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ABSTRACT
The skyline operator extracts relevant records from multidimen-
sional databases according to multiple criteria. This operator has
received a lot of attention because of its ability to identify the best
records in a database without requiring to specify complex param-
eters like the relative importance of each criterion. However, it has
only been defined with respect to single records, while one funda-
mental functionality of database query languages is aggregation,
enabling operations over sets of records. In this paper we introduce
aggregate skylines, where the skyline works as a filtering predicate
on sets of records. This operator can be used to express queries in
the form: return the best groups depending on the features of their

elements, and thus provides a powerful combination of grouping
and skyline functionality. We define a semantics for aggregate sky-
lines based on a sound theoretical framework and study its compu-
tational complexity. We propose efficient algorithms to implement
this operator and test them on real and synthetic data, showing that
they outperform a direct SQL implementation of up to two orders
of magnitude.

Categories and Subject Descriptors
H.2 [Database management]: Miscellaneous

1. INTRODUCTION
Aggregate skyline queries merge the functionality of two basic data-
base operators, skyline and group by. In the following we
introduce this new kind of query starting from these two basic op-
erators. Then, we discuss the difference between aggregate skyline
queries and a sequential execution of skyline and group by,
that has been object of previous studies, and outline the main con-
tributions and the structure of this paper.

1.1 Skyline queries
The skyline is a database query operator used to identify records of
interest according to multiple criteria [5]. This task is in general
complex because the result of a query based on multiple criteria
may change depending on how much each criterion is weighed,
i.e., depending on the record scoring function. For example, con-
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Title Year Director Pop Qual

Avatar 2009 Cameron 404 8.0

Batman Begins 2005 Nolan 371 8.3

Kill Bill 2003 Tarantino 313 8.2

Pulp Fiction 1994 Tarantino 557 9.0

Star Wars (V) 1980 Kershner 362 8.8

Terminator (II) 1991 Cameron 326 8.6

The Godfather 1972 Coppola 531 9.2

The Lord of the Rings 2001 Jackson 518 8.7

The Room 2003 Wiseau 10 3.2

Dracula 1992 Coppola 76 7.3

Figure 1: Movie table

sider the Movie relation in Figure 1, containing a set of movies
from the Internet Movie Database1, with year, director, popular-
ity (expressed in thousands of votes) and quality (expressed as the
average user evaluation on a [0, 10] range). Assume we want to
extract the best movies, and we have a preference for movies that
are popular and received good evaluations. If we are more inter-
ested in popularity our first option will be Pulp Fiction, while
if we are more interested in quality our first choice will be The

Godfather. This example highlights how it may not be possi-
ble to identify a single best answer in presence of multiple criteria:
Pulp Fiction and The Godfather are said to be incompa-

rable because the former is better with respect to popularity and the
latter is better with regard to quality.

The skyline operator [5] addresses this problem by guaranteeing
that the best option will always be included in the result whatever
the record scoring function is :

EXAMPLE 1 (SKYLINE QUERY). The best movies according

to their popularity and quality can be extracted using the following

query (the result is indicated in Figure 2):

SELECT *
FROM Movie
SKYLINE OF Pop MAX, Qual MAX

The semantics of this operator is based on the concept of domi-

nance [5]: it selects all records that are not dominated by any other
record, where dominance is defined as follows (≤ and < can also
be used if for some attributes lower values are preferred, but for

1http://www.imdb.com
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Title Year Director Pop Qual

Pulp Fiction 1994 Tarantino 557 9.0

The Godfather 1972 Coppola 531 9.2

Figure 2: Traditional record-wise skyline on the Movie table

Director MAX(Pop) MAX(Qual)

Cameron 404 8.6

Nolan 371 8.3

Tarantino 557 9.0

Kershner 362 8.8

Coppola 531 9.2

Jackson 518 8.7

Figure 3: Traditional aggregate query performed on the Movie

table

simplicity we will assume to prefer higher values throughout the
paper without loss of generality):

DEFINITION 1 (DOMINANCE). Let r and s be two records in

d dimensions. r dominates s iff ∀i ∈ [1, d] ri ≥ si ∧ ∃i ri > si

Notice how The Room is not selected by the previous skyline
query because its values of popularity and user evaluation (〈10, 3.2〉)
are strictly lower than, e.g., the ones achieved by The Godfather

(〈531, 9.2〉), or said in another way, The Godfather dominates

The Room.

1.2 Aggregate queries
In the previous example we have computed a skyline of single

records. However, in general queries do not just target single records,
e.g., movies can be grouped by director, year or country. To an-
swer queries regarding directors instead of single movies, or more
generally groups of records instead of single records, we can use
aggregate queries:

EXAMPLE 2 (AGGREGATE QUERY). The maximum popular-

ity and quality achieved by directors with a maximum quality of at

least 8.0 can be extracted using the following aggregate query (the

result is indicated in Figure 3):

SELECT Director, max(Pop), max(Qual)
FROM Movie
GROUP BY Director

HAVING max(Qual) >= 8.0

Director

Coppola

Tarantino

(a)

Director

Coppola

Jackson

Kershner

Tarantino

(b)

Figure 4: Skyline (a) and Aggregate Skyline (b) directors

1.3 Aggregate skyline
In the two previous sections we have seen a skyline query extracting
the most interesting records from a table, and an aggregate query
summarizing the features of groups of records. In this paper we
introduce aggregate skyline queries combining the group by and
skyline functionality and enabling the computation of skylines over
groups of records. Aggregate skyline queries allow us to formulate
queries such as: What are the most interesting directors (accord-

ing to the features of their movies)? Or, more in general: What

are the most interesting groups (according to the features of their

elements)?

EXAMPLE 3. We want to know who are the best directors in Ta-

ble 1. To do this we compare their movies according to popularity

and user evaluation. The corresponding aggregate skyline query

is:

SELECT director
FROM movies
GROUP BY Director

SKYLINE OF Pop MAX, Qual MAX

In summary, while a traditional skyline can be seen as a power-
ful where SQL clause that filters out irrelevant single records, an
aggregate skyline corresponds to a having clause and is used to
filter out irrelevant groups of records.

Interestingly, aggregate skyline queries have not been studied so
far. In the literature some works have already focused on the opti-
mization of SQL queries involving both skyline and grouping, but
in these works the two operators are executed one after the other in
isolation [10, 2, 1]. Differently, aggregate skylines are not just the
result of the execution of a group by followed by a skyline,
or vice-versa. We discuss these options in the following.

[skyline → group by] Computing a skyline before grouping corre-
sponds to a different kind of query, because the skyline is applied to
single records without knowledge of the group structure. For exam-
ple, consider directors Tarantino and Jackson. Tarantino
is present in the Movie relation with two movies, one better and
one worse than the only movie by Jackson (according to our
two criteria). Therefore, from the overall comparison we cannot
conclude that Tarantino’s movies are necessarily better than
Jackson’s movies or vice-versa. However, if we compute a sky-
line on the Movie relation, Pulp Fiction filters out most of
the other movies (and thus directors, including Jackson) with-
out considering any aggregate information about them. From this
discussion it appears how a skyline followed by other operators,
e.g., group by, returns information on the directors of the most

interesting movies and not the most interesting directors.

[group by → skyline] Similarly, a skyline after a group by has
only access to the summary information computed by the aggregate
functions. As a consequence, performing a skyline on a partial
relation obtained after grouping (Figure 3) may produce unwanted
results. For example, in Figure 3 director Cameron appears to
be strictly better than Nolan, while looking at the original data in
Figure 1 we see that no movie by Cameron is strictly better than
Nolan’s only movie.

Using other aggregate functions does not improve the situation.
For example, we may try to compare the average values instead
of the maxima. In this case, consider the average performance of
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Tarantino’s movies, having popularity and quality 〈435, 8.6〉. If
we now check the movies by Jackson and Kershner (respec-
tively, The Lord of the Rings and Star Wars (V)) we
can see how both are better than one movie by Tarantino and
worse than the other, and they are mutually incomparable. This
means that we cannot make any distinction between Jackson

and Kershner according to the dominance relation. However,
once we compare them against the average values for Tarantino
we notice how the former (Jackson) is better while the latter
(Kershner) is incomparable. On a more theoretical level, us-
ing aggregate functions like avg makes the resulting operator not

stable, which is one of the main features of the original skyline op-
erator. We will discuss this in more detail in the technical part of
the paper.

Figure 4 exemplifies the previous discussion: both sequential appli-
cations of group by and skyline lead to the selection of only
two skyline records (Tarantino and Coppola), while an ag-
gregate skyline also retrieves, e.g., Jackson, whose general per-
formance as a director is not dominated by any other directors (al-
though his movies, taken one by one, are). Please notice that in the
general case an aggregate skyline is not necessarily a superset of a
traditional skyline, as we will prove through a theoretical study of
the operator.

As a final remark, notice that an aggregate skyline can be com-
puted whenever groups of records are involved, independently of
how they have been generated. However, in this paper we will
consistently focus on SQL queries involving the group by op-
erator. In the remaining of the paper we use the movie database
as a working example. In general, the application fields of aggre-
gate skylines are numerous, including all contexts where relevant
groups of records have to be identified. Relevant examples are the
identification of virtuous hospitals/wards or problematic diseases in
medical databases, or the identification of successful/popular kinds
of products in on-line selling sites or warehouses.

1.4 Contributions and outline
The main contributions of this paper are:

• the introduction of the aggregate skyline operator,

• the definition of its semantics, based on a sound theoretical
framework and on properties characterizing the result of ag-
gregate skylines,

• efficient algorithms, with an extensive experimental evalua-
tion showing significant improvements of the presented al-
gorithms with respect to a direct SQL implementation.

The paper is organized as follows. In Section 2 we define the aggre-
gate skyline operator. This includes a set of properties guaranteeing
that the operator returns the expected result and a theorem and dis-
cussion emphasizing the difficulty of this problem with respect to
traditional skyline queries. Then, we study the computational com-
plexity of the operator, showing that it is super-linear with respect
to both the number and size of groups. Therefore, in Section 3 we
define efficient algorithms. Section 4 presents the result of a thor-
ough experimental evaluation performed both on real and synthetic
data, showing that our approach outperforms a direct SQL imple-
mentation. We conclude the paper with a summary of our main
results and a review of related work.

2. THE AGGREGATE SKYLINE
The original definition of skyline as the set of records not domi-

nated by other records naturally extends to more complex entities,
like groups of records. We can in fact define an aggregate skyline
as the set of groups not dominated by other groups. However, while
the definition of record dominance is straightforward, extending it
to groups presents some challenges. We highlight them through
some examples using real data taken again from the IMDB archive,
starting from a clear case of group dominance.

The first step we take toward the definition of aggregate skylines
is the introduction of two kinds of dominance, that we call strict

and weak — the first is a special kind of the second. The exis-
tence of different kinds of dominance in real aggregate data, dif-
ferently from the single-record case where dominance is a unique
and clearly defined concept, is highlighted by the following two
examples.

EXAMPLE 4 (STRICT DOMINANCE). In Figure 5(a) we com-

pare two directors, namely Quentin Tarantino (white points) and

Tommy Wiseau (black points) according to their movies, where

higher popularity and quality are preferred. The objective is to

answer the question: given the available information, would you
prefer watching a movie by Tarantino or by Wiseau? In this exam-

ple we can safely claim that Tarantino is the answer, and this be-

cause he strictly dominates Wiseau. In fact, even the worst movie

by Tarantino is better than any movie by Wiseau.
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(a) Tarantino vs Wiseau
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(b) Tarantino vs Fleischer
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(c) Tarantino vs Jackson

Figure 5: Examples of group dominance relationships between

movie directors (Tarantino is always represented by white

points)

Strict dominance can be thought as the aggregate counter-part of
record dominance. However, the next example shows how we may
in general find it difficult to compare two groups even in cases
where all movies are pair-wise comparable according to the tra-
ditional definition of dominance.

EXAMPLE 5 (WEAK DOMINANCE). Figure 5(b) shows a com-

parison of Quentin Tarantino (white points) and Ruben Fleischer

(black points). We can no longer claim that we would necessarily
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prefer watching a movie by Tarantino, because there is one particu-

lar movie by Fleischer (namely, Zombieland) that we would prefer

to two movies by Tarantino. At the same time, we cannot say that

the two directors are incomparable: it is still clear that Tarantino

is in general better than Fleischer.

Table 1: Meaning of the symbols

Symbols Meaning

Ur Record Universe (set of all records)

Ug Group Universe (partition of Ur)

r, s, t. . . Records (∈ Ur)

R,S, T . . . Groups, i.e., sets of records) (∈ Ug)

Sky(Ur) Traditional record skyline (∈ Ur)

Skyg(Ug) Aggregate skyline (∈ Ug)

γ Degree of dominance between groups

≻g group-dominance relation

In Figure 5(c) we compare Tarantino (white) and the director of

The Lord of the Rings trilogy Peter Jackson (black). Now it is

harder to decide if the former is better than the latter, because al-

though Tarantino’s movies are in general more popular there are

three notable exceptions, leading us to the conclusion that Tarantino

dominates Jackson to a lesser extent than he dominates Fleischer.

These examples highlight the necessity for a more general, flexi-
ble and practical notion of group dominance. In fact, when dealing
with real data we can hardly rely on a strict notion of dominance
between groups, but we must manage cases where a group domi-
nates another up to a certain extent. This has not been previously
formalized in the literature, where the concept of dominance has
been used either in a strict Boolean sense (one record dominates or
not another) or in a graded but record-oriented way, e.g., in fuzzy
skylines where a single record may dominate another (or not) de-
pending on a fuzzy comparison function [8, 21].

Therefore, in this paper we introduce and study a new notion of sky-
line based on group domination (in the following we will adopt the
notational conventions indicated in Table 1). This notion of group
domination, notated ≻g , will be defined and thoroughly studied in
the next section.

DEFINITION 2 (AGGREGATE SKYLINE). Let Ug be a set of

groups of records. An aggregate skyline is the set of all groups in

Ug not dominated by any other group:

Skyg(Ug) = {R ∈ Ug | ∄S ∈ Ug such that S ≻g R}

Definition 2 provides a clean extension of the skyline operator to
groups, but does not formalize the concept of group-domination.
Now the objective is to turn this concept into a well defined oper-
ator with a formal semantics clearly describing its properties. The
first challenge we have to face is to provide a definition correspond-
ing to the intuition behind group dominance that has emerged from
the two previous examples. This will allow us to formally study
the properties of our proposal and unveil other hidden challenges
regarding its computation, that we will show to be independent of
our specific definition and related to the general problem of group
dominance comparisons. But first, we start by introducing our def-
inition of group-dominance, that we call γ-dominance.

2.1 γ-dominance
The intuition behind our definition is the following: if we want to
compare Tarantino with Wiseau we just assume to pick a random
movie for both directors and check how likely it is for one to dom-
inate the other. As a consequence, our proposal consists in relating
γ to the probability that, given a random pair of records from the
two groups that we are comparing (in our case, a random choice of
a movie by director A and a movie by director B), the first record
dominates the second2:

DEFINITION 3 (γ-DOMINATION). Let p(S ≻ R) be the prob-

ability that, given a random pair of records (r, s) ∈ R× S, s ≻ r.

We say that S ≻γ R iff p(S ≻ R) = 1 ∨ p(S ≻ R) > γ.

The fact that this definition is consistent with common-sense can
be checked looking at Table 2, where we indicate the values of
γ with respect to the three directors in Figure 5. For example, if
we consider Tarantino and Fleischer, we can see that three movies
by Fleischer are dominated by all movies directed by Tarantino,
and one movie by Fleischer is dominated by six Tarantino movies.
Therefore, Tarantino dominates Fleischer on 3 · 8 + 1 · 6 = 30 out
of 32 possible combinations of movies. The ratio between these
two numbers gives the probability of domination .94 indicated in
the table. It is worth noting that the probabilities that Tarantino
dominates Jackson and vice-versa do not add to one, showing that
for some pairs of movies none is strictly better than the other.

In the following we discuss which values of γ should be chosen
when computing an aggregate skyline, then we prove that aggre-
gate skylines satisfy two general notions of stability, making them
robust with respect to limited variations in the data. In addition, we
will discuss properties trivially satisfied in a single-record context
but that no longer hold when we deal with groups of records. We
will thus point out the resulting challenges and requirements for
new algorithmic approaches.

Table 2: p(S ≻ R) for the examples in Figure 5

S R p(S ≻ R)

Tarantino Wiseau 1.00

Tarantino Fleischer .94

Tarantino Jackson .68

Wiseau Tarantino .00

Fleischer Tarantino .06

Jackson Tarantino .26

2.2 Setting γ

Let us consider again Figure 5. In Table 2 we indicate the values
of γ for different pairs of groups, e.g., Tarantino γ-dominates
Fleischer for all γ < .94. Now, we have to decide which
groups to include in the skyline according to these values, i.e.,
we need to define a threshold to determine when the degree of
domination is large enough to exclude the dominated group. In-
terestingly, not all values make sense. For example, if we set γ
so that Fleischer dominates Tarantino, e.g., γ < .06 we
would create the inconsistent situation where Tarantino would
be strictly preferred to Fleischer and Fleischer would be

2The strict > in the definition is necessary to guarantee asymmetry,
a property studied later in this section
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strictly preferred to Tarantino. To prevent this kind of incon-
sistencies, we require a definition of group-dominance to be asym-

metric:

PROPERTY 1 (ASYMMETRY). Let R,S ∈ Ug be groups of

records. If R ≻g S then S 6≻g R.

Asymmetry is obviously satisfied when single records are concerned,
because if r ≻ t there is an attribute i such that r.i > t.i, and
consequently t cannot be strictly preferred to r. This is why this
property was not emphasized in studies on the traditional skyline.
However, it turns out to be relevant when we shift from a record to
a group perspective, and constrains the range of acceptable values
for γ (the proof of the following proposition follows directly from
Definition 3):

PROPOSITION 1. Definition 3 is asymmetric if γ ≥ .5.

This proposition has two main consequences. First, from now on
we limit the definition of γ-dominance to the cases where γ ≥ .5.
From this point of view, γ can be seen as a tool to control the size of
the result: we can first execute a query with γ = .5, which returns
the smallest (most selective) set of results, and if we want to see
more relevant groups we can increase the value of this parameter.
Or, we can compute all groups that can be in an aggregate skyline,
corresponding to γ = 1, and return them in sorted order according
to the minimum value of γ for which they are in the group skyline.
Notice that with γ = .5 a group dominates another whenever the
probability of domination is higher than .5. With respect to higher
values of γ, this may result in more dominances, and thus more
groups excluded from the aggregate skyline and a smaller result.

At the same time, it is worth noting that γ = .5 represents a char-
acteristic value with a clear and natural semantics: when γ = .5,
group A dominates group B if, taking a random element a from A

and a random element b from B, it is more probable that a domi-
nates b than the contrary. Therefore, Proposition 1 identifies a value
that can be used as a default if we want a parameter-free aggregate
skyline operator, like in the SQL syntax presented in Example 3.

2.3 Stability of aggregate skylines
In the introduction we have discussed some problems related to
the alternative approach of computing aggregate functions for ev-
ery group and executing a skyline afterwards. These problems are
related to a general notion of stability indicating that the result of
a method is not influenced by several kinds of data transformation,
as detailed in the following.

A first kind of stability regards the insertion and deletion of records.
This is important to control the behavior of the operator. For exam-
ple, assume that a very good director who has directed a large num-
ber of popular and high quality movies comes out with a very bad
movie. The insertion of this single new record may certainly influ-
ence our overall judgment about the director, but should not make
us forget about all the good movies that she directed before. We
may thus have a change in γ, but this change should be bounded,
that is, the degree cannot change arbitrarily when the change in the
group is small. Stability to updates states that small changes in a
group have a small effect on γ.

PROPERTY 2 (STABILITY TO UPDATES). Let R ≻γ S (resp.,

S ≻γ R), R′ ⊆ R and ǫ = (|R|−|R′
|)

|R|
. For every |R|, |R′| and

|S| 6= 0, the group domination predicate is robust if R′ ≻γ′ S

(resp., S ≻γ′ R′) with γ(1− ǫ) ≤ γ′ ≤ γ(1 + ǫ).

PROOF. We need to consider the cases where we remove or add
records to the first group (R ≻γ S,R′ ⊆ R) or to the second
(S ≻γ R,R′ ⊆ R). Here we prove the first case, while the proof
of the second follows similarly and is not reported.

Let us notate |R ≻ S| as the number of pairs (r, s) ∈ R × S such
that r ≻ s. We also indicate the cardinality of group R as |R|.
Therefore, we can write γ before and after record removal as:

γ =
|R ≻ S|

|R| · |S|
(1)

γ
′ =

|R′ ≻ S|

|R′| · |S|
(2)

We first consider the case where the removal of records from R

may cause an increase of γ, i.e., γ′ ≥ γ. From the previous equa-
tion we can see that the maximum possible increase happens when
|R ≻ S| = |R′ ≻ S| — the case when no removed records were
previously dominating any records in S. It follows that:

|R′| · |S| · γ′ = |R′ ≻ S| ≤ |R ≻ S| = |R| · |S| · γ

Dividing both sides by the positive number |R′| · |S| we obtain:

γ
′ ≤

|R| · |S|

|R′| · |S|
· γ

Noticing that we can rewrite |R| · |S| as |R′| · |S|+(|R|− |R′|)|S|

and setting
(|R|−|R′

|)

|R|
= ǫ we conclude that

γ
′ ≤ γ(1 + ǫ)

Let us now consider the case where γ may decrease, i.e., γ′ ≤ γ.
Similarly to the previous case, we can see that the maximum possi-
ble decrease happens when |R ≻ S| = |R′ ≻ S|+(|R|− |R′|)|S|
— the case when all removed records were previously dominating
all records in S. It follows that:

|R′| · |S| · γ′ = |R′ ≻ S| ≥ |R ≻ S| − (|R| − |R′|)|S|

|R ≻ S| can be rewritten as |R| · |S| ·γ (Eq. 1). In addition, we can

rewrite |R|·|S| as |R′|·|S|+(|R|−|R′|)|S|. Setting
(|R|−|R′

|)

|R|
= ǫ

we conclude that

γ
′ = |R′ ≻ S| ≥ |R ≻ S| − (|R| − |R′|)|S| = (1 + ǫ)γ − ǫ

Because γ ≥ 1

2
(to enforce asymmetry), γ(1− ǫ) ≤ (1 + ǫ)γ − ǫ.

As a consequence,

γ(1− ǫ) ≤ γ
′

The case where S ≻γ R follows similarly.

Now consider two movies, one with a very high quality, say 10, and
another of lower quality, say 5. If we take an average of these two
values, as it is done in alternative approaches, we obtain a quality
of 7.5. We can already notice that the same value is returned by
averaging two movies whose actual quality is 7.5, reducing two
very different scenarios to the same generic description.

However, a more subtle problem consists in the fact that taking
the value in the middle introduces the assumption that users can
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be described by a linear utility function, stating for example that a
quality of 10 is exactly twice as a quality of 5. On the contrary, we
can think of users for which movies whose quality is higher than 9
are good and those of quality less than 9 are just bad. In this case,
the "average" would not correspond to the arithmetic average. In
this context, stability to monotone data transformations indicates
that the result of a method is not based on any assumption regarding
the users, except the fact that they consistently prefer higher values
to lower ones (monotonicity). This kind of stability is one of the
basic requirements of the original definition of record-wise skyline
[5], even if it was only informally stated in the original paper and
later formalized only for linear scoring functions [16].

DEFINITION 4 (STAB. TO MONOTONE TRANSFORMATIONS).
Let R and S be groups of records in d dimensions. Let R′ =
{φ(r) | r ∈ R} and S′ = {φ(s) | s ∈ S} where φ = 〈φ1, . . . , φd〉
is a tuple of d monotone scalar functions and φ(〈r.1, . . . , r.d〉) =
〈φ1(r.1), . . . , φd(r.d)〉. A group domination predicate ≻g is ro-
bust if R ≻g S ⇔ R′ ≻g S′.

PROPOSITION 2. Definition 3 is stable to monotone transfor-

mations.

PROOF. Definition 3 relies on counting pairs of records satis-
fying traditional record-based dominance, which is itself stable to
monotone transformations. As all the single record-based relation-
ships remain unchanged one by one, so does their number.

3. COMPLEXITY AND ALGORITHMS
A general approach that has been used to compute the skyline is
to apply some heuristics to prune dominated records and limit the
number of dominance checks. However, dealing with groups intro-
duces an additional source of complexity. In fact, there are proper-
ties that hold for single-record skyline queries but are not satisfied
by aggregate skylines. This prevents us from applying some ba-
sic optimization techniques, making the aggregate skyline problem
computationally challenging.

We start this section by discussing two of these properties: skyline
containment and transitivity. Skyline containment would allow us
to take advantage of a record-wise skyline in computing the aggre-
gate one, and transitivity has a potentially tremendous impact on
the optimization of aggregate skyline queries. In fact, it is a basic
assumption of most traditional skyline computation methods. Un-
fortunately, both properties do not hold in general for groups of
records. However, we will see that we can define a weaker concept
of transitivity that can be practically used for optimization.

A possible way to speed up the computation of a (group) skyline
consists in identifying an initial set of groups belonging to the sky-
line. Then, these groups can be used to prune others. In our work-
ing example, we might identify some skyline records, i.e., movies,
then select the directors of these movies and use them for pruning.
However, this is possible only if directors with a skyline movie are
also in the group skyline:

PROPERTY 3 (SKYLINE CONTAINMENT). Let r ∈ Ur, r ∈
R,R ∈ Ug . If r ∈ Sky(Ur) and r ∈ R then R ∈ Skyγ(Ug).

Unfortunately, this is not true for our definition:

PROPOSITION 3. For Definition 3 skyline containment does not

hold.

PROOF. We can prove this by providing a counterexample. Let
G1 = {(5, 5), (1, 1), (1, 2)}, G2 = {(2, 3)}. We can see that
p(G2 ≻ G1) = 2

3
, so G1 is not in the group skyline if γ < 2

3
.

However, G1 contains the skyline record (5, 5).

It is worth noticing that this might motivate us to look for a differ-
ent definition satisfying also this property. However, the following
theorem shows that we cannot expect any single definition to be
strictly better than ours from this point of view, whenever the def-
inition is "reasonable". Reasonable means that if all records of R
dominate all records of S then R ≻g S, i.e., strict dominance holds
– which is the most basic requirement for a definition of aggregate-
skyline:

THEOREM 1. No definition of group-domination where strict

dominance holds satisfies both properties 3 and 2.

PROOF. Let us consider two groups R′ and S where all records
in S dominate all records in R′. Now, let us add a skyline record to
R, dominating all records inS. Let us assume that both Properties 3
and 2 hold. Than, by Property 3 R belongs to the group skyline,
implying that S ≻γ R =⇒ γ < .5. At the same time, by
Property 2 we can state that 1 = γ′ ≤ γ(1 + ǫ) < .5(1 + ǫ). As
ǫ ∈ [0, 1], we can conclude that 1 < 1, showing that the assumption
that both properties hold is absurd.

A second property with a very relevant practical impact on the com-
putation of aggregate skylines is transitivity. Transitivity is one of
the key concepts enabling pruning in traditional skyline algorithms
and making aggregate skylines challenging to compute.

PROPERTY 4 (TRANSITIVITY). If R ≻g S and S ≻g T then

R ≻g T .

This property is fundamental for optimization reasons, because it
is used to avoid comparisons between groups: if we verify that R
dominates S we can discard S without any effect on the result.
However, if transitivity does not hold, there may be a third group T

that is dominated by S and not by R. Discarding S before compar-
ing it to T would result in incorrectly including T in the result. As a
consequence, without transitivity we basically have to check dom-
inance between all pairs of groups. Unfortunately, like for asym-
metry this property clearly holds for single records but is no longer
satisfied in general when we compare groups.

PROPOSITION 4. Definition 3 is not transitive.

PROOF. By counterexample: consider Figure 6, with γ = .5.
We can see that R does not dominate T because p(R ≻ T ) = .5.
However, R ≻γ S and S ≻γ T .

To overcome this problem, we have found a weaker notion of tran-
sitivity that still holds for groups and can thus be used for pruning:
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Figure 6: Transitivity does not hold among groups: we repre-

sent three groups R, S and T where R ≻γ S, S ≻γ T but

R 6≻γ T (γ = .5)

PROPOSITION 5 (WEAK TRANSITIVITY). If R ≻γ S and

S ≻γ T then R ≻γ T , where γ = 1−
√

1−γ

2
.

PROOF. The main idea behind this proof is to reduce the transi-
tivity property to a case of matrix multiplication. Given any enu-
meration of the elements of groups R and S, we can model the
dominance relation between R and S as a |R| × |S| matrix RS =
(mij), where:

mij =

{
1 if ri ≻ sj
0 otherwise

The same can be done for groups S and T , and we call this matrix
ST . We now state two fundamental facts:

1. The percentage pos(RS) of non-zero entries in matrix RS

corresponds to p(R ≻ S), indicating that R ≻γ S for every
γ < pos(RS). We call such a matrix a Domination Matrix

for R and S.

2. If RS and ST are Domination Matrices, RT = RS×ST is
also a Domination Matrix for R and T .

This link between record domination, group domination and ma-
trix multiplication gives us a powerful tool to study transitivity re-
lations. As an example, the following are respectively the matrices
RS, ST and RT for the groups in Figure 6:







1 0
1 1
1 0
1 0





×

(
1 0 0
1 1 1

)

=







1 0 0
2 1 1
1 0 0
1 0 0







We can in fact see that pos(RS) = 5

8
, pos(ST ) = 2

3
and pos(RT ) =

.5, and then conclude that R ≻.5 S, S ≻.5 T but R 6≻.5 T .

Now we can prove Proposition 5. Let us consider the generic ma-
trices in Figure 7 (upper part), where pos(RS) = pos(ST ) =
1+(1−α)

2
= 1 − α

2
. First, we claim that, fixed α, this is the con-

figuration of values in RS and ST that determines the smallest

number of positive entries in RT . The reason of this claim is to
show that given some probability of domination between R and S
and between S and T we have a guaranteed lower bound for the
probability that R dominates T, corresponding to the percentage of
non-zero entries (pos(RT )) in the product matrix RT. The claim
that this configuration leads to the smallest gray area in RT (there-
fore, a lower bound) can be verified by noticing that any change of
zero and non-zero cells in the first two matrices leads to additional

Figure 7: Domination Matrices: gray parts represent non-zero

values, white parts represent zero values. On top, a configu-

ration leading to the smaller probability of domination (size of

the gray area) between R and T.

positive values in RT. This is shown in the lower part of Figure 7,
where some positive (gray) values in RS are moved to the null
(white) part of the matrix and this increases the gray area in RT .

We can thus state that given any pair of Dominance Matrices with
at least 1 − α

2
positive values, pos(RT ) is at least 1 − α2, which

is the relative size of the gray area inside RT .

Using the facts that:

• for a Dominance Matrix RS, pos(RS) = p(R ≻ S), then

• p(R ≻ T ) = 1− α2, therefore α =
√

1− p(R ≻ T )

• p(R ≻ S) = p(S ≻ T ) = 1− α
2
= 1−

√
1−p(R≻T )

2

we may set γ = 1 −
√

1−γ

2
and conclude that if R ≻γ S and

S ≻γ T then R ≻γ T .

3.1 SQL and Nested Loop
Aggregate skyline queries can be expressed in SQL as in Algo-
rithm 1. Here we are also assuming the presence of an attribute
(num) storing the cardinality of each class, that can be pre-computed
if not available, and the query is only in 2 dimensions. Despite the
simplified scenario, this direct SQL implementation is inefficient,
as illustrated in Figure 8.

Algorithm 1 SQL aggregate skyline

Require: For every record, a num attribute with the number of
movies for that director

Ensure: X directors are in the γ-skyline
select distinct director
from movies
where director not in (
select X.director
from movies X, movies Y
where ((Y.votes > X.votes and Y.rank >= X.rank) or (Y.votes
>= X.votes and Y.rank > X.rank))
group by X.director, Y.director
having 1.0*count(*)/(X.num*Y.num)> .5)
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Figure 8: Scalability of SQL implementation on sqlite

In fact, this query basically corresponds to a nested loop to com-
pare every class against each other, and an internal nested loop to
compare all records from one class to all records of the other, this
for every pair of classes. Algorithm 2 presents a slightly optimized
version of this approach, that we will use as our baseline.

Algorithm 2 Nested Loop aggregate skyline

Input: G (set of groups), γ

for g1 ∈ G do

for g2 ∈ G do

if g1 ≤ g2 then

skip this comparison;
end if

if g1 ≻γ g2 then

mark g2 as dominated
else if g2 ≻γ g1 then

mark g1 as dominated
end if

end for

end for

The complexity of Algorithm 2 is defined by the number of domi-
nance checks, which in turn depends on dimensionality d. Consider
a dataset with n groups {c1, . . . , cn}. The time complexity of the
algorithm is:

∑

i,j∈[1,n],i<j

cost(ci, cj) (3)

where

cost(ci, cj) = O(

|ci|∑

k=1

|cj |∑

l=1

d) (4)

This formula highlights two nested quadratic components: one, ex-
ternal, involves the comparison of pairs of groups – Equation (3),
and for each pair of groups we compare all pairs of records from
the two groups – Equation (4). This emphasizes three main areas
of optimization:

• External, to reduce the number of comparisons of groups.

• Internal, for every given pair of groups that we could not
prune "externally", to reduce the number of comparisons of
pairs of records.

• Global, taking into consideration the dependencies between
the number of pairs of groups and the number of pairs of
records.

3.2 External optimization

We propose three algorithmic approaches to reduce the number of
comparisons between groups. The first consists in applying our
definition of weak transitivity to the basic nested loop approach:
this is indicated in Algorithm 3 (lines 10-22).

Algorithm 3 Transitive aggregate skyline

1: Input: G (set of groups), γ

2: for g1 ∈ G do

3: if g1 is strongly dominated then

4: skip g1
5: end if

6: for g2 ∈ G do

7: if g1 ≤ g2 then

8: skip this comparison
9: end if

10: if g2 is strongly dominated then

11: skip g2
12: end if

13: if g1 ≻γ g2 then

14: mark g2 as strongly dominated
15: else if g1 ≻γ g2 then

16: mark g2 as dominated
17: else if g2 ≻γ g1 then

18: mark g1 as strongly dominated
19: end processing of g1
20: else if g2 ≻γ g1 then

21: mark g1 as dominated
22: end if

23: end for

24: end for

The second main method consists in accessing the first groups in
Equation (3), i.e., those indicated as ci, in sorted order. This mim-
ics an approach already used in traditional skyline methods, where
however only single records must be ordered. In the context of ag-
gregate skylines we have to sort groups, and we do this according
to the sum of the distances between the origin and the minimum
and maximum corners of the minimum bounding box containing
all the records in the group. This is shown in Algorithm 4.

Algorithm 4 Sorted aggregate skyline

1: Input: G (set of groups), γ

2: for g ∈ G do

3: insert g into Priority Queue Q

4: end for

5: while Q is not empty do

6: g1 = Q.poll
7: if g1 is strongly dominated then

8: skip g1
9: end if

10: Proceed like in Algorithm 3, line 6
11: end while

The third and final external optimization consists in using a spatial
index so that given a group we choose the groups to compare to it
only among the groups that can dominate it. This is indicated in
Algorithm 5, line 11. Here g.min and g.max indicate respectively
the minimum and the maximum corners of the minimum bounding
box of the records in group g. In Figure 9(a), g’s bounding box
is shown as a dashed rectangle, the window query is represented
in gray and we visualize four potentially dominating groups (with
their maximum corners inside the window).
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Algorithm 5 Indexed aggregate skyline

1: Input: G (set of groups), γ

2: for g ∈ G do

3: insert g into Priority Queue Q

4: insert g.max into spatial index I

5: end for

6: while Q is not empty do

7: g1 = Q.poll
8: if g1 is strongly dominated then

9: skip g1
10: end if

11: G′ = I.windowQuery(space dominating g1.min)
12: for g2 ∈ G′ do

13: if g1 = g2 then

14: skip this comparison
15: end if

16: if g2 is strongly dominated then

17: skip g2
18: end if

19: Proceed like in Algorithm 3, line 13
20: end for

21: end while

3.3 Internal optimization
Now assume that we have not been able to avoid a comparison be-
tween groups g1 and g2. In some cases it is not necessary to check
the dominance relationship between all pairs of records from the
two groups. The first consideration is that after having checked
some pairs it may be possible to stop if one of the following con-
ditions holds. Let δ12 be the percentage of pairs r1, r2 ∈ g1 × g2
such that r1 ≻ r2, δ21 the percentage of pairs where r2 ≻ r1, and
c the percentage of pairs of records compared so far. Then:

• if δ12 + 1 − c <= γ ∧ δ21 + 1 − c <= γ, then g1 and g2
are incomparable.

• if δ12 > γ ∧ δ12 + 1− c <= γ, then g1 ≻γ g2

• if δ12 > γ, then g1 ≻γ g2

• if δ12 > γ ∧ δ21 + 1− c <= γ, then g2 ≻γ g1

• if δ21 > γ, then g2 ≻γ g1

In addition to this stopping rule, we can also compare the extreme
points of the minimum bounding boxes of the groups before start-
ing the pair-wise comparison, with the objective of pruning some
alternatives. Figure 9(b-c) shows two possible cases. When g2’s
minimum corner dominates g1’s maximum corner, this indicates
strict domination without any need to compare any records (9(b)).
With regard to Figure 9(c), we can state that all records in the area
marked as A are dominated by all the records in g2, and all records
in the area marked as C dominate all the records in g1, without any
additional comparison. On the contrary, records, e.g., in the area
marked as B are processed using a normal nested loop approach.

3.4 Global optimization
In Section 3.2 we have discussed how to reduce the number of com-
parisons between groups. This general idea is one of the basic op-
timization tools in traditional skyline query processing. However
when we deal with groups of records the cost of comparing dif-
ferent pairs can vary dramatically. For example, assume we have

(a) (b) (c)

Figure 9: Window query, to obtain possible dominating groups,

and comparison of groups of records approximated by their

bounding boxes

four groups g1, g2, g3 g4 with cardinality respectively 1, 5, 6 and 7.
The sequence of comparisons (g1, g2), (g1, g3), (g1, g4), (g2, g3)
is longer than the sequence (g1, g2), (g2, g3), (g3, g4). However,
the first sequence may result in at most 48 dominance checks, while
the second can lead to up to 77 checks. The reason lies in the
quadratic nature of the cost to compare two groups of records, sug-
gesting that a good heuristic can reduce the complexity of the in-
ternal term of Equation (3) by reducing the comparisons between
high-cardinality groups.

This is particularly important knowing that in many real datasets
data follow some kind of long tail distribution (e.g., Zipf or Pareto
distributions) and would then present a very small number of prob-
lematic (i.e., large) groups and many less problematic small groups.

3.5 Summary of improvements
In summary, in this section we have introduced the following opti-
mization strategies:

1. Exploiting weak transitivity (external).

2. Sorted access to the groups (external).

3. Spatial indexing (external).

4. Stopping rule (internal).

5. Approximation by bounding boxes (internal).

6. Accessing small groups first (global).

In the next section we perform an experimental evaluation of these
strategies on both synthetic and real data.

4. EXPERIMENTAL ANALYSIS
In this section we evaluate the efficiency of our algorithms on syn-
thetic and real data. Synthetic data is used to test the impact of the
variation of several parameters: the number of attributes (dimen-
sionality), the amount of overlapping of the minimum bounding
boxes of the groups, the total number of records and the number
of records per class. The algorithms included in the evaluation are:
Nested Loop with stop condition (NL), Transitive with stop con-
dition (TR), Sort-based sorting on the size and distance from the
origin of the minimum corner of the minimum bounding box (SI),
Index-based (IN) and Index-based with approximation by bounding
boxes (LO). Where not specified, the default values for the exper-
iments are: 10 000 records, 100 average records per class, records
in each class spread over 20% of the data space, dimensionality 5,
and γ = .5.
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4.1 Synthetic data
Figure 10 shows the effect of dimensionality on anti-correlated, in-
dependent and correlated data distributions, that are the typical data
distributions used to evaluate skyline algorithms — anti-correlated
is often the most challenging because a large part of the input is
in the skyline. This figure emphasizes the superiority of the index-
based approaches, that are consistently more efficient than the oth-
ers. On independent and correlated data also the transitive and sort-
based methods improve significantly.

On the contrary. Figure 11 shows how a large overlapping of the
classes makes the method based solely on indexing less efficient
than the others, including the Nested Loop approach. Also in this
case easier datasets reduce the differences between the different
approaches.

Figures 12, 13(a) and 13(b) present the result of scalability tests
on the number of records, emphasizing different interesting behav-
iors. Figure 12 shows results similar to the ones obtained varying
the dimensionality of the dataset: index-based methods outperform
the others on anti-correlated data and the gap is reduced on the
other data distributions. However, Figure 13(a) shows that when
the distribution of records inside classes follows an exponential law
(Zipfian, in this case) the approach based on sorting (global opti-
mization) improves its performance, still remaining less efficient
than index-based methods. Finally, Figure 13(b) shows the per-
formance of index-based methods on a wider range of values, and
Figure 13(c) shows the effect of varying the number of records per
class.

4.2 Real data
Finally, we present the results of the execution of our algorithms
on a real dataset of about 15 000 records containing statistics for
all basketball players and regular seasons since 19793 . On these
data, we computed a group skyline maximizing attributes points,

rebounds, assists, steals, blocks, field goals, free throws and three

points (per game). As grouping attributes, we used both single and
multiple attributes. The results are indicated in Figure 14 and con-
firm previous evidence obtained on synthetic datasets. The pro-
posed algorithms are consistently more efficient than the baseline
implementation. In one case (bottom left), the improvement is only
around 15%. This is a case considering many skyline attributes (8)
and a very large number of classes with a few records, i.e., a case
not very different from a traditional record skyline where group-
related optimizations are less relevant. In other cases, improve-
ments of up to two orders of magnitude are achieved.

5. RELATED APPROACHES
The skyline operator was proposed in [5], bringing the existing
concept of Pareto front to the attention of the database commu-
nity. Since then, two main research directions have been followed.
Some researchers have defined new variations of this operator, in-
cluding representative [14], reverse [7] and uncertain skylines [18].
Others have focused on its efficient execution, using several ap-
proaches like data presorting [6], anytime processing [15], indexing
[17] or distributed computing [9]. In this context, some research ef-
forts have been devoted to the improvement of skyline computation
when the operator is used in conjunction with data transformations,
as in the case of dynamic and spatial skylines [17, 20], and also
skylines executed together with other SQL operators, in particular
joins and grouping.

3
http://www.databasebasketball.com
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Figure 14: Efficiency on a real dataset (NBA data), grouped

by different attributes. We also indicate the number of skyline

attributes used in each query

In all previous works on skyline processing together with other
SQL operators the semantics of skyline was unchanged, and de-
fined in isolation with respect to the other operators: a skyline with
a group by was just a skyline obtained before or after the re-
sult of a group by. This is the case in [10], where grouping is
computed on the result of a skyline, and in [2] and [1], where the
skyline is computed after grouping. As a result, in all these works
the skyline is computed on single records of scalar values, as in its
original definition, and not on groups of records as in our work.

Some works have also used the keyword group in relation with sky-
line queries to indicate a different problem: [23] and [12] show how
to find groups of k records not dominated by other groups, without
using a group by operator. In addition, domination is defined after
reducing the groups to single records, so no concept of skyline of
groups is introduced in this work. [3] uses the keyword aggrega-

tion, but only to refer to the arithmetic combination of attributes,
e.g., the sum or difference of values – also in this case, no grouping
is involved.

Some related papers have considered to compute the skyline on
subsets of a relation: [17, 4] introduce the concept of skyline inside

groups, also applied in [22] to data warehousing. Also in this case
skylines are computed over single records.

[11] introduced the concept of thick skyline, where the skyline is
extended with similar records and thus records not in the skyline
can also be returned. However there is no group by involved,
records are still treated one by one to check dominance, and in
addition this approach is not robust: expressing movie popularity
using the number of votes (e.g., 362 000) instead of the thousands
of votes (e.g., 362) may change the result of the query.

An apparently unrelated but still relevant set of works concerns sky-
lines over uncertain data, first proposed in [18] and then extended
to other kinds of queries like contextual [19], reverse [13] and top-k
skylines [23]. In these works, every record may have multiple alter-
native values, therefore algorithms developed to manage uncertain
records have already faced the problem of dealing with multiple
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Figure 10: Varying dimensionality for anti-correlated, independent, and correlated distributions. Records are uniformly distributed

into classes
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Figure 11: Varying group overlapping for anti-correlated, independent, and correlated distributions. Records are uniformly dis-

tributed into classes
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Figure 12: Scalability varying the number of records for anti-correlated, independent, and correlated distributions. Records are

uniformly distributed into classes
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(a) (b)

Figure 15: Difference between probabilistic skyline and aggre-

gate skyline

instances. However, the definition of probabilistic skyline is dif-
ferent from the definition of aggregate skyline, because there is no
concept of group.

Figure 15 illustrates the difference between aggregation and uncer-
tainty. In Figure 15(a) we have six movies directed by four direc-
tors, with three of them directed by the same director (A, B and C,
in black) and D, E and F directed by a different director each. To
see if the black director should be in the group skyline or not, we
should check if one of the three other directors dominates him. For
example, we may start by comparing him with the director of movie
D (Figure 15(b)). Clearly, D is preferable only to one of the three
movies by the black director, and this means that depending on our
definition of domination the black director may well be in the group
skyline. A comparison with E and F leads to the same conclusion.
On the contrary, consider a probabilistic skyline. In this context, A,
B and C would represent three possible locations of a single record,
only one of which is true. As a consequence, this record will never
be in the skyline, because for every alternative there will always be
another record dominating it.

6. CONCLUDING REMARKS
In this paper we have introduced a new kind of query called ag-

gregate skyline. This query combines two basic operators: skyline
and group by. After discussing the relevance and novelty of this ap-
proach, we have provided a formal definition with an intuitive inter-
pretation and satisfying some basic properties, including asymme-
try and different kinds of stability. However, we have also shown
that some basic properties with a relevant impact on query opti-
mization do no longer hold when groups are concerned. Therefore,
we have introduced and experimentally tested several optimization
approaches, including a new definition of weak transitivity that en-
ables pruning at group level. The experimental results on both real
and synthetic data show that our algorithmic approaches can reduce
the computation time by up to two orders of magnitude with re-
spect to a direct SQL implementation of the query. However, there
are some specific data distributions that remain challenging from
a computational point of view, opening toward the development of
customized query optimization methods addressing them.
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