoSQL Ecosystem, In The Architecture of

Open Source Applications, A. Brown and G. Wilson (Eds.),

2011, http://www.aosabook.org/en/nosql.html

[13] Marcus, A. The NoSQL Ecosystem, Presentation at

International Workshop on High Performance Transaction

Systems (HPTS), Asilomar, October 2011,

http://hpts.ws/sessions/nosql-ecosystem.pdf

[14] Ellis, J. Apache Cassandra Present and Future,

Presentation at International Workshop on High

Performance Transaction Systems (HPTS), Asilomar,

October 2011,

http://hpts.ws/sessions/Cassandra_HPTS_2011.pdf

[15] Muthukkaruppan, K. Storage Infrastructure Behind

Facebook Messages, Presentation at International Workshop

on High Performance Transaction Systems (HPTS),

Asilomar, October 2011,

http://mvdirona.com/jrh/TalksAndPapers/KannanMuthukkar

uppan_StorageInfraBehindMessages.pdf

[16] Cockcroft, A. Netflix Global, Presentation at International

Workshop on High Performance Transaction Systems

(HPTS), Asilomar, October 2011,

http://hpts.ws/sessions/GlobalNetflixHPTS.pdf

[17] Anand, S. Netflix’s Transition to High-Availability Storage

Systems, Netflix Document, October 2010,

https://bitly.com/bhOTLu

[18] Edlich, S. List of NoSQL Databases, http://nosql-

database.org/

[19] Srinivasan, V., Bulkowski, B. Citrusleaf: A Real-Time

NoSQL DB which Preserves ACID, Proc. 37th International

Conference on Very Large Databases, Seattle, August 2011.

[20] Wayner, P. 7 Hard Truths about the NoSQL Revolution,

InfoWorld, 16 July 2012.

[21] Popescu, A. myNoSQL – NoSQL Databases and Polyglot

Persistence: A Curated Guide, http://nosql.mypopescu.com

[22] Edlich, S. The State of NoSQL, November 2012,

http://www.infoq.com/articles/State-of-NoSQL

16

