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ABSTRACT
Low-rank matrix factorization has recently been applied with great
success on matrix completion problems for applications like rec-
ommendation systems, link predictions for social networks, and
click prediction for web search. However, as this approach is ap-
plied to increasingly larger datasets, such as those encountered in
web-scale recommender systems like Netflix and Pandora, the data
management aspects quickly become challenging and form a road-
block. In this paper, we introduce a system called Sparkler to solve
such large instances of low rank matrix factorizations. Sparkler
extends Spark, an existing platform for running parallel iterative
algorithms on datasets that fit in the aggregate main memory of a
cluster. Sparkler supports distributed stochastic gradient descent
as an approach to solving the factorization problem – an iterative
technique that has been shown to perform very well in practice. We
identify the shortfalls of Spark in solving large matrix factorization
problems, especially when running on the cloud, and solve this by
introducing a novel abstraction called “Carousel Maps” (CMs). CM-
s are well suited to storing large matrices in the aggregate memory
of a cluster and can efficiently support the operations performed on
them during distributed stochastic gradient descent. We describe the
design, implementation, and the use of CMs in Sparkler programs.
Through a variety of experiments, we demonstrate that Sparkler is
faster than Spark by 4x to 21x, with bigger advantages for larger
problems. Equally importantly, we show that this can be done with-
out imposing any changes to the ease of programming. We argue
that Sparkler provides a convenient and efficient extension to Spark
for solving matrix factorization problems on very large datasets.

Categories and Subject Descriptors
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General Terms
Algorithms, Design, Experimentation, Performance
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1. INTRODUCTION
Low-rank matrix factorization is fundamental to a wide range of

contemporary mining tasks [8, 12, 15, 22]. Personalized recommen-
dation in web services such as Netflix, Pandora, Apple AppStore,
and Android Marketplace has been effectively supported by low-
rank matrix factorizations [8, 20]. Matrix factorization can also be
used in link prediction for social networks [35] and click prediction
for web search [22]. Recent results have demonstrated that low-rank
factorization is very successful for noisy matrix completion [19],
and robust factorization [6] for video surveillance [6, 23], graphical
model selection [33], document modeling [18, 26], and image align-
ment [28]. Due to the key role in a wide range of applications, matrix
factorization has been recognized as a “top-10” algorithm [10], and
is considered a key to constructing computational platforms for a
variety of problems [36].

Practitioners have been dealing with low-rank factorization on
increasingly larger matrices. For example, consider a web-scale rec-
ommendation system (like in Netflix). The corresponding matrices
contain millions of distinct customers (rows), millions of distinct
items (columns) and billions of transactions between customers and
items (nonzero cells). At such scales, matrix factorization becomes
a data management problem. Execution plans that can be optimized
in the cloud become critical for achieving acceptable performance at
a reasonable price. In practice, an exact factorization of the matrix
is neither feasible nor desirable – as a result, much work has focused
on finding good approximate factorizations using algorithms that
can be effective on large data sets.

Virtually all matrix factorization algorithms produce low-rank
approximations by minimizing a “loss function” that measures the
discrepancy between the original cells in the matrix and the product
of the factors returned by the algorithm. Stochastic gradient descent
(SGD) has been shown to perform extremely well for a variety of
factorization tasks. While it is known to have good sequential per-
formance, a recent result [15] showed how SGD can be parallelized
efficiently over a MapReduce cluster. The central idea in the dis-
tributed version of SGD (DSGD), is to express the input matrix as a
union of carefully chosen pieces called “strata”, so that each stratum
can easily be processed in parallel. Each stratum is partitioned so
that no two partitions cover the same row or column. In this way,
each factor matrix can also be partitioned correspondingly. DSGD
works by repeatedly picking a stratum and processing it in parallel
until all strata are processed. Each cluster node operates on a small
partition of a stratum and the corresponding partitions of the factors
at a time – this allows DSGD to have low memory requirements
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and it can scale to input matrices with millions of rows, millions of
columns, and billions of nonzero cells.

The growing success of parallel programming frameworks like
MapReduce [9] has made it possible to direct the processing pow-
er of large commodity clusters at the matrix factorization prob-
lem [22]. However, implementing DSGD on a MapReduce platform
like Hadoop [1] poses a major challenge. DSGD requires several
passes over the input data, and Hadoop is well known to be inefficien-
t for iterative workloads. Several alternative platforms [2, 4, 5, 41]
have been proposed to address the problems. Spark [41] is such
a parallel programming framework that supports efficient iterative
algorithms on datasets stored in the aggregate memory of a clus-
ter. We pick Spark as the basic building block for our platform,
because of its extreme flexibility as far as cluster programming is
concerned. Although machine-learning algorithms were the main
motivation behind the design of Spark, various data-parallel ap-
plications can be expressed and executed efficiently using Spark.
Examples include MapReduce, Pregel [24], HaLoop [5] and many
others [41]. Spark provides Resilient Distributed Datasets (RDDs),
which are partitioned, in-memory collections of data items that allow
for low-overhead fault-tolerance without requiring check-pointing
and rollbacks. When data is stored in RDDs, Spark has been shown
to outperform Hadoop by up to 40x.

Spark solves the problem of efficient iteration, but it continues
to suffer from performance problems on large matrix factorization
tasks. While the input matrix can be stored in the aggregate memory
of the cluster, Spark requires the programmer to assume that the
factor matrices will fit in the memory of a single node. This is not
always practical: as the input matrix gets larger, so does the size
of the factors. For example, for 100 million customers, to compute
factorization of rank 200, one needs to store 20 billion floating point
numbers for the factor corresponding to customers – that amounts
to 80GB of data. Such a large data structure cannot be easily accom-
modated in the main memory of a commodity node today. This is
especially true in the cloud, where it is substantially easier to get a
cluster of virtual machines with aggregate memory that far exceeds
80GB rather than a small number of virtual machines, each with
80GB of memory. Even if this data structure is suitably partitioned,
in DSGD, the cost of moving different partitions of the factors to
the appropriate nodes using Spark’s standard abstractions starts to
dominate the overall time taken to factorize the matrix.

In this paper, we present Sparkler, a parallel platform based on
Spark that is tailored for matrix factorization. Sparkler introduces (a)
a novel distributed memory abstraction called a Carousel Map (CM)
to better support matrix factorization algorithms and (b) optimiza-
tions that take advantage of the computation and communications
pattern of DSGD-based factorization. CMs complement Spark’s
built-in broadcast variables and accumulators that are designed for
small mutable data. CMs provide a hashmap API for handling large
factors in the aggregate memory of a cluster. They allow fast lookup-
s and updates for the row/column factors of a particular cell. They
exploit the access pattern for the factors in a DSGD algorithm to
bulk transfer relevant data in the cluster so that most lookups/up-
dates happen locally. In addition, CMs offer fault-tolerance without
imposing burdens on the programmer. In fact in an experimen-
tal comparison on various factorization tasks, Sparkler with CMs
outperformed Spark by 4x to 21x.

The remainder of this paper is structured as follows. We provide
a brief background of SGD, DSGD and Spark in Section 2. In
Section 3, we present how the abstractions in Spark can be used
to implement these algorithms for matrix factorization, and ana-
lyze the limitation of Spark. In Section 4 we describe the design
and implementation of Sparkler, and demonstrate (a) how the CMs

About Schmidt Lost in Translation Sideways
(2.24) (1.92) (1.18)

Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)

Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)

Michael 5 ? 3
(2.30) (5.2) (4.4) (2.7)

Figure 1: A simple latent-factor model for predicting movie ratings.
(Data points in boldface, latent factors and estimated ratings in
italics.)

fits naturally as a powerful abstraction for large factors while pro-
gramming in Sparkler, and (b) the optimization opportunities in
DSGD-based factorizations and how Sparkler takes advantage of
them. Using several experiments, we demonstrate in Section 5 that
Sparkler can offer 4x to 21x better performance for matrix factoriza-
tion over Spark. The related work is discussed in Section 6 and we
conclude in Section 7 and point to future work.

2. BACKGROUND
In this section, we provide a brief background on how the recom-

mendation problem is modeled as a matrix factorization problem.
We summarize existing results on how distributed stochastic gra-
dient descent (DSGD) can be applied to this problem. Then we
introduce Spark.

2.1 Low-rank Matrix Factorizations
As an instructive example, we consider the matrix completion

problem that recommender systems need to solve. This task was
central to the winning Netflix competition [20] as well as the latest
KDD’11 cup. The goal of the recommendation problem is to provide
accurate personalized recommendations for each individual user,
rather than global recommendations based on coarse segments.

Consider the data depicted in Figure 1, which shows the ratings
of three customers and three movies in matrix form. The ratings
are printed in boldface and vary between 1 (hated the movie) and
5 (loved it). For example, Michael gave a rating of 5 to the movie
“About Schmidt” and a rating of 3 to “Sideways”. In general, the
ratings matrix is very sparse; most customers have rated only a
small set of movies. The italicized number below each customer
and movie name is a latent factor. In this example, there is just one
factor per entity: Michael is assigned factor 2.30, the movie “About
Schmidt” gets 2.24. In this simple example, the estimated rating
for a particular customer and movie is given by the product of the
corresponding customer and movie factors. For example, Michael’s
rating of “About Schmidt” is approximated by 2.30 ·2.24 ≈ 5.2; the
approximation is printed in italic face below the respective rating.
The main purpose of the latent factors, however, is to predict ratings,
via the same mechanism. Our estimate for Michael’s rating of “Lost
in Translation” is 2.30 ·1.92 ≈ 4.4. Thus, our recommender system
would suggest this movie to Michael but, in contrast, would avoid
suggesting “Sideways” to Bob, because the predicted rating is 1.21 ·
1.18 ≈ 1.4. In actual recommender systems, the factor associated
with each customer and movie is a vector, and the estimated rating
is given by the dot product of the corresponding vectors.

More formally, given a large m× n input matrix V and a small
rank r, our goal is to find an m× r factor matrix W and an r × n
factor matrix H such that V ≈ WH . The quality of such an
approximation is described in terms of an application-dependent
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loss function L, i.e., we seek to find argminW ,H L(V ,W ,H).
For example, matrix factorizations used in the context of recom-
mender systems are based on the nonzero squared loss LNZSL =∑

i,j:V ij 6=0(V ij − [WH]ij)
2 and usually incorporate regulariza-

tion terms, user and movie biases, time drifts, and implicit feedback.
A very interesting class of loss functions is that of decomposable
losses that, like LNZSL, can be decomposed into a sum of local
losses over (a subset of) the entries in V ij . I.e., loss functions that
can be written as

L =
∑

(i,j)∈Z

l(V ij ,W i∗,H∗j) (1)

for some training set Z ⊆ { 1, 2, . . . ,m } × { 1, 2, . . . , n } and lo-
cal loss function l, where Ai∗ and A∗j denote row i and column j of
matrix A, respectively. Many loss functions used in practice—such
as squared loss, generalized Kullback-Leibler divergence (GKL),
and Lp regularization— belong in this class [34]. Note that a given
loss function L can potentially be decomposed in multiple ways. For
brevity and clarity of exposition we focus primarily on the class of
noisy matrix completion, in which Z = { (i, j) : V ij 6= 0 }. Such
decompositions naturally arise when zeros represent missing data as
in the case of recommender systems. The techniques described here
can handle other decompositions (like robust matrix factorization)
as well; see [14, 15].

2.2 Distributed Stochastic Gradient Descent
for Matrix Factorization

Stochastic Gradient Descent(SGD) has been applied successfully
to the problem of low-rank matrix factorization (the Netflix con-
test [20] as well as the recent KDD’11 cup).

The goal of SGD is to find the value θ∗ ∈ <k (k ≥ 1) that mini-
mizes a given loss L(θ). The algorithm makes use of noisy observa-
tions L̂′(θ) of L′(θ), the function’s gradient with respect to θ. Start-
ing with some initial value θ0, SGD refines the parameter value by
iterating the stochastic difference equation θn+1 = θn − εnL̂′(θn),
where n denotes the step number and {εn} is a sequence of decreas-
ing step sizes. Since −L′(θn) is the direction of steepest descent,
SGD constitutes a noisy version of gradient descent. To apply SGD
to matrix factorization, we set θ = (W ,H) and decompose the
loss L as in (1) for an appropriate training set Z and local loss
function l. Denote by Lz(θ) = Lij(θ) = l(V ij ,W i∗,H∗j) the
local loss at position z = (i, j). Then L′(θ) =

∑
z L
′
z(θ) by the

sum rule for differentiation. We obtain a noisy gradient estimate
by scaling up just one of the local gradients, i.e., L̂′(θ) = NL′z(θ),
where N = |Z| and the training point z is chosen randomly from
the training set.

We summarize the results from [15] on how to efficiently dis-
tribute and parallelize SGD for matrix factorizations. In general,
distributing SGD is hard because the individual steps depend on
each other: The parameter value of θn has to be known before θn+1

can be computed. However, in the case of matrix factorization, the
SGD process has some structure that one can exploit.

DEFINITION 1. Two training points z1, z2 ∈ Z are interchange-
able with respect to a loss function L having summation form (1) if
for all θ ∈ H , and ε > 0,

L′z1(θ) = L′z1(θ − εL
′
z2(θ))

and L′z2(θ) = L′z2(θ − εL
′
z1(θ)).

(2)

Two disjoint sets of training points Z1, Z2 ⊂ Z are interchangeable
with respect to L if z1 and z2 are interchangeable for every z1 ∈ Z1

and z2 ∈ Z2.

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

Z1 Z2 Z3 Z4 Z5 Z6

Figure 2: Strata for a 3× 3 blocking of matrix V

For matrix factorization, two training points z1 = (i1, j1) ∈ Z
and z2 = (i2, j2) ∈ Z are interchangeable with respect to any loss
function L having form (1) if they share neither row nor column,
i.e., i1 6= i2 and j1 6= j2. It follows that if two blocks of V share
neither rows or columns, then the sets of training points contained
in these blocks are interchangeable.

The key idea of Distributed Stochastic Gradient Descent (DSGD)
is that we can swap the order of consecutive SGD steps that involve
interchangeable training points without affecting the final outcome.
This allows us to run SGD in parallel on any set of interchange-
able sets of training points. DSGD thus partitions the training set
Z into a set of potentially overlapping “strata” Z1, . . . , Zs, where
each stratum consists of d interchangeable subsets of Z. See Fig-
ure 2 for an example. The strata must cover the training set in that⋃q

s=1 Zs = Z, but overlapping strata are allowed. The parallelism
parameter d is chosen to be greater than or equal to the number of
available processing tasks.

There are many ways to stratify the training set into interchange-
able strata. One data-independent blocking that works well in
practice, is to first randomly permute the rows and columns of
V , and then create d × d blocks of size (m/d) × (n/d) each;
the factor matrices W and H are blocked conformingly. This
procedure ensures that the expected number of training points in
each of the blocks is the same, namely, N/d2. Then, for a per-
mutation j1, j2, . . . , jd of 1, 2, . . . , d, we can define a stratum as
Zs = Z1j1 ∪Z2j2 ∪ · · · ∪Zdjd , where the substratum Zij denotes
the set of training points that fall within block V ij . In general, the
set S of possible strata contains d! elements, one for each possible
permutation of 1, 2, . . . , d. Note that there is no need to materialize
these strata: They are constructed on-the-fly by processing only the
respective blocks of V .

Algorithm 1 shows matrix factorization using DSGD. The indi-
vidual steps in DSGD are grouped into subepochs, each of which
amounts to (1) selecting one of the strata and (2) running SGD (in
parallel) on the selected stratum. An epoch is defined as a sequence
of d subepochs. An epoch roughly corresponds to processing the
entire data set once.

Algorithm 1 DSGD for Matrix Factorization
Require: V , W 0, H0, cluster size d

Block V / W / H into d× d / d× 1 / 1× d blocks
while not converged do /* epoch */

Pick step size ε
for s = 1, . . . , d do /* subepoch */

Pick d blocks {V 1j1 , . . . ,V djd} to form a stratum
for b = 1, . . . , d do /* in parallel */

Read blocks V bjb , W b and Hjb

Run SGD on the training points in V bjb (step size = ε)
Write blocks W b and Hjb

end for
end for

end while

2.3 Spark Background
Spark is a cluster computing framework aimed at iterative work-

loads. Spark is built using Scala, a language that combines many
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1 val lines = sc . textFile ("foo.txt")
2 val lower_lines = lines .map(String. toLowerCase _ )
3 val count_acc = sc .accumulator(0)
4 val prefix_brd = sc . broadcast (PREFIX)
5 lower_lines . foreach (s =>
6 if ( s . startsWith ( prefix_brd . value) )
7 count_acc += 1
8 )
9 println ("The count is " + count_acc.value)

Listing 1: Sample Spark code: accumulators and broadcast vari-
ables.

features from functional programming as well as object oriented
programming. Spark allows programmers to take the functional
programming paradigm and apply it on large clusters by providing
a fault-tolerant implementation of distributed in-memory data sets
called Resilient Distributed Data (RDD). An RDD may be construct-
ed by reading a file from a distributed filesystem and loading it into
the distributed memory of the cluster. An RDD contains immutable
data. While it cannot be modified, a new RDD can be constructed
by transforming an existing RDD.

The Spark runtime consists of a coordinator node and worker n-
odes. An RDD is partitioned and distributed across the workers. The
coordinator keeps track of how to re-construct any partition of the
RDD should one of the workers fail. The coordinator accomplishes
this by keeping track of the sequence of transformations that led
to the construction of the RDD (the lineage) and the original data
source (the files on the distributed filesystem). Coordinator failures
cannot be recovered from – the cluster needs to be restarted and the
processing has be to relaunched.

Computation is expressed using functional programming prim-
itives. For instance, assume that we have a set of strings stored in
a file, and that the task at hand is to transform each string to lower
case. Consider the first two lines of Spark code in Listing 1. The
first line loads a set of strings from “foo.txt” into an RDD called
lines. In the second line, the map method passes each string in
lines through the function String.toLowerCase in parallel
on the workers and creates a new RDD that contains the lower-case
string of each string in lines.

Spark additionally provides two abstractions – broadcast variables
and accumulators. Broadcast variables are immutable variables,
initialized at the coordinator node. At the start of any parallel RDD
operation (like map or foreach), they are made available at all the
worker nodes by using a suitable mechanism to broadcast the data.
Typically, Spark uses a topology-aware network-efficient broadcast
algorithm to disseminate the data. Line 4 in Listing 1 initializes
a broadcast variable called prefix_brd to some string called
PREFIX. In Line 6, this value is used inside the foreach loop to
check if any of the lines in the RDD called lines begin with the
string in prefix_brd.

An accumulator is a variable that is initialized on the coordinator
node and is sent to all the worker nodes when a parallel operation
(like map or foreach) on the RDD begins. Unlike a broadcast vari-
able, an accumulator is mutable and can be used as a device to
gather the results of computations at worker nodes. The code that
executes on the worker nodes may update the state of the accumu-
lator (for computations such as count, sum, etc.) through a limited
update() call. At the end of the RDD parallel operation, each
worker node sends its updated accumulator back to the coordinator
node, where the accumulators are combined (using either a default
or user-supplied combine function) to produce a final result. This
result may either be output, or be used as an input to the next RDD
parallel operation in the script. Example accumulator usages include
sum, count, and even average.

We show an example of using accumulators and broadcast vari-
ables by extending our last example. Suppose that the task is to
count the number of strings with a given case-insensitive prefix.
Listing 1 shows the Spark code for this problem. An accumulator
is created as the counter and sent to all worker nodes, initialized to
zero (Line 3). The prefix is broadcast to all worker nodes in Line 4.
For each string in lower_lines, Line 6 updates the local counter
associated with the accumulator on the worker. Finally, all the local
counters are implicitly transmitted to the coordinator and summed
up, after the parallel RDD operation on lower_lines completes.

3. DSGD USING SPARK
In this section, we present how DSGD can be implemented using

Spark, and point out the shortcomings of Spark.
Using plain Spark to factorize a large matrix requires maintaining

a copy of the latent factor matrices on the nodes that update them.
Under this constraint the DSGD algorithm can be expressed in
Spark using existing abstractions, as depicted in Listing 2. The
data is first parsed and partitioned (Line 9). The partitioning is
done by assigning each rating tuple a row block ID and a column
block ID, each between 0 and n, where n is the number of strata.
The block IDs are assigned using a hash function followed by a
mod n to deal with skew in the input rating tuples. Each block
of tuples is now grouped and assigned to a stratum. The output,
strata, is a set of RDDs. Each RDD consists of the blocks of
the corresponding stratum, and each block is simply a set of rating
tuples. The partitioning function of the RDDs is overridden so that
two properties are guaranteed: (1) The blocks of a stratum are spread
out over the cluster in an RDD, and can be processed in parallel on
different worker nodes; (2) The rating tuples in a given block are on
exactly one worker node. All the above logic is packed into method
DSGD.prepare.

The factor matrices (movieFactors and userFactors) are
created on the coordinator node and registered with Spark as the
accumulators movieModel and userModel (Lines 12 and 13).
This information allows Spark to make the accumulator variable
available at each of the worker nodes. The strata are processed
one at a time (the blocks of each stratum are processed in parallel
in Lines 16 – 23) in separate Spark workers. This inner loop is
executed simultaneously at each worker node which processes a
block of the stratum and updates the corresponding entries in the
factor matrices. Since stratification guarantees that the updates on
each worker will be to disjoint parts of the factor matrices, at the
end of the job, the coordinator gathers all the updated values of the
accumulators from the workers and simply concatenates them (there
is no aggregation happening). The updated values of movieModel
and userModel are then sent out to the worker nodes for the next
stratum. Once all the strata are processed, a similar set of jobs is
used to compute the current error (Lines 26 – 32). The computation
stops when the error drops below a pre-specified threshold or if a
maximum number of iterations is reached.

A slight variant of this approach is to use broadcast variables to
disseminate the factor matrices at the start of each subepoch. Broad-
cast variables are distributed to the cluster using a more efficient
mechanism than the coordinator simply copying the data structure
over to each worker. This can be done with minor changes to the
program, and is not shown here for brevity.

Spark’s existing abstractions for the factor matrices – such as
accumulators and broadcast variables – perform poorly when the
factors get larger. This is because of two reasons – first, Spark makes
the assumption that these data structures are small enough to fit in
the main memory of a single node. Second, even if this constraint
is met, accumulators and broadcast variables are disseminated to
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1 case class RatingTuple(movieId: Int , userId : Int , rating : Int ,...)
2 object RatingTuple {
3 def parse ( line : String ) = {...}
4 ...
5 }
6 ...
7 val data = sc . textFile ( inputFile )
8 val strata = DSGD.prepare(data, RatingTuple. parse )
9 var movieFactors = FVector(rank)

10 var userFactors = FVector(rank)
11 var movieModel = spark.accumulator(movieFactors )(FVector.Accum)
12 var userModel = spark .accumulator( userFactors )(FVector.Accum)
13 do {
14 for ( stratum <− strata ) {
15 for (block <− stratum; x <− block) {
16 val ma = movieModel(x.movieId)
17 val ua = userModel(x.userId )
18 val d = ma ∗ ua − x. rating
19 val ufactor = realStepSize ∗ (−d) ∗ 2
20 ma.update(ua , ufactor )
21 ua.update(ma , ufactor )
22 }
23 }
24 var error = spark .accumulator (0.0)
25 for ( stratum <− strata ) {
26 for (block <− stratum; x <− block) {
27 // similar code to calculate error
28 // and update realStepSize
29 ...
30 }
31 }
32 iterationCount ++
33 } while ( error > targetError && iterationCount < iterationLimit )

Listing 2: Factorization in Spark using accumulators.

the entire cluster from the coordinator node and the updated ver-
sions are gathered back before merging. This is unnecessary in the
context of DSGD matrix factorization since each worker node only
works on a small and disjoint portion of the factor matrices. This
makes communication a very significant part of the overall time for
the factorization task. Figure 3 illustrates this point by plotting the
execution time of a single iteration of the do..while loop in List-
ing 2 (using broadcast variables) as the rank of the factor matrices
increases. The Netflix dataset was used on a 10-node cluster. The
details of the dataset are in Section 5.

As is evident from the figure, for a given dataset size, as the rank
increases, the runtime for each iteration also rapidly increases. Us-
ing factor matrices of rank 200 – 400 is not uncommon for complex
recommendation problems. In fact, the winners of the Netflix Chal-
lenge [20] and KDD’11 cup report using factors of approximately
this size. As the rank and the dataset grow, the broadcast-based
approach no longer works since the factors do not entirely fit in
memory.

4. DSGD USING SPARKLER
To address the above deficiencies, we present Sparkler, a parallel

platform built on Spark that is tailored for Matrix Factorization.
Sparkler introduces (a) a novel distributed memory abstraction for
large factors called Carousel Map that provide a major performance
advantage over using accumulators and broadcast variables, and (b)
several optimizations that take advantage of the computation and
communication patterns during DSGD factorization.

4.1 Carousel Map (CM)
At a high level, a CM is a distributed hash table where only a

portion of the table is stored on each node. Thus using a CM, the
aggregate memory of the entire cluster can be used to store the factor
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Figure 3: Execution time of a single epoch on a 10-node cluster, on
the Netflix dataset using Spark as the rank of the factor matrices
increases.

matrices. A CM can retrieve the factors vector given a key (movieID
or a userID) in constant time by looking up the routing information
for a given key and retrieving the value from the appropriate node.
However, this only overcomes the first problem of fitting the factor
matrices in the aggregate memory of the cluster.

Lookups/updates are a frequently executed operation in a factor-
ization. They constitute the main inner computational loop at the
workers as shown in Lines 17 – 22 in Listing 2. As a result, making
them efficient is critical to getting good performance. We exploit the
nature of the DSGD algorithm to ensure that the CM is partitioned
and stored in such a way that most of the lookups and updates hap-
pen locally. In fact, the data structure is designed to live in the same
process (JVM) as the worker node, and as a result a lookup does not
even incur inter-process communication (IPC) overheads. This is
of critical importance since an in-process hash table lookup can be
substantially faster than an out-of-process lookup using IPC, and
orders of magnitude faster than incurring network I/O and looking
this up using remote procedure calls.

The CM is accessed in a way that does not require the coordinator
to be involved in either gathering data to combine updates, nor
disseminating the data to the workers. The CM is initialized in a
distributed fashion on the worker nodes; and at the end of subepochs,
the worker nodes directly exchange data. Finally, the data structure
is garbage collected when it is no longer needed. The coordinator
never sees any of the actual data and is eliminated from being the
bottleneck. These techniques allow the developer to use CMs to
scale to recommendation problems on substantially larger datasets
as well as use larger ranks for the factors than is currently possible
with Spark. Equally importantly, CMs are included in Sparkler as
a natural extension that does not require major changes on the part
of the programmer. Listing 3 shows how the Spark program from
Listing 2 can be modified to use CMs by only changing 2 lines
(Lines 12 – 13).

4.2 CM API
The CM is used simply as a map of keys to values. It supports

two functions : get(key) and put(key, value). In a typical
DSGD program, keys can be the IDs for the data items (movieID,
userID), and the values are the factor vectors corresponding to the
items. The CM is also registered with an initialization function –
initialize(key) which returns a suitable initial value for a
feature vector if it isn’t present in the map. This allows the data
structure to be initialized across the worker nodes as necessary
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7 ...
8 val data = sc . textFile ( inputFile )
9 val strata = DSGD.prepare(data, RatingTuple. parse )

10 var movieFactors = FVector(rank)
11 var userFactors = FVector(rank)
12 var movieModel = spark.CM(movieFactors)(FVector.Accum)
13 var userModel = spark.CM(userFactors)(FVector.Accum)
14 do {
15 for ( stratum <− strata ) {
16 for (block <− stratum; x <− block) {
17 ...

Listing 3: Modifications required for factorization in Sparkler
using CMs.
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Figure 4: Strata blocks.

instead of initializing it in its entirety on the coordinator node.

4.3 CM Data Movement
The intuition behind how nearly all accesses to the CM can be ser-

viced locally is best explained using an example. Consider Figure 4
which shows a matrix of users and movies stratified into a 3x3 grid.
For simplicity, assume this matrix is to be factorized on a cluster of
3 nodes. The first stratum consists of blocks labeled A1, B2, and
C3; the second stratum consists of blocks labeled A2, B3, and C1;
and finally, the third stratum consists of blocks labeled A3, B1, and
C2. Note that the Users and Movies factor matrices are partitioned
correspondingly to U1, U2, U3 and MA, MB , MC .

Consider the subepoch where the first stratum consisting of blocks
A1, B2, and C3 is processed. The data is already laid out so that each
of these blocks is on a different node on the cluster. When the SGD
computations begin, the node processing A1 (say worker1) needs to
read and write the entries for the movies and users corresponding
to partitions A and 1 (MA and U1). In this subepoch, worker1 will
not need to access any other partitions of the factor matrices. In the
same subepoch, worker2 processes B2, and therefore only accesses
partitions U2 and MB . No two nodes access or update the same
entries in either the customer or movie model in a given subepoch.

In the next subepoch, blocks A2, B3, and C1 are processed. These
blocks are on worker2, worker3, and worker1 respectively. worker1
now requires access to factor partition U1 and MC . Since in the
previous subepoch this worker was updating partition U1, it already
has this data locally. It now needs access to partition MC . To locate
this, it first contacts the coordinator node, which replies that this
partition is on worker3. Then, it directly contacts worker3 and
requests that it bulk transfers the movie factor partition MC ; we
refer to such an operation as a transfer of ownership. The actual
data transfer happens directly between worker3 and worker1 without
involving the controller node. The entire MC partition is moved
over, not just the key being requested. Figure 5 shows the transfers
that take place at the start of the second subepoch. Once this transfer
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Figure 5: CM communication pattern.

is done, all the accesses the factor matrices in this subepoch are
done locally. As Figure 5 shows, the partitions of a factor move in a
circle after each subepoch, hence the name “Carousel Map”.

4.4 CM Implementation
The CM is implemented in two parts. When a CM is created, it is

registered at the Spark coordinator. The coordinator node maintains
a location table for each CM, which maps each partition of the CM
to a worker node. This node is marked as the owner of the partition.

Simple hash-based partitioning is used to divide the key-space
into the required number of partitions. The same hash function needs
to be used to partition the input matrix as well as the factor matrices.
This ensures that any CM partition contains data for items from at
most one partition of the matrix, and will therefore be accessed from
exactly one worker during any given subepoch. The worker nodes
store the data corresponding to each CM partition in a simple hash
table.

Algorithm 2 describes the logic that is executed when get() is
invoked on a CM on one of the workers. The worker first checks
to see if it is the current owner of the partition that contains the
requested key. If it is, then it fulfills the request by looking up
the local hash table. Otherwise, it requests the coordinator for the
address of the current owner of this partition. Having located the
owner, it requests a transfer of ownership from the current owner to
itself. This involves serializing and moving the hash table from the
current owner to the requesting node and re-constituting it so it can
be accessed. The get() call blocks until the partition is moved to
the requesting node. Once the transfer completes, the coordinator is
updated with the new owner. A similar protocol is used for put()
requests.

Once the node gets ownership of a partition, the get() function
(or the put() function) can be locally executed. Since the CM
partition is stored in the same JVM in which the program logic is
executing, further accesses to the CM partition are equivalent to
local lookups in a hash table and do not require any IPC or remote
I/O.

The major advantage of using CMs over accumulators or broad-
cast variables is in saving network costs. For large factorization
problems, the factor matrices can be tens of gigabytes. Accumula-
tors in Spark need to be sent from the coordinator node to all the
worker nodes at the start of a parallel job. At the end, the mod-
ified accumulator values need to be gathered from each worker
node and combined at the coordinator to arrive at the correct val-
ue for the accumulator. Similarly, broadcast variables also need
to be sent out from the coordinator to each of the worker nodes.
Broadcast variables are not updated, and need not be collected and
combined like accumulators. As one would guess from these ab-
stractions, a naive implementation would quickly make the network
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interface card of the controller node a major bottleneck in imple-
menting accumulators and broadcast variables. With large clusters,
sending out the model data from the coordinator and gathering it
back quickly becomes the dominant portion of the time spent in
factorizing. Efficient implementations, such as the ones described
recently [7], use network-topology-aware broadcast protocols. Simi-
lar in-network reduction techniques can be used while gathering the
updated accumulators for combining. The CM is a data placement
and communication abstraction that is aware of the accesses it is
going to receive. As a result, it can be far more efficient than a
simple accumulator or a broadcast variable.

As a quick sanity test, we show the result of a simple experiment
that measured the network traffic at the coordinator node and the
worker nodes during a factorization run. In Figure 6, the left half
shows the network traffic when the job was run with plain Spark,
and the right half when the job was run with Sparkler and CMs.
The dataset used was the Netflix dataset [20], on a cluster of 40
nodes, using factor matrices of rank 400. The total traffic in the
first scenario was 167GB and 143GB at the controller and worker
nodes respectively. With CMs, this is reduced to 55MB and 126MB
respectively over a similar timeframe. This dramatic reduction in
communication is largely responsible for the performance advan-
tages we will explore in detail in Section 5.

Algorithm 2 Worker Algorithm for CM get()
Require: A key k, CM M , the worker node w

Let pid = partition ID corresponding to k
if pid is owned by w then

return pid.get(k)
else
ohost = current owner of pid from coordinator
request ownership transfer for pid from ohost to w
associate pid with the received hash table
return pid.get(k)

end if

4.5 CM Fault-Tolerance
RDDs (Resilient Distributed Datasets) in Spark provide lineage-

based fault-tolerance. In case of failure, any partition of RDDs can
be reconstructed from the initial data source or the parent RDDs.
However, the fault-tolerance mechanism of RDDs is inefficient
for CMs. First, in contrast to coarse-grained transformations in
RDDs, CMs support fine-grained updates as required in the DSGD
algorithm. Second, CMs are designed for iterative algorithms. A lost
partition of a CM may contain updates accumulated over hundreds
of iterations. Due to both reasons, lineage-based fault-tolerance
becomes overwhelmingly expensive. As a result, we chose a simple
fault-tolerance mechanism – periodic checkpointing.

A CM can be checkpointed by simply invoking a checkpoint()
function. When this function is invoked, the Sparkler coordinator
sends a checkpoint request to all the nodes that own at least one
partition of the CM along with a version number. Each node writes
this partition of the CM, along with the version number to the
distributed filesystem. This is a blocking checkpoint algorithm.
The next job is started only after all the nodes have finished check-
pointing and the coordinator has received acknowledgments from
all of them. CMs also support a recoverFromCheckPoint
() function. When this is invoked, the current state in the CM is
discarded, and the last known complete checkpoint of the CM is
loaded in from the distributed filesystem.

During the course of a job, if one of the worker nodes fails, the
coordinator instructs all the nodes to discard the current version of
the CM and load the last known complete checkpoint from the DFS.

13 ...
14 do {
15 try {
16 for ( stratum <− pData. strata ) {
17 for (block <− stratum; x <− block) {
18 val ma = movieModel(x.movieId)
19 val ua = userModel(x.userId )
20 val d = ma ∗ ua − x. rating
21 val ufactor = realStepSize ∗ (−d) ∗ 2
22 ma.update(ua , ufactor )
23 ua.update(ma , ufactor )
24 }
25 }
26 movieModel.checkpoint()
27 userModel.checkpoint()
28 } catch (LostCMNode l) {
29 movieModel.recoverFromCheckPoint()
30 userModel.recoverFromCheckPoint()
31 }
32 ...

Listing 4: Fault-tolerance for CMs through checkpoints.

If any job is in progress, an exception (of type LostCMNode) is
thrown. The user can catch this exception, and recover from it using
the recoverFromCheckPoint() function, and simply resume
computation. Since this is user-managed checkpointing, it requires
some minor modifications to the code. Listing 4 shows a snippet of
the program from Listing 3 enhanced with checkpoint and recovery
code. As is evident from the figure, it only requires a simple, minor
change to incorporate fault-tolerance. In the future, we plan to allow
Sparkler to automatically pick the checkpoint frequency based on
the failure characteristics expected from the cluster.

4.6 Sparkler Optimizations
In this section we describe two optimization choices that Sparkler

automatically performs without requiring any manual user interven-
tion.

4.6.1 Sparkler Data layout
The choice of the precise strategy used for laying out the strata

of the matrix across the nodes of the cluster can impact the total
amount of network traffic that is incurred during factorization. Re-
call that after each subepoch, when a new stratum is being processed,
each worker node needs to fetch the partitions of the factor matrices
corresponding to the data block that it is working on. With a care-
fully designed data layout, it is possible to ensure that the worker
nodes only need to fetch one of the two factor matrix partitions
from a remote node and that the other factor matrix can remain
local across subepochs. This serves to further decrease the overall
communication costs for factorization.

We first provide a brief calculation for the amount of data ex-
changed between subepochs to ensure that the factor matrices are
available locally during the data processing step. Consider a dataset
over M movies and U users containing D data points. Assuming
that the factor matrices have a rank r, and they store the features as
4-byte floating point numbers, the movie matrix is of size 4×r×M
and the user matrix is of size 4 × r × U . Assume that the cluster
consists of n nodes. If we partition the data into n strata, each
worker stores 4×r×M

n
and 4×r×U

n
bytes of data for the factor ma-

trices. At the end of each stratum, in general, both the factor ma-
trix partitions need to be fetched from a remote node, leading to
n× ( 4×r×M

n
+ 4×r×U

n
) bytes to be transferred over the network

in total before each stratum is processed. For an iteration over all n
strata, this results in 4nr(M + U) bytes of network traffic.

Consider a layout where each worker node contains all the data for
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Figure 6: Network traffic at coordinator and workers: comparison between broadcast variables and CMs.

a given user partition. For example, in the scenario of Figure 4, data
blocks A1, B1, and C1, each belonging to a different stratum are co-
located on the same worker node. With this layout, when switching
from one subepoch to another, a given worker node will only need
to fetch a partition of the movie factor matrix from a remote node
since the next user factor matrix partitions corresponding to the data
on the worker node (partition 1) is already local. Choosing A1,
B1, C1 to be the data blocks on the worker node ensures that the
data processing only ever requires a single partition of the factor
matrix on that worker. With this data layout, the total amount of
network traffic can be reduced to 4nrM bytes if only the movie
factor partitions are moved around. Alternatively, if the data is
partitioned by the movie dimension, the total traffic is 4nrU bytes.

The above presents us with an optimization opportunity in choos-
ing the appropriate data layout to minimize data transfers between
subepochs. In the Netflix example, M is of the order of 100,000
while U is of the order of a few million. As a result, it makes more
sense to choose the layout that results in 4nrM bytes of network
traffic. In the preparation phase, one can easily determine which is
the larger dimension by using several known techniques [3]. This is
one of the optimization choices that is made by Sparkler.

4.6.2 Sparkler Partitioning
The granularity of partitioning of the input matrix determines the

number of strata and therefore the number of Spark jobs that are
required to complete one iteration over the data. Since each job
incurs a non-trivial initialization overhead, choosing the granularity
of partitioning has a major effect on the execution time. If a small
number of partitions are used, there may not be enough memory
on each node to hold the partition of the data as well as the corre-
sponding factor matrix partitions. On the other hand, if too many
partitions are made, it will require a larger number of (shorter) jobs
– one for each subepoch. Sparkler uses a simple formula to pick the
right number of nodes using as input the size of the dataset, the rank
of the factorization, the available memory on each node, and the
number of nodes available.

If the aggregate memory available in the cluster is less than that
required to efficiently complete the problem, the model is kept in
memory, and the partitions of the RDD are paged into memory when
required. This ensures that the data structures that can be accessed
sequentially are read from disk while those that need random ac-
cess are pinned in main memory. Experiments in Section 5 show
the effect of varying the partitioning granularity on the execution
time for each iteration. Section 5.3 measures the impact of these
optimization choices on the overall execution time.

5. EXPERIMENTS
In this section, we present the results of several experiments that

explore the advantages of using Sparkler and CMs over Spark and
its existing abstractions of accumulators and broadcast variables.
We also explore the performance impact of the optimization choices
that Sparkler makes.

The experiments were run on a 42-node cluster connected by a
1Gbit ethernet switch. Each node has two quad-core Intel Xeon
processors with 32GB of main memory and five 500GB SATA disks.
One node was reserved to run the Mesos [17] master and the HDFS
(Hadoop Distributed File System) Namenode. Another node was
reserved to run the Spark coordinator. The remaining 40 nodes were
available for use as workers for Spark. The software versions used
were IBM’s J9 JVM for Java 1.6.0, HDFS 0.20.2 from Hadoop, and
Scala 2.8.1, and Spark version 0.3.

The experiments used the dataset from the Netflix prize [20]. The
dataset has 100,198,805 ratings for 480,189 users and 17,770 items.
To generate larger instances of the problem, we doubled the dataset
along both dimensions to create a dataset that was four times as
large, and another one that was sixteen times as large. As in previous
papers [15], this approach was used to synthetically obtain larger
datasets while retaining the same sparsity as the original dataset.
The datasets are referred to as N1, N4, and N16 in this section.

5.1 Comparison with Spark
The first set of experiments focus on the advantage of using CMs

when compared to the existing abstractions of accumulators and
broadcast variables in Spark. Figure 7a shows the time taken for
a single epoch over the dataset on a cluster of size 5 as the rank
of the factor matrices is increased for the Netflix dataset (N1). As
described in Section 2.2, completing the actual factorization is likely
to take several epochs. As in previous work [15], we focus on the
time taken in a single iteration to directly compare performance
without any interference from randomness and convergence rates.
As the rank is varied from 25 to 400, the execution time for Sparkler
with CMs varies from 96 seconds to 193 seconds. On the other hand,
the time for Spark using broadcast variables varies from 594 seconds
to 2,480 seconds. Sparkler is 6.2x - 12.9x faster. As is evident, CM’s
advantage gets larger as the rank of the factors gets larger. This is
because Spark needs to broadcast as well as accumulate a larger
amount of model data as the rank gets larger. CM avoids the cost
of transferring all this data over the network and therefore scales
much better. The experiment was repeated on a 10-node cluster with
similar results: CM was 3.9x to 18.3x faster (Figure 7b).

Figures 8a and 8b compare the execution time per epoch of CMs
and broadcast variables for a fixed rank, 50, and vary the data size.
The times are shown for N1, N4, and N16. Note that the Y-axis
is on a logarithmic scale. On the 5-node cluster, CM’s advantage
over broadcast for N1 and N2 were 6.3x and 9.2x respectively.
For N16, broadcast didn’t finish even after 15,000 seconds, and
was terminated. The factor size increases linearly with both the
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Figure 7: Using CMs vs broadcast variables as rank increases
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Figure 8: Using CMs vs broadcast variables as data size increases

number of items and the number of customers. As a result, the
broadcast based approach is much worse for larger datasets. On the
10-node cluster CM was 5x, 9.4x, and 21x faster on N1, N4, and
N16 respectively (Figure 8b).

5.2 Scaling Results
Next, we studied the performance of CMs as we varied the rank at

different dataset sizes for different cluster sizes. Figure 9a shows the
time taken per epoch as the rank of the factor matrices is increased
for N1 and N4 on a cluster of 5 nodes. N16 was too large for the 5
node cluster and is not shown. Figures 9b and 10a show the same
experiment on clusters of size 10 and 20 respectively. For a given
cluster size, CMs scale linearly with increasing rank so long as the
CM can fit in aggregate memory. We expect that CMs will work
with arbitrarily large ranks as long as the aggregate memory of the
cluster is large enough. This is in contrast to accumulators and
broadcast variables that need to fit in the main memory of a single
node or use B-trees, both of which are major bottlenecks. We note
that this holds for all the cluster sizes shown here: 5, 10, and 20.

5.3 Optimizations
Next we study the contribution of the optimization choices to

improving the runtime of each epoch. Recall that Sparkler chooses
the data layout in a way that allows the larger factor (say customers)
to stay resident on the same worker across subepochs while forcing

Params Optimal (sec) Reversed (sec) Ratio
Dataset=N1, 5 nodes

Rank
25 95.8 104.5 1.1x
50 117.9 114.7 1.0x
100 113.8 135.2 1.2x
200 144.1 181.6 1.3x
400 192.7 258.5 1.3x

Dataset=N1, 10 nodes
Rank
25 121.9 123.4 1.0x
50 120.7 128.9 1.1x
100 124 145.9 1.2x
200 143 173.4 1.2x
400 172.3 236.9 1.4x

Table 1: Impact on execution time for choosing the larger stable
dimension.

the smaller factor’s CM to move its partitions around from subepoch
to subepoch. Table 1 shows execution time per epoch when the
larger factor is kept stable as well as when this is reversed. As is
expected, the penalty for choosing the wrong dimension to be stable
increases with the rank of the factorization, and varies from nearly
no penalty when the rank is small (25) to 1.4x when the rank is large
(400).
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Figure 9: Factorization Time as rank increases
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Figure 10

The second choice Sparkler makes that could have an important
impact on the execution time is the size of the cluster used. Because
each epoch is split into as many subepochs as there are strata, there
are substantial overheads to stratifying the matrix to be processed
over more nodes. Figure 10b shows the execution time per epoch for
varying choices of cluster size on the N4 dataset with rank=50. The
best execution time is obtained at a cluster size of 10. As clusters
larger than 10 are used, the overhead of partitioning the data into
strata, and the fixed per-job overheads start to dominate. Between
cluster sizes of 5 and 40, the ratio of the worst time to the best time
was about 2x.

Sparkler uses a simple model based on data size, rank, available
memory, and computation and communication costs to pick the right
sized cluster. This can easily be overridden by the user who wishes
to explicitly instruct Sparkler to use a given number of nodes.

6. RELATED WORK
Sparkler draws on ideas from several different research commu-

nities, and builds on a growing body of work dealing with efficient
algorithms and systems for solving learning tasks on very large data
sets.

There has been much research in the past on the general goal of
being able to support existing shared-memory applications trans-
parently on distributed system [13]. CMs offer a different kind of

shared memory abstraction that does allow fine-grained updates so
long as the updates are temporally and spatially correlated. Our
approach with CMs is much more focused and limited than distribut-
ed shared memory (DSM). Previous approaches to implementing
DSM on clusters have met with little success because it is a difficult
problem to provide this abstraction and have applications written for
a single machine seamlessly work well without any modifications
on DSM.

Several research groups have proposed alternatives to conven-
tional MapReduce implementations for iterative workloads. Apart
from Spark, these include Piccolo [29], HaLoop [5], Twister [11],
Hyracs [4] and Nephele [2]. Since DSGD iterates over large datasets
multiple times, these systems are of particular interest. The ideas in
this paper can be adapted to work with any of these platforms.

Piccolo [29] advocates distributed in-memory tables as a program-
ming model for cluster computation. Such a model is a lower-level
abstraction than MapReduce. Given user-defined locality prefer-
ence, Piccolo minimizes remote access by co-locating partitions of
different tables that are more likely to be accessed by the same node.
Piccolo also supports user-managed checkpointing for efficiently
programming large clusters for data intensive tasks. Fault-tolerance
in CMs draws on ideas similar to checkpointing in Piccolo. Howev-
er, instead of presenting a general table abstraction, Sparkler uses
RDDs for the data (with transparent fault tolerance), and CMs for
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the factors (with user-managed checkpointing). Moreover, Piccolo
adopts a fixed co-location scheme, while CMs provides a mecha-
nism of dynamic collocation to further reduce remote access when
possible.

HaLoop [5] proposes several modifications to Hadoop to improve
the performance of iterative MapReduce workloads. However, Spark
has shown that for iterative workloads, especially where the dataset
fits in the aggregate memory of a cluster it offers substantially better
performance [41] than Hadoop and HaLoop.

Twister [11] is an independently developed lightweight Map-
Reduce runtime that is also optimized for iterative workloads.
Twister also targets cases where the data fits in the aggregate
memory of a cluster. However it does not support fault tolerance
either for the input data or the data structures that store the factors.

Hyracks [4] is a distributed platform designed to run data-
intensive computations on large shared-nothing clusters of
computers. Hyracks expresses computations as DAGs of data
operators and connectors. Operators operate on partitions of
input data and produce partitions of output data, while connectors
repartition operators’ outputs to make the newly produced partitions
available at the consuming operators.

Nephele [2] is a system for massively parallel data processing
based on the concept of Parallelization Contracts(PACTs). PACT
programs are compiled, optimized, and parallel executed on the
Nephele execution engine performing various complex data analyti-
cal tasks.

We chose Spark because the RDD abstraction is a great fit for
many problems. Also, Spark is versatile and has been used to ex-
press many data-parallel processing frameworks [41] including Map-
Reduce, Bulk Synchronous Parallel for graph processing, HaLoop
[5] and even a simple subset of SQL. Further, it is implemented in
Scala – its conciseness makes it easy to express DSGD algorithms,
the embedded DSL (Domain Specific Language) features [31] allow
us to transparently make optimization choices, and the functional
features make it easier for us to efficiently execute DSGD algorithm-
s. While traditional parallel programming frameworks like MPI
(Message Passing Interface) allow for very high performance and
flexibility, it is difficult to provide two major advantages that Spark
provides: fault-tolerance and ease-of-programming. We believe that
that Spark and CMs offer the right combination of fault-tolerance,
ease-of-programming, and adequate performance to be widely use-
ful.

SystemML [16] is a project that aims to build a language for
expressing machine learning algorithms and a compiler and runtime
that executes them as a series of MapReduce jobs on Hadoop. Sys-
temML is general-purpose – it is not focused on iterative workloads
or on datasets that fit in memory. In contrast, Sparkler focuses on
iterative learning tasks on datasets that fit in the aggregate memory
of a cluster. Sparkler offers much higher performance for such cases
than a general-purpose platform.

A closely related work is the Victor [12] project at the University
of Wisconsin. Victor attempts to bring together the techniques re-
quired for expressing stochastic gradient descent algorithms on data
in large relational databases using User Defined Functions (UDFs)
and a simple python interface. We believe that this approach will be
extremely valuable in making SGD-style algorithms accessible on
large relational datasets. Finally, parallel and distributed algorithms
(including DSGD variants) for large-scale matrix completion on
problems with millions of rows, millions of columns, and billions
of revealed entries are discussed in [39]. The focus is on main-
memory algorithms that run on a small cluster of commodity nodes
using MPI for computation. However, Sparkler targets alternate
architectures. Much like Spark, our design is aimed at being able

to solve this problem on a large cluster of machines and does not
require the data to be in a relational database. Furthermore, unlike
relational databases where mechanisms like UDFs typically impose
a performance penalty as well as development overheads, our design
is aimed to support development of DSGD algorithms through a
lightweight domain specific language tailored for this task. Finally,
unlike parallel relational databases or MPI clusters, Sparkler (and
Spark) are particularly well-suited to running on the cloud.

There are other systems specialized for matrix computations.
MadLINQ [30] provides a programming interface for distributed
matrix computations based on linear algebra. A MadLINQ program
is translated into a DAG of parallel operators, and the output of
each operator is pipelined to downstream operators. This approach
is similar to using Hadoop, and does not exploit efficient memory
sharing in the cloud. Presto [40] is a prototype that supports R
running on a cluster. Presto extends R language for distributed
execution, and supports efficient update of the results when the input
matrices are incrementally changed. Presto partitions the matrices,
and co-locates the partitions operated by the same function. A
partition can be read by multiple concurrent tasks form different
nodes, but written only by the owner node. However, Presto does
not allow changing the ownership of partitions to further reduce
remote access as in CMs.

On the surface, CMs are also related to research in scalable dis-
tributed hash tables (DHTs) motivated by peer-to-peer internet ap-
plications. Chord [37] and Pastry [32] are well known examples
of such systems. These systems focus on providing efficient, fault-
tolerant routing at internet-scale under the assumption that members
may arbitrarily join and leave the system. In contrast, CMs are de-
signed to support access to large factors, specifically in the context
of DSGD programs. Unlike DHTs, CMs do not focus on problems
of churn, membership protocols, and routing.

A naive alternative to using CMs is to use a distributed cache
such as Memcached [25]. However, using Memcached as a simple
key-value store to hold the model data presents two problems: first,
each access to the hashmap will in general require network I/O to
reach the node that contains the data. Second, memcached does not
provide any fault-tolerance if a node fails. CMs solve both these
problems without imposing an undue burden on the programmer.

Hogwild! [27] is a recent result that shows how multi-threaded
SGD algorithms can be implemented without using locks to serialize
updates to the shared model. This is a particularly interesting result
with substantial performance advantages, we plan to use this in our
multithreaded version to obtain similar speedups.

There’s a rich history of work on several different algorithms for
personalized recommendation and collaborative filtering [38]. In
this paper, we do not propose any new algorithms for recommen-
dation. Instead, we focus on building a platform to support a class
of algorithms (SGD) that has been shown to be very promising for
solving general matrix factorization problems.

There has also been recent work in the database community to
increase the flexibility with which a recommendation engine can
be used to display actual results to the user [21]. The techniques in
this work address a single-node shared-everything database, and are
not focused on scaling out to solve large instances of the problem.
Other aspects of this work that address flexibility in incorporating
additional constraints are complementary to Sparkler and CMs, and
are generally useful for any practical recommender system.

7. CONCLUSIONS AND FUTURE WORK
We view Sparkler as not merely a tailored solution to a “narrow”

problem of matrix factorization using DSGD. As others have pointed
out [36], matrix factorization is no longer just for matrix algorithmi-
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cists to solve particular problems, but it forms the core of new com-
putational platforms from which a variety of problems can be solved.
Beyond personalized recommendation, applications as diverse as
social network link prediction [35], video surveillance [6,23], graph-
ical model selection [33], document modeling [18, 26], and image
alignment [28] are being solved using matrix factorization.

However, as this technique is applied to a variety of different
settings on increasingly larger datasets, we argued that single-node
solutions are not sufficient. We described the design and implemen-
tation of Sparkler, a parallel platform that supports matrix factor-
ization using DSGD. Sparkler extends Spark with a data structure
called Carousel Maps for storing large factor matrices in the aggre-
gate memory of the cluster during factorization. Sparkler provides
a natural way to prepare the data for use with CMs and DSGD.
Sparkler also provides several optimizations that take advantage of
the computation and communication patterns during DSGD-based
factorization. We show that CMs overcome a crucial bottleneck in
Spark and provide 4x to 21x in performance improvements. In fact,
with CMs, Sparkler can scale to solve larger matrix factorizations
instances than would be possible with Spark.

There are certain limitations to Sparkler we hope to address in the
near future. Currently, it is limited to factorizing two-dimensional
matrices. Extending this to handle tensor factorization is relatively
straightforward. Fault-tolerance for CMs is currently through user-
managed checkpointing. We are planning to allow to the Sparkler
optimizer to automatically manage checkpointing using assumptions
about the failure rates in the cluster. We also hope to exploit other
algorithmic advances, like Hogwild [27], to improve performance on
shared-memory multicore systems even further, without requiring
any re-programming of existing user code.
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