
Eagle-Eyed Elephant: Split-Oriented Indexing in Hadoop

Mohamed Y. Eltabakh1∗ Fatma Özcan2 Yannis Sismanis2

Peter J. Haas2 Hamid Pirahesh2 Jan Vondrak2

1Worcester Polytechnic Institute 2IBM Almaden Research Center
Worcester, MA, USA San Jose, CA, USA

meltabakh@cs.wpi.edu {fozcan, syannis, phaas, pirahesh, jvondrak}@us.ibm.com

ABSTRACT
An increasingly important analytics scenario for Hadoop involves
multiple (often ad hoc) grouping and aggregation queries with se-
lection predicates over a slowly changing dataset. These queries
are typically expressed via high-level query languages such as Jaql,
Pig, and Hive, and are used either directly for business-intelligence
applications or to prepare the data for statistical model building
and machine learning. In such scenarios it has been increasingly
recognized that, as in classical databases, techniques for avoiding ac-
cess to irrelevant data can dramatically improve query performance.
Prior work on Hadoop, however, has simply ported classical tech-
niques to the MapReduce setting, focusing on record-level indexing
and key-based partition elimination. Unfortunately, record-level
indexing only slightly improves overall query performance, because
it does not minimize the number of mapper “waves”, which is de-
termined by the number of processed splits. Moreover, key-based
partitioning requires data reorganization, which is usually impracti-
cal in Hadoop settings. We therefore need to re-envision how data
access mechanisms are defined and implemented. To this end, we
introduce the Eagle-Eyed Elephant (E3) framework for boosting the
efficiency of query processing in Hadoop by avoiding accesses of
data splits that are irrelevant to the query at hand. Using novel
techniques involving inverted indexes over splits, domain segmenta-
tion, materialized views, and adaptive caching, E3 avoids accessing
irrelevant splits even in the face of evolving workloads and data.
Our experiments show that E3 can achieve up to 20x cost savings
with small to moderate storage overheads.

1. INTRODUCTION
This work was motivated by a desire to improve the performance

of massive-scale analytics in an important and increasingly common
user scenario. Specifically, we focus on warehouse-like exploratory
analysis environments in which the Hadoop [13] open source im-
plementation of MapReduce [7] is used together with a higher-level
interface such as Jaql [3], Pig [22], or Hive [30] to execute multiple
(and often ad hoc) grouping and aggregation queries with selection
∗The author conducted most of this work at the IBM Almaden
Research Center.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

predicates over a slowly changing dataset. The queries are used
either directly for business-intelligence applications or to prepare
the data for statistical model building and machine learning. The
query workload typically evolves in ways that are not known a priori;
i.e., certain attributes and attribute values are intensely queried for a
while, after which a different set of attributes and attribute values
are frequently queried, and so on, but the precise sequence of query
patterns is not known in advance.

1.1 Motivating examples
One real-world example of such a scenario is provided by the

authors’ experience with an established credit card company having
leading analytics capabilities for predicting credit card fraud, as well
as strong data-warehouse capabilities for analyzing information gen-
erated from cardholder accounts, merchants, consumer banks, and
more. Hadoop is used to extend the customer’s analytics capabilities
because it provides a scalable and cost-effective platform for storing
many years of highly-structured credit-card transaction data. The an-
alytics needed for marketing and risk assessment are highly varied,
involving custom algorithms and many different third-party modules
that require exploratory analysis and various statistical summaries.
Multiple selective queries need to be run on the transaction data
in order to support the development of new prediction techniques,
e.g., as new fraud patterns emerge. Specifically, queries are used to
repeatedly sample various portions of the data for building, refining,
and validating models. Queries are also used to materialize data
representing different time periods, customer segments, and so on,
to feed into the models once they are built.

Another example is provided by our collaboration with a leading
wind-power generation company. Simulating global wind patterns
is critical for the company’s business and produces petabytes of
semi-structured and nested data that are stored in a Hadoop cluster.
The company’s scientists need to explore the simulation output by
repeatedly running ad hoc selection queries, continuously evaluating
and analyzing the results.

As illustrated by these examples, the data may be structured or
only semi-structured. Hadoop is well suited to processing many
types of datasets, avoiding the burdensome need to structure the
data into rigid schemas prior to analysis. This flexibility, along with
attractive price-performance characteristics and low startup costs,
helps explain Hadoop’s growing popularity.

1.2 The Need for Indexing in Hadoop
Despite Hadoop’s excellent scalability properties, users have rec-

ognized that, as with traditional database systems, there is con-
tinuing pressure to enhance query processing efficiency. Indeed,
evolving infrastructure-as-a-service (IaaS) pricing models require
users to pay according to the hardware and energy resources that
they use [14], so there is an increasing need to reduce such costs.

89

The most important strategy for improving query performance is to
avoid processing data that is irrelevant to the query. Prior work on
selective processing in Hadoop, however, has simply ported classical
techniques for this task directly to the MapReduce setting, focus-
ing on record-level indexing and key-based partition elimination.
Neither of these naive approaches are very effective.

The key issue for indexing is that the wall-clock execution time
for a query depends on the number of waves of mappers that are
executed, which in turn depends on the number of processed splits—
logical partitions of the data as specified in the Hadoop InputFormat
interface. (One mapper task is created for each split.) The cost of
processing a split is dominated by the I/O cost of reading the split
and the overhead of starting up the mapper that processes the split.
So the cost of processing one or two records in a split is typically
not much less than the cost of processing every record in the split.
Traditional record-level indexing techniques that ignore this feature
of Hadoop do not perform well. Indeed, previous work [9] has
demonstrated that such techniques do not translate to end-to-end
savings unless both the Hadoop Distributed File System (HDFS) and
Hadoop itself are thoroughly re-engineered; our goal is to improve
the performance of Hadoop as-is.

1.3 The Need for Improved Indexing
In more detail, prior indexing schemes [1, 8, 16] consider only

clustered indexes on the keys used to partition the data into splits.
Such indexes do not suffice in themselves. For example, suppose
that the data are partitioned into splits by time and that transactions
in each split are sorted by their timestamps. Consider the query that
returns all transactions between Jan 2008 and Aug 2008 for a given
customer at a given store. Using a clustered index on dates, we can
eliminate (i.e., avoid the reading and processing of) splits that do not
belong to this time interval. If, however, the customer only shops at
the store once per month, Hadoop may still process many splits that
contain no transactions for that customer. In this case, a secondary
index on customer IDs would eliminate many splits. Similarly, if
the store opened in Jul 2008, then a composite index on (store, date)
value pairs would be more effective than just the clustered index
on dates. In our setting, where the workload is generally unknown
a priori, there is no guidance on which indexes to construct. For
example, the TPoX and TPCH benchmark datasets considered in
Section 4 contain 46 and 7 attributes, respectively, that each have the
potential to eliminate 80% of the splits in a query. A partitioning-key
approach would essentially ignore all of these attributes save one,
thereby foregoing a wide range of split-elimination opportunities.

In a similar manner, attempts at directly porting classical partition-
elimination methods to the Hadoop setting also have limited effec-
tiveness. Classical approaches are based on physically partitioning
the data according to some key, and then avoiding processing those
partitions not referenced by the query. The Hive interface [30] pro-
vides this functionality, but requires an expensive map-reduce job to
partition the data (unless the data is already partitioned by the key),
because HDFS does not provide any direct user mechanisms for data
placement. If a good partitioning key is not known in advance—the
usual case in our scenario—then reorganizations may need to occur
frequently, adding enormous overhead to query processing.

Further complicating attempts at both indexing and partition elim-
ination is the fact that the nature of data evolution in Hadoop differs
from that in a classical database system. Specifically, HDFS stores
large files as a series of blocks distributed over a cluster of data
nodes and replicated for purposes of fault tolerance [29]. HDFS
does not directly support in-place updates or appends to existing
files; instead, new data (in the form of files) rolls in and old data is
rolled out by deleting or archiving files.

1.4 E3 Overview
Clearly, we need to re-envision how data access mechanisms are

defined and implemented in Hadoop. To this end, we introduce the
Eagle-Eyed Elephant (E3) framework for boosting the efficiency of
query processing in a Hadoop/Jaql processing environment.1 The
key idea behind E3 is to focus directly on elimination of splits, using
enhanced, split-oriented indexing techniques that are coarser, but
more effective, than record-based indexing. Also, in contrast to prior
schemes that only index on partitioning keys, E3 provides a more
flexible indexing scheme, based on our observation that non-key
fields having large numbers of distinct values can be very effective
for split elimination.

Specifically, E3 operates over a “flattened JSON” view of the
data in a file (see Section 2) in which each file and split consists
of arrays of records. Each record is a collection of fields, where a
field consists of a (name, atom) pair. For purposes of this paper, an
atom is an elementary data value that can be a string, date, boolean,
or number. (As discussed in Section 2, the file of interest need not
actually be stored in JSON format.)

E3 computes certain split-level statistics for each field—such as
min, max, and ranges for a numerical field—and stores them in
a “range index”. These range statistics, computed via a “domain
segmentation” scheme, allow the system to effectively prune splits
that do not satisfy given range predicates in a query of interest.

E3 also automatically builds a split-level inverted index over all
string fields. Importantly, all fields are indexed, and not just the par-
titioning field(s); as indicated above, such comprehensive indexing
can greatly increase opportunities for split elimination. Moreover,
there is no need to guess a partitioning key or to repeatedly re-
partition the data as the workload changes; E3 simply creates an
index on all fields once, and amortizes the creation cost over multi-
ple queries. The only system resource needed in addition to Hadoop
is a lightweight cataloging service to maintain the metadata.

One challenge to the inverted-index scheme is the presence of
“nasty” atoms, that is, values that are globally infrequent but appear
once or twice in a large number of splits. E3 can automatically
identify these values and enhance the inverted index with material-
ized views over the data records having nasty atoms. Then, given a
query predicate that references a nasty atom, only a small number
of splits in the materialized view need be accessed, rather than a
large number of splits in the original file.

A similar problem is posed by conjunctive queries that reference
“nasty” atom pairs, where each atom in the pair appears in many
splits but the atoms appear jointly in only a few records. Consider,
e.g., (ship date, delivery date) atom pairs. A given individual ship
date may appear in many transactions, and similarly for a given
delivery date, but if these dates are unusually close or far part, the
number of actual transactions that contain both dates simultaneously
will be small. Substitute products are another example: many people
buy iPhones or Droids, but few people buy both together. Because
of the prohibitive quadratic number of atom pairs, a complete index
for all atom pairs is too expensive to compute and store. Hence E3
employs a novel main-memory adaptive caching method to maintain
an inverted index only of those nasty atom pairs that are the most
“valuable” in that they are referred to frequently and result in the
elimination of many splits when cached.

E3 automatically combines the foregoing indexes and material-
ized views at query execution time to access the minimal set of splits
required to process the query. E3 avoids the need for user-specified
physical design, data movement or reorganization, or a priori knowl-

1Although we focus on queries expressed in the Jaql language, our
techniques can be applied to queries in Pig, Hive, and so on.

90

!"#$%&#'% !"($%&('% !")$%&)'% !"*$%&*'%

Figure 1: Creating clustered ranges.

edge about the query workload (though workload information can
be exploited if available). Experiments using data with hierarchical
and flexible schemas, as well as data with flat and fixed schemas,
demonstrate savings in query response time of up to 20x due to split
elimination while requiring a small to moderate storage overhead
(5%–21%) for the corresponding indexes and materialized views.
Our indexing techniques are potentially interesting even in the set-
ting of traditional parallel databases [23]: these systems typically
use only partitioning attributes for “data localization” (i.e., partition
elimination).

The rest of the paper is organized as follows. In Section 2, we
describe the range index, inverted index, materialized views, and
caching algorithm. In Section 3, we discuss how these indexing
techniques are used collectively to eliminate splits at query time.
Section 4 describes our experimental study, Section 5 reviews related
work, and Section 6 concludes the paper.

2. EAGLE-EYED ELEPHANT (E3)
In this section, we describe the core techniques used in E3 to

speed up queries with selection predicates by avoiding useless splits
to the greatest extent possible. Sections 2.1 and 2.2 discuss the
computation of the range index and the inverted index. Section 2.3
describes the identification of nasty atoms and the use of a materi-
alized view to tame them. Section 2.4 describes the main-memory
adaptive caching algorithm used to handle nasty atom pairs.

As indicated previously, E3 can operate over a wide range of
storage formats. Indeed, because E3 uses Jaql for processing, it can
exploit the adapters and converters provided by Jaql for translating
the actual storage format into a JSON view for processing. Formats
that E3 can handle include CSV files and HDFS sequence files.
In more detail, E3 operates on JSON views generated by Jaql file
descriptors [3]. A file descriptor specifies the specific adapters and
converters used for the data, as well as the InputFormat used for
creating splits. Note that E3 may generate different indexes on the
same data if different file descriptors are used. Therefore, for each
file in the warehouse, E3 maintains both a file descriptor and file
signature in the system catalog to ensure that the correct index is
used to eliminate splits in a Jaql query over the file. E3 actually
uses a “flattened” JSON view of the data. In general, JSON data
comprises atoms, arrays, and records (sets of name-value pairs),
which can be arbitrarily nested to any depth. E3 flattens this nested
structure so that each field name becomes a root-to-leaf path name
and each field value corresponds to the atom at the end of the path.

2.1 Domain Segmentation for Range Indexing
By creating a “range index” which contains, for each split, range

statistics on each numerical and date field2, we can quickly eliminate
splits that do not satisfy a given range or equality predicate appearing
in the query of interest. E.g., if we know that the minimum and
maximum values of “weight” in a given split are 2 lbs and 3 lbs,
respectively, then we know immediately that no records in the split
satisfy a predicate of the form “weight between 1.2 lbs and 1.5 lbs”.
However, if the atoms within a split are clustered in small subranges
of the overall min-max range, then merely storing the minimum and

2We can compute range statistics on any data type that has a well-
defined sort order, including strings. In the current paper, we focus
on numeric and date fields.

maximum values for a field may lead to many false positives. For
example, suppose the atoms for a given field in a given split are as
in Figure 1, so that the minimum and maximum atom values are
a1 and b4. Then we would incorrectly assume that there may be
records in the split that satisfy the predicate “value between x1 and
x2” if x1 > b1 and x2 < a2.

E3 therefore uses a simple and fast one-dimensional “domain
segmentation” technique that generates multiple ranges for each
field in each split. Given a bound k on the number of ranges for
each field, and a set of values {v1, . . . , vn}, our goal is to compute
at most k segments of the min-max interval, i.e., at most k ranges,
such that each vi is contained in some range and the ranges are
configured “as tightly as possible" (see Figure 1).

The algorithm works as follows for a given split: We determine
the distinct values among v1, . . . , vn and sort them. If the number
of distinct values is at most k, we create a separate range [vi, vi] for
each distinct value (subject to the consecutive values optimization
described below). Otherwise, we have ` > k distinct values, denoted
in ascending order as vmin = a1 < a2 < · · · < a` = vmax. We
compute the ` − 1 consecutive gaps gi = ai+1 − ai, and sort
these in descending order. Let i(1), i(2), . . . , i(k − 1) denote the
indices of the k − 1 largest gaps. For each gap gi(j), we remove
the interval (ai(j), ai(j)+1) from [vmin, vmax]. What remains is a
collection of k ranges—i.e., subintervals of [vmin, vmax]—of the form
[c1, d1], [c2, d2], . . . , [ck, dk], where each ck and each dk is equal
to one of the vi’s. These are the ranges returned by the algorithm. If
a predicate does not hit any of the ranges, the split can be eliminated.

For integer-valued and date-valued fields, we actually use ai+1 −
ai − 1 rather than ai+1 − ai to define the size of the gap gi. The
former expression is the number of possible predicate values in
the interior of the interval [ai, ai+1]. In particular, gaps between
two consecutive integers are never selected, because there is no
benefit in doing so. If we find that fewer than k − 1 gaps have size
gi = ai+1 − ai − 1 > 0, we stop and form exactly those ranges
determined by the positive gaps.

Under a query workload having uniformly distributed equality
and range predicates that hit the interval [vmin, vmax], the foregoing
scheme produces ranges that maximize the probability that a pred-
icate will eliminate the split. To see this, assume without loss of
generality that vmax − vmin = 1. First consider a random equality
predicate qe(attr, w) that searches for records with attribute attr
equal to w. The probability that the split is eliminated equals the
probability Peq that w lies in one of the k − 1 selected gaps, where
Peq =

∑k−1
j=1 gi(j). Similarly, for a predicate qr(attr, w1, w2) that

searches for all records having a value of attr between w1 and w2,
the split is eliminated if both w1 and w2 lie in the same gap, which
happens with probability Prange =

∑k−1
j=1 g

2
i(j). Because we selected

gi(1), . . . , gi(k−1) to be the k− 1 largest gaps, it follows that, under
the condition that we have at most k ranges, our choice of ranges
simultaneously maximizes Peq and Prange.

If there happens to be workload information available, we can
exploit it simply by redefining each gi as the fraction of historical
predicate values that have fallen in the interval (ai, ai+1); thus gi
estimates the probability that a future value will fall in this interval.
Both the segmentation algorithm and optimality argument remain
essentially unchanged.

2.2 Inverted Index
E3 builds an inverted index over each string field3 in the data file

and uses the index when evaluating equality predicates. The index
3It is also possible, for example, to build the inverted index over
strings, dates, and numbers, and use the inverted index in lieu of the
range index; we focus on the string-only case in the current paper.

is implemented using fixed-length bitmaps, where the number of
bits in each bitmap equals to the number of splits in the dataset. The
bitmap for a given atom v has its ith bit set to 1 if and only if the
ith data split contains v. To compactly represent the index, each
bitmap is compressed using Run-Length Encoding (RLE) [12]. As
our experiments show, RLE compression is very effective, reducing
the index size by up to 85%.

E3 constructs the inverted index by performing a single map-
reduce job over the data. The map phase reports each atom v and
the split ID in which v appears. The reduce phase then groups these
output records according to v and merges the split IDs to form the
bitmap array, which is then compressed using RLE.

2.3 Materialized View

File A

(V,{1,2,3, …, N})

 (a) Using inverted index to answer Query Q(v):
Read all splits containing value v (up to N)

Split-Level
Inverted Index

File A

Split 1 Split 2 Split 3 Split N Split N-1

!"#$%&$!"#$%&$

!"#$%&$

!"#$%&$
!"#$%&$

!"#$%&$

!"#$%&$

Materialized View
over File A

!"#$%&$

!"#$%&$
!"#$%&$

!"#$%&$

Split 1 Split M

Building a materialized view
including all records containing v

!"#$%&$

(b) Using materialized view to answer Query Q(v):
Read only M splits instead of N (M << N)

v appears infrequently in
many splits (nasty atom)

Split 1 Split 2 Split 3 Split N Split N-1

!"#$%&$!"#$%&$

!"#$%&$

!"#$%&$
!"#$%&$

!"#$%&$

!"#$%&$

Figure 2: Inverted index vs. materialized view.

Figure 2 gives an example of a nasty atom v that appears once or
twice in each of theN splits of “File A”. If we use an inverted index—
see Figure 2(a)—all of these splits will be accessed whenever an
equality predicate involving v is evaluated. However, by building
a materialized view on File A that stores all records containing v,
queries involving v can be answered by processing the M splits of
the materialized view instead of the N splits of the original data,
where M << N ; see Figure 2(b).

The number of nasty atoms in a dataset can be very large and the
allotted space for the materialized view is expected to be very small,
e.g., 1% or 2% of the data size. Thus the key challenge is to choose
the “best” subset of nasty atoms to store in the materialized view.
We formulate this optimization problem as a submodular knapsack
problem and provide a practical approximate solution.

Denote by M and R the maximum number of splits and records
that can fit in the materialized view. Also let splits(v) and records(v)
be the set of splits and set of records containing a given atom v.
Denote by |splits(v)| and |records(v)| the cardinalities of these sets.
Each atom v that we consider for the materialized view has a “profit”
defined as profit(v) = |splits(v)| −M , representing the number of
splits saved due to reading splits in the materialized view instead
of the original data splits containing v. For a set V of atoms con-
sidered jointly for inclusion in the materialized view, we define the
overall profit as profit(V) =

∑
v∈V p(v) · profit(v), where p(v) is

the probability that a query will contain an equality predicate that
references atom v. The probability distribution p can be estimated
from the query workload if available, and thus giving greater weight
to frequently referenced atoms. If the query workload is unknown,
then we assume a uniform query distribution over all atoms in the
dataset; in this case p(v) can be treated as a constant and effectively
ignored in the analysis. In a similar manner, we can define cost(v)
as the number of records that will be copied to the materialized view
and thus use up part of its allotted space. (We use the number of
records as a proxy for space consumed because it is extremely ex-

selectNastyAtoms(S, R, L, !)
Input:
 - Set S of n values, S = {v1, …, vn}, // S contains all values in the dataset
 - Maximum number of records in the materialized view R
 - Minimum number of splits a value may appear in L.
 - Overlapping factor ! " 1.
Output:
 - OutputList = {} // Output list containing the selected nasty values

(1) Compute U = R/L. // U is the upper bound for the number of needed values
(2) Build TopU list ! Scan the values in S and keep only the top U values w.r.t. profit(v)/cost(v).
(3) Build SortedU list ! Sort the values in TopU list in descending order w.r.t. profit(v)/cost(v).
(4) Define totRecords = 0.
(5) For (i !1 to U) Loop
(6) - Let v = SortedU(i).
(7) - Add v to OutputList.
(8) - totRecords += |records(v)|. //Add the number of records containing v to the counter
(9) - If (totRecords " R * !) Then // If the number of records exceeded the materialized
(10)  - Exit the loop. // view capacity, then exit the loop.
(11) Return OutputList

Figure 3: Modified greedy algorithm for selecting the
materialized view atoms.

pensive to track the actual space consumption associated with each
record.) Noting that the sets records(u) and records(v) can overlap
for distinct u and v, we define the cost of storing a subset V of
atoms in the materialized view as cost(V) = |

⋃
v∈V records(v)|.

The optimization problem is therefore to choose a subset of atoms
V to maximize profit(V) subject to the constraint that cost(V) ≤ R.
The function cost(V) is “submodular” and hence our optimization
problem is a special case of the “submodular knapsack” problem.
Unfortunately, this problem is very hard even to approximate: it is
known that there is no approximation better than a multiplicative√
n/ logn factor [28]. Furthermore, our problem contains as a spe-

cial case the ”densest k-subgraph problem", for which no practical
approximation algorithms are known. To develop a practical solu-
tion for constructing the materialized view, we ignore the overlap
among record sets and approximate (actually, overestimate) the cost
as cost(V) ≈

∑
v∈V cost(v) =

∑
v∈V |records(v)|. In this case,

the submodular knapsack problem reduces to a classical 0-1 knap-
sack problem. Our experiments indicate that this approach yields
good results in practice (see below), especially since the space con-
straints in our problem are not hard constraints—i.e., using slightly
more than (or fewer than) M splits is acceptable.

Even the simplified 0-1 knapsack problem is NP-complete [11],
but efficient approximation algorithms exist. It is known that a
(1 − ε)-approximation can be found in time polynomial in 1/ε
and the number of elements (an “FPTAS" [15]). For our imple-
mentation, since we are dealing with massive datasets, we opt for
a simple greedy algorithm that provides a 0.5-approximation in
the worst case [6]. (Actually, for settings like ours, where the
costs are very small compared to the capacity of the knapsack,
the greedy algorithm performs much better.) In the following, we
present our modifications to this algorithm to efficiently construct
a materialized view over a given dataset in a scalable manner; see
Figure 3 for pseudocode.

The naive greedy algorithm sorts all atoms in the dataset with
respect to decreasing profit(v)/cost(v) ratio. Then it selects atoms
from the top of the sorted list and adds their corresponding records
to the materialized view until it is full. This naive algorithm needs
to be modified because (1) sorting all atoms in the dataset is very
expensive especially when performed over the large-scale data ma-
nipulated by Hadoop, and (2) building the materialized view incre-
mentally, e.g., by adding the records corresponding to a selected
atom in each step, is infeasible in the Hadoop system since HDFS
does not support random I/O over the data. To avoid sorting all the

atoms in the dataset, we compute an upper bound U on the number
of atoms that can possibly fit in the materialized view (see below).
This upper bound is typically multiple orders of magnitude smaller
than the total number of atoms in the dataset. Given U , we perform
a scan over the atoms and keep the top U atoms with respect to
their profit(v)/cost(v) ratio (Step 2 in Figure 3). This step can be
performed using a min-heap structure without any sorting. Finally,
we sort the U atoms according to decreasing profit(v)/cost(v) ratio
(Step 3), and then select atoms from the top of the list until the
materialized view is full (Steps 5–10). A sorting step is still needed
because U is an overestimate, but its cost is significantly lower than
that of sorting all the atoms.

The upper bound U is computed as follows. We first introduce
a lower bound L that represents the minimum number of splits in
which an atom v must appear to be considered as a candidate for the
materialized view. That is, if v appears in less than L splits, then
its corresponding records are not deemed worthy of being accepted
into the materialized view. Typically, L is defined as a multiple of
the materialized view size, e.g., the default value for L in E3 is 3M ;
where M is the materialized view size in splits. Since an accepted
atom v will appear at least once in each of L splits, it follows that
v will contribute at least L records to the materialized view. The
materialized view can hold at most R records, and thus an upper
bound on the number of atoms that can fit in the materialized view
is U = R/L (Step 1 in Figure 3).

Because the materialized view cannot be built incrementally, the
modified greedy algorithm merely reports the list of chosen atoms
that will contribute to the materialized view (Step 7 in Figure 3). As
each atom v in the sorted list is added to the materialized view, a
counter is incremented by |records(v)|; the counter represents the
amount of allotted space used up so far. Notice that, in Step 9, the al-
gorithm multiplies the maximum capacity of the materialized view
(R) by an overlapping factor α, where α ≥ 1, to heuristically
account for the possible overlapping among record sets. In our
experimental analysis we observed that the overlapping among
record sets does not significantly affect the space utilization of the
materialized view; e.g., when α is set to 1 (thus ignoring overlaps),
the materialized view space is still approximately 95% utilized.

To create the materialized view for a given dataset, we execute
a map-reduce job followed by a map-only job. In the map-reduce
job, the map phase reports each atom v along with the split ID in
which v appears and the number of records containing v in that split.
The reduce phase groups the output records according to v, com-
putes the total number of splits and records in which v appears, i.e.,
|splits(v)| and |records(v)|, and then executes the greedy algorithm
of Figure 3. The map-only job then scans the data and copies the
records containing the chosen atoms to the materialized view.

2.4 Adaptive Caching
We now consider the issue of nasty atom pairs in which the

individual atoms are frequent and appear in most (or all) of the
splits, but the atom pairs appear jointly in very few records, and
hence in very few splits. This situation differs from the one handled
by the materialized view in the previous section, which helps only
with atoms that appear in many splits but infrequently overall. In
the case that we discuss here, individual atoms might well appear
frequently and hence not appear in the materialized view.

For example, Figure 4 shows two atoms v and w such that each
atom is frequent and appears in all splits, but the atom pair (v, w)
appears in only one split (Split 3). If we try to use the inverted
index of Section 2.2 to find the splits containing (v, w) by com-
puting splits(v) and splits(w) and then intersecting these two sets—

Query Q(v,w): Find all records containing both v and w.
From the index: Splits(v) = Splits(w) = {1, 2, 3, 4, …, N}
Read intersected splits = Splits(v) ! Splits(w) = {1, 2, 3, 4, …, N}

File A

Split 1 Split 2 Split 3 Split N Split 4

!"#$%&$!"#$%&$
!"#$'#$%&$

!"#$%&$

!"#$%&$

!"#$%&$

!"#$%&$

!'#$%&$

!'#$%&$!'#$%&$!'#$%&$

Split-Level
Inverted Index
("#!)#*#+#,$%#$!&-$

('#!)#*#+#,#$%#$!&-$

File A

Split 1 Split 2 Split 3 Split N Split 4

!"#$%&$!"#$%&$

!"#$%&$

!"#$%&$

!"#$%&$

!"#$%&$

!'#$%&$

!'#$%&$!'#$%&$!'#$%&$

Adaptive Cache

("#$'#$!..)...%&-$

Query Q(v,w): Find all records containing both v and w.
From the cache: Splits(v,w) = {3}

(a) Using the inverted index (b) Using the adaptive cache

!"#$'#$%&$

Figure 4: Inverted index vs. adaptive cache.

which is the only strategy available in the absence of any other
information—then most of the returned splits will be false positives;
see Figure 4(a). In the rest of this section, we focus on processing
queries, denoted by Q(v, w), that return all records containing both
u and w; this query will appear as a subquery of any Jaql query
with a conjunctive selection predicate that references both v and w.
(E3 processes conjunctive queries involving more than two atoms
by processing the atoms in a pairwise fashion and then intersecting
the resulting sets of splits.) Motivated by our example, we define
an atom pair (v, w) to be a nasty atom pair if S(v,w) > θ, where
S(v,w) = |splits(v) ∩ splits(w)| − |splits(v, w)|. Here splits(v, w)
denotes the set of those splits that contain the pair (v, w) in at least
one record and θ is a (large) user-defined threshold. The quantity
S(v,w) is precisely the number of false positives obtained when split
lists for individual atoms v and w are intersected in an attempt to
find those splits that contain the pair (v, w). Equivalently, S(v,w) is
the potential savings in split accesses if the pair (v, w) is cached.

Traditional database systems address this issue by building com-
posite or multi-dimensional indexes, where the attribute combina-
tions to be indexed are typically user-defined and are derived from
workload and schema information. These approaches are not fea-
sible for our Hadoop scenario, because the query workload and
(possibly loose) schema are typically unknown a priori—indeed,
users may not even know the fields in the dataset beforehand. More-
over, algorithms for exploring the space of all possible atom pairs
to index are prohibitively expensive in large-scale data sets because
they are inherently quadratic in time and space. Moreover, sampling
and sketching techniques as in [5] are ineffective in finding nasty
pairs because pairs are infrequent.

We propose an adaptive main-memory caching technique in
which the system monitors the query workload and the atom pairs
that are being queried, and then caches the pairs that are (1) re-
cently queried, (2) frequently queried, and (3) nasty in the sense
that S(v,w) > θ. As illustrated in Figure 4(b), the cache maintains
atom pairs along with a bitmap for each atom pair specifying the
splits that contain the pair. As shown in the figure, the cache is
significantly more efficient than the inverted index in answering
query Q(v, w).

We must monitor the query workload and compute the actual
splits containing each queried atom pair, i.e., compute splits(v, w)
for each queried pair (v, w). To this end, we use a standard Hadoop
counter (Task.Counter.MAP_OUTPUT_RECORDS) to identify the
map tasks that have produced at least one tuple; the corresponding
splits comprise splits(v, w). We can then perform the steps in Fig-
ure 5 to execute a given conjunctive query Q(v, w) and to decide
whether or not (v, w) is candidate for caching.

By monitoring the map tasks that produce output, the system de-
termines the ID of every split that contains the (v, w) pair in at least

(1) splits(v) ! Probe the inverted index by value v to get its set of split Ids
(2) splits(w) ! Probe the inverted index by value w to get its set of split Ids
(3) splitsToQuery(v,w) ! splits(v) ! splits(w) // The set of intersected splits
(4) Start the query (job) execution over the set of splits in splitsToQuery(v,w)
(5) splits(v,w) ! Identify the split Ids assigned to map tasks that produced output
(6) S(v,w) = |splitsToQuery(v,w)| - |splits(v,w)| // Number of false-positive splits
(7) If (S(v,w) > ") Then
(8) - insertCache((v,w), splits(v,w), S(v,w)) // Call the caching algorithm to insert (v,w)

Figure 5: Executing a query Q(v, w).

7!

Query FR-score

(v,w) FR(v,w)

!"#$%&'()*$%+

Query Weight Splits bitmap

(v,w) W(v,w) = FR(v,w)* S(v,w) splits(v,w) = 1000100001

,-,.#+

/"0(#)+*1+).#(#+2-3"#++
4-'$(+-$#+,-,.#5+

Figure 6: SFR data structures.

one record (Step 5 in Figure 5). If the number of the false-positive
splits S(v,w) is greater than the user-defined threshold, then (v, w)
is considered for caching by calling the insertCache() algorithm
(Steps 6–8 in Figure 5). Note that these steps are performed only
if an initial probe of the cache does not return a split list for the
pair (v, w), because the pair is not in the cache. The algorithm
probeCache(v, w) used for this initial probe is described below.

As queries are issued over time, more and more candidate pairs
are considered for caching. Because the cache size is limited, an
efficient replacement policy is needed to keep the most promising
pairs in the cache. Although an LRU replacement policy is easy to
implement and maintain, our experiments show that LRU does not
perform well for many query workloads. The main reason for this
poor performance is that LRU takes into account only how recently
an atom pair has been queried, ignoring other important factors such
as the potential savings in splits if the pair were to be cached. In the
following, we present the SFR (Savings-Frequency-Recency) cache
replacement policy that we use in E3.

The SFR policy maintains in the cache the atom pairs having
the largest “weights,” where the weight of a pair (v, w) depends
on (1) the potential savings in splits due to caching the pair, i.e.,
S(v,w), (2) the historical frequency with which (v, w) has been
queried, and (3) how recently (v, w) has been queried. By taking
the savings factor into account, SFR is able to catch the “precious”
atom pairs that yield high savings and cache them for a while even
if they are not queried extremely frequently. Reserving space for
such infrequent but valuable atom pairs can significantly increase
the overall effectiveness of the cache.

SFR maintains two data structures as shown in Figure 6, query-
History and cache. The queryHistory structure maintains a log of
queried atom pairs. Stored along with each pair is a partial weight,
called the FR-score, that reflects both the frequency and recency of
queries involving the pair. The FR-score does not take the potential
savings into account. A small subset of these pairs are also stored
in the cache structure; any pair stored in the cache structure also
appears in queryHistory. E3 does not allow the queryHistory table to
grow indefinitely. The system allows entries with FR-scores below
a user-defined threshold to be periodically pruned, and a timestamp
can be used to eliminate entries that have not been updated for a
long period of time.

The cache structure maintains a list of nasty pairs. The final
weight—which combines the FR-score and the potential savings in
split accesses—is stored for each pair, along with a bitmap identify-
ing the splits that contain the pair. The final weight for a pair (v, w)
is obtained by multiplying the FR-score for (v, w) by the savings

insertCache ((v,w), splits(v,w), S(v,w))
Input:
 - (v,w): The value pair to cache
 - splits(v,w): Set of splits containing (v,w)
 - S(v,w): The number of splits when caching (v,w)
Output: None

Global Parametrs:
 - Recency factor ! = 1
 - Amplification factor " (" > 1)

(1) Increase ! = ! x " // Amplify the recency factor

// Update the queryHistory information
(2) If (v,w) is in queryHistory Then
(3) - FR(v,w) += ! // The addition op. gives higher weight for frequent pairs
(4) Else
(5) - Insert ((v,w), FR(v,w) = !) into queryHistory

// Insert into the cache
(6) W(v,w) = FR(v,w) * S(v,w) //Compute the final weight of (v,w)
(7) If cache is not full Then
(8) - Insert ((v,w), W(v,w), splits(v,w))
(9) Else
(10) - W(v’,w’) ! Find the entry with the smallest weight, say for (v’,w’)
(11) - If (W(v’,w’) < W(v,w)) Then
(12) - Replace the entry of (v’,w’) with the entry of ((v,w), W(v,w), splits(v,w))

Figure 7: Inserting into the cache: insertCache() algorithm.
probeCache ((v,w))
Input:
 - (v,w): The probing value pair
Output:
 - List of splits to query (if cache hit) or Null (if cache miss)

Global Parametrs:
 - Recency factor ! = 1
 - Amplification factor " (" > 1)

(1) If (v,w) is cache hit Then
(2) - Increase ! = ! x " // Increase the recency factor
(3) - FR(v,w) += ! // Update FR-score in queryHistory
(4) - W(v,w) = FR(v,w) * S(v,w) // Update the weight in the cache
(5) - Return splits(v,w) from the cache
(6) Else
(7) - Return Null

Figure 8: Probing the cache: probeCache() algorithm.

factor S(v,w).
Figure 7 displays the cache insertion algorithm, insertCache(),

for inserting a new (v, w) pair. Conceptually, with the arrival of
each new pair, the FR-score of all items maintained in queryHistory
decays in order to indicate that these items are getting older and to
put more emphasis on the new pairs. Such decay could be imple-
mented by multiplying the FR-score of every pair in queryHistory
by a decay factor (having a value less than 1) every time a new atom
pair arrives. Because it is very expensive to perform this operation
every time a pair arrives, we implement the same idea equivalently
by applying a recency factor ρ to the new pair while keeping the
other items in queryHistory unchanged. With every new pair, the
recency factor gets amplified by a factor of λ > 1 (Step 1 in Fig-
ure 7). Then the algorithm updates the information in queryHistory
by increasing the FR-score FR(v,w) by ρ if the pair already exists,
or inserting a new record if the pair does not exist (Steps 2–5 in
Figure 7). Notice that the addition operation in Step 3 ultimately
gives large weights to frequently queried pairs. To insert (v, w)
into the cache, the final weight W(v,w) is first computed (Step 6 in
Figure 7). Next, a new entry containing information for (v, w) is
inserted into the cache if the cache has available space (Step 8 in
Figure 7); otherwise the algorithm finds the entry with the smallest
weight, say W(v′,w′), and replaces this entry with the new one if
W(v,w) > W(v′,w′) (Steps 10–12 in Figure 7). Because the recency
factor ρ gets amplified with every new pair, it will eventually over-
flow. To avoid this problem, the system periodically—e.g., after
every k new arrivals—normalizes all the scores while preserving
their relative orders.

94

Map-Phase
(split-level)

Reduce-Phase
(dataset-level)

Range statistics

(v, SplitId,
 RecordCount, …)

Inverted Index

Map-Phase
(split-level)

Selected subset of
nasty values

Data split

Final output Final output

Materialized view

Final output

Map-reduce
job

Map-only
job

Figure 9: Computational flow for building E3 data structures.

The probeCache() algorithm mentioned previously is given in
Figure 8 and is a simplified version of the insertCache() algorithm.
If the cache is probed with a given pair (v, w) and the pair is in the
cache (a cache hit), then the algorithm updates the FR(v,w) and
W(v,w) scores in queryHistory and cache, respectively, and returns
a list of split IDs corresponding to that pair, i.e., splits(v, w) (Steps
2-5 in Figure 8). Notice that if (v, w) is in the cache, then it is
guaranteed to have a corresponding record in the queryHistory table.
If the probe results in a cache miss, then the algorithm returns Null
(Step 7 in Figure 8).

SFR is sensitive to the amplification factor λ. The larger the value
of λ, the more emphasis is added to the recency factor against the
frequency and savings factors (and vice versa). For example, as λ
gets larger, the performance of SFR gets closer to that of LRU. In
our experimental analysis (Section 4), we study various values of λ
and their effect on the cache performance.

2.5 Computational Flow
To efficiently build the ranges, indexes, and materialized view

without unnecessary scans over the data, E3 shares the map and
reduce tasks whenever possible among the different computations.
In Figure 9, we present a flow diagram of the E3 computations.
These computations require only two passes over the data. In the first
pass (lower half of the diagram), a map-reduce job is performed in
which the map phase computes the range statistics (Section 2.1) and
reports each atom v along with its split ID and the number of records
in the split that contain v. The reduce phase groups the records
generated during the map phase according to v, builds the inverted
index (Section 2.2), and applies the modified greedy algorithm in
Figure 3 to identify the subset of nasty atoms to be included in the
materialized view. In the second pass (upper half of the diagram), a
map-only job is executed that stores in the materialized view every
data record that contains one or more of the selected nasty atoms
(Section 2.3). Importantly, any of the indexing components can be
turned on or off using boolean flags, depending on user requirements.
For example, if the data will not be queried frequently enough,
then users may not be interested in paying the cost of building
the materialized view. In this case, the analysis tool automatically
bypasses the execution of the modified greedy algorithm in the
reduce phase and also skips the second map-only job.

3. USING THE INDEXES AT QUERY TIME
We now describe how the range and inverted indexes, materialized

view, and adaptive cache are used to compute a minimal list of splits
to be processed for a query with selection predicates. E3 stores the
materialized view in HDFS using the same format as the original
data file. There are several options for storing the indexes and the

evaluatePredicate (file, P)
Input: P = a predicate with conjunctions and disjunctions

file = the file to query
Output: List of split IDs to process

(1) If P contains at least one disjunction Then
(2) convert P into disjunctive normal form: D1 ∨D2 ∨ . . . ∨Dn

(3) Else D1 = P
(4) For each Di Loop
(5) {List(Di), useMV(Di)} = evaluateConjunct’(file, Di)
(6) If useMV(Di) = true for all 1 ≤ i ≤ n Then
(7) Return MV
(8) Else Return

⋃
1≤i≤n List(Di)

Figure 10: Split list computation with disjunctions.

statistical information that is computed for each split. They can
be stored in a central repository or distributed and stored together
with their corresponding splits. As mentioned previously, Hadoop
has significant overheads for creating map tasks. To avoid such
overheads, it is important to eliminate the splits before the map tasks
are created. Therefore, E3 stores the range and inverted index in a
central repository that is queried once by the Hadoop InputFormat
process before Hadoop’s JobTracker creates the required mappers
and assigns splits to each mapper. In E3, we chose an RDBMS as
the repository. In general, we can use any (possibly lightweight)
repository that supports indexes.

E3 takes as input a conjunctive predicate of the form P =
p1 ∧ p2 ∧ . . . ∧ pn and a file name, and returns a list containing the
IDs of the splits in the file that must be processed in order to evaluate
the predicate P . E3’s algorithm for this task is invoked from the
InputFormat, and as a result can be used with any high-level query
language on Hadoop, including Hive, and Pig, as well as incorpo-
rated into plain map reduce jobs. (With a slight abuse of notation,
we denote by MV both the materialized view and the list of splits
in the materialized view.) The algorithm first initializes List, the
list of split IDs, to contain the IDs of every split in the file, thus
representing the set of splits that must be processed in the absence of
additional information. For equality predicates, the algorithm uses
the range index for date and number fields, the inverted index for
string fields, and the adaptive cache; for non-equality predicates, the
algorithm uses the range index alone. (Here = and in are considered
to be the equality predicates.) The final list of splits to process is
the intersection of the split lists for all of the pi’s, since predicate P
is a conjunction. If any one of the equality predicates in P can be
applied using the materialized view MV, then we compare the size
of the final split list with the number of splits in MV, and choose the
option with the smaller number of splits.

In the general case where the query contains both conjunctions
and disjunctions, we convert the query predicate into disjunctive
normal form, execute the above algorithm on each of the conjuncts,
and finally union the resulting split lists to compute the final list of
split IDs to process. Some care must be taken, however, in the pres-
ence of the materialized view. Specifically, if the algorithm returns
split IDs from MV for at least one conjunct Di, then it is possible to
access a given record twice, once from MV when processingDi and
once from the original data file when processing another conjunct
Dj for which MV is not used. To avoid this problem, we modify the
previous algorithm to return for each conjunctDi the split list that is
computed without MV usage, denoted by List(Di), and a boolean,
denoted by useMV(Di), that indicates whether or not MV could
possibly be used to process Di. The final algorithm is provided in
Figure 10. It returns the split IDs in MV if and only if MV can be

used for all of the disjuncts (Steps 6-7); otherwise, the algorithm
returns the union of the split lists for all disjuncts (Step 8).

4. EXPERIMENTS
We empirically evaluated E3’s effectiveness in speeding up ana-

lytical queries having selection predicates. We studied (1) the wall-
clock savings in query response times, (2) the computation costs of
building the range statistics, inverted index, and materialized view,
(3) the storage overhead of the indexes and materialized view, and
(4) the effectiveness of the caching techniques. Overall, the experi-
ments show that E3 yields significant speedups in query response
times compared to plain Hadoop, while avoiding unreasonable over-
heads.

In the experiments, we built the range index over all numeric and
date fields and built the inverted index over string fields. The target
maximum size M of the materialized view was set to 1% of the
original data size. The lower bound L in Figure 3 was fixed at its de-
fault value (L = 3M). Changing the value of L is expected to have
a minor impact on overall performance: it affects only the number
of candidate nasty atoms to be sorted in memory before selecting
the final set of atoms for insertion into the materialized view, and
the in-memory sorting cost is typically negligible with respect to the
overall construction cost

Cluster Setup. The experiments were evaluated on a 41-node
IBM SystemX iDataPlex dx340. Each server comprised two quad-
core Intel Xeon E5540 64-bit 2.8GHz processors, 32GB RAM, and
5 SATA disks, with a 1GB Ethernet interconnect. Each server ran
Ubuntu Linux (kernel version 2.6.32-24), IBM Java 1.6, Hadoop
0.20.2. Hadoop’s master processes (MapReduce JobTracker and
HDFS NameNode) were installed on one server and the remaining
40 servers were used as workers. Each worker was configured
to run up to four map and four reduce tasks concurrently. The
following configuration parameters were overridden in order to
boost performance: sort buffer size was set to 512MB, replication
factor was set to 2, JVM’s were re-used, speculative execution was
turned off, and a maximum of 5GB JVM heap space was used per
task. We repeated each experiment 3 times and report the average
of the results.

Datasets. We generated datasets from two different benchmarks:
TPoX (Transaction Processing over XML) [20] and TPCH (Transac-
tion Processing benchmark)[31]. For each benchmark, we used the
entity having the most records, namely, the Orders document from
TPoX and the LineItems table from TPCH. We generated datasets
of size 800GB each. The Orders dataset is more complex than
the LineItems dataset: Orders consists of 181 distinct fields with
4 levels of nesting and varying structure among records, whereas
LineItems consists of 16 distinct fields with no nesting—i.e., a flat
structure—and a rigid schema. These two datasets delineate a range
of data scenarios encountered in practice.

4.1 Query Response Time
Plain Hadoop has only one execution plan for applying selection

predicates over the data: scanning all splits and applying the selec-
tion predicates over each split, i.e., a full scan. Therefore, the query
response time (or more precisely, the time taken by the filtering step)
is mostly independent of the “selectivity” of the query. In contrast,
E3 processes only the input splits that are relevant to the query, and
hence the query response time depends strongly on the selectivity.

Figures 11 and 12 display the query response time of a conjunc-
tive query of the form Select count(*) From D Where
P1 and P2, where D is either the Orders or LineItems dataset, and
P1 and P2 are equality predicates. The response time is plotted
as a function of the query selectivity. This selectivity is expressed

0

100

200

300

400

500

600

100%
(Full-Scan)

80% 60% 40% 20% 10% 5% 1%

Ti
m

e
(s

ec
)

% of executed waves w.r.t Full Scan

Query Response Time (TPoX)

Figure 11: Query response time (TPoX dataset).

0

100

200

300

400

500

600

100%
(Full-Scan)

80% 60% 40% 20% 10% 5% 1%

Ti
m

e
(s

ec
)

% of executed waves w.r.t Full Scan

Query Response Time (TPCH)

Figure 12: Query response time (TPCH dataset).

as a percentage of the number of waves of mappers that must be
executed relative to a full scan, ranging from 100% (full scan) down
to 1%. A wave of mappers is defined as the maximum number of
concurrent mappers that can run in the cluster, i.e., 160 mappers in
the iDataPlex cluster. We use this metric because the wave percent-
age translates directly to the wall-clock response time (assuming
the maximum degree of parallelism). As the figures show, by skip-
ping irrelevant splits, and hence reducing the number of executed
waves, E3 can achieve speedups in query response time as high
as 20x compared to a full scan over the data. For example, if the
query selectivity is 1% (or it will hit the materialized view instead
of the data file), then the query response time is reduced from 510
seconds (full scan) to 22 seconds. The performance gain is almost
the same for both the TPoX and TPCH datasets. Observe that the
marginal savings decreases as the selectivity increases beyond 10%,
because the initial wave of mappers is very expensive compared to
the subsequent waves and hence dominates the cost if the number
of waves is small.

4.2 Construction & Storage Costs
We next measured the time required to pre-process the data to

construct the various indexes and the materialized view. In these
experiments, we fixed the segment limit (k) in range indexing to
20; we study the effect of varying the number of segments in more
detail in Section 4.3 below.

Figures 13 and 14 show that building either the inverted in-
dex or materialized view is much more expensive than building
the range index. To understand this result, first recall that the
materialized view is constructed via a map-reduce job followed
by a map-only job. The cost of building the inverted index depends
mostly on its size. For example, the construction cost for the 164GB
TPoX inverted index is roughly 2.5 times higher than for the 41GB
TPCH inverted index (compare Figures 13 and 14). The cost of
building the range index is much lower because it requires just a
single map-only job, and the resulting index size is relatively small.
Note that the cost of building several of the indexes is less that the

96

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

*+,-./"0$!"
1.-2.,3/4"

5,6.73.8"
5,8.9"

*+,-./":"
5,8.9"

;<"0#=4" *+,-./":"""""
;<"

*+,-./":";<"
:"5,8.9"

!"
#
$%
&'
$(
)%

!"#$%*+%,+#-.*$%'*/010(1%&!2+3456678)%

Size: 507MB

Size: 164GB Size: 7.5GB

Figure 13: Computation cost (TPoX dataset).

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

()*+,-".$!"
/,+0,*1-2"

3*4,51,6"
3*6,7"

()*+,-"8"
3*6,7"

9:".#;2" ()*+,-"8"""""
9:"

()*+,-"8"9:"
8"3*6,7"

!"
#
$%
&'
$(
)%

!"#$%*+%,+#-.*$%'*/010(1%&!2,3456678)%

Size: 61MB

Size: 41GB

Size: 7.6GB

Figure 14: Computation cost (TPCH dataset).

sum of the individual construction costs, because computations are
shared during passes over the data; see Section 2.5.

A comparison of Figures 13 and 14 shows that the construc-
tion cost of the TPoX indexes is roughly 1.5 times the cost of the
TPCH indexes. This disparity aries from the relative complexity
of TPoX dataset, which has multiple levels of nesting and many
more fields per record (181 in TPoX versus 16 in TPCH). Therefore,
around twelve highly selected queries must be executed in order
to recoup the construction cost of the TPoX indexes, whereas only
eight queries are needed to recoup the cost of the TPCH inverted and
range indexes (only four queries are needed if the materialized view
is not built).

Figures 13 and 14 also show the storage overheads of the inverted
index and the materialized view for both TPoX and TPCH datasets.
The materialized view is around 1% of the data size for both datasets,
and the inverted index is around 5% of the data size for TPCH
and 20% for TPoX. The storage overheads for the range index are
discussed in Section 4.3 below.

We note that the MapReduce jobs used to construct the indexes
and materialized view were implemented using Jaql scripts. Al-
though this approach allowed rapid development, the use of a general
purpose scripting language incurs a performance penalty. Computa-
tion times can be improved by using handcrafted MapReduce jobs,

!"

#!!"

$!!"

%!!"

&'!!"

(" &!" '!")!" *!"

!"
#$
%&
'(
)*

+,
-(

!'&.'/"(01.1"()2-(

3%/&'(4/5'61/&7(!"#$%&'(89'$:'%5(

+,-."

+,/0"

!1#"

!1)"

!1("

!1$"

!12"

!1*"

(" &!" '!")!" *!"

;9
&(
)<

'=
-(

!'&.'/"(01.1"()2-(

3%/&'(4/5'61/&7(;9&)<'=-(

+,-."

+,/0"

(a) Storage Overhead (b) Equality Elimination Probability

Figure 15: Range Indexing overheads and Elimination Proba-
bilities for various segment limits.

Segment Time Peq Prange
limit(k) (Sec) [Min, Max, Avg] [Min, Max, Avg]

5 1532 [4.5 * 10−4, 1.0, 0.5] [6.8 * 10−8, 1.0, 0.48]
10 1541 [11 * 10−4, 1.0, 0.53] [16 * 10−8, 1.0, 0.49]
20 1573 [25 * 10−4, 1.0, 0.59] [41 * 10−8, 1.0, 0.49]
40 1606 [49 * 10−4, 1.0, 0.61] [65 * 10−8, 1.0, 0.50]
80 1720 [95 * 10−4, 1.0, 0.63] [118 * 10−8, 1.0, 0.51]

Table 1: Range index construction times and elimination prob-
abilities (TPoX dataset).

and we are investigating this approach as future work.

4.3 Effect of Segment Limit on Range Index
In this section we focus on the segment limit k used in the do-

main-segmentation algorithm for constructing the range index, as
discussed in Section 2.1. We study the effect of this parameter on
the index’s storage overhead and elimination effectiveness.

Figure 15(a) shows that as k increases, the total storage overhead
also increases, but at a much slower rate. The reason for this slow
increase is that the algorithm often uses less than k segments, es-
pecially in the case of consecutive integers or dates. This effect is
much more pronounced for TPCH dataset than for TPoX, because
the TPCH data contains many consecutive dates. The figure depicts
absolute storage overheads, which may appear large. The relative
overheads, however, are very small; e.g., with 80 segments, the
overheads are around 0.1% for TPoX and 0.01% for TPCH.

Recall from Section 2.1 that, in the common scenario where work-
load information is unavailable, the segments for a given field within
a split are chosen to maximize the probability Peq that a uniformly
generated equality predicate on the field will cause elimination of
the split. This choice also maximizes the elimination probability
Prange for a uniformly generated range query. If we only keep the
(min,max) range for a field within a split, then every selection query
that references the field will fall in this range and Peq = Prange = 0.

For the TPoX dataset, Table 1 displays the minimum, maximum
and average values of Peq and Prange over all of the fields and splits,
as a function of the segment limit k. (Results for TPCH are similar.)
The minimum values for both Peq and Prange correspond to splits
for which there are many non-consecutive distinct values for some
field, so that it is hard to avoid false positives without using a huge
number of segments; conversely, the maximum values correspond to
splits in which each field has a small number of distinct values that
can be completely contained in k or fewer segments. Figure 15(b)
plots the average value of Peq as a function of k for both TPCH
and TPoX. Overall, it can be seen that range indexing can yield
elimination probabilities of around 50% to 60%, while using only
20 segments, a storage overhead of less than 0.1%. The marginal
benefits of increasing k decrease beyond k = 20.

4.4 Adaptive Caching
To study the performance of the E3 caching technique, we imple-

mented a simulator that generates synthetic, dynamic query work-
loads over the TPoX and TPCH datasets. We then used these work-
loads to compare the SFR and LRU cache replacement policies.
As discussed below, we found that SFR outperforms LRU under
most query workloads because SFR takes into account the split sav-
ings, frequency, and recency of atoms, whereas LRU only considers
recency.

Simulation parameters: The simulator has two types of param-
eters; query workload parameters and cache parameters, as summa-
rized in Figure 16. The workload size, i.e., the number of queries in
the workload, was set to 100,000 queries in the experiments. The

!"#$%"&'()&#&*+,+#-(
.&*+(/+-0#12,1"3(
!"#$%&'($)*(+,&-./#& 0"12#$&(3&4"#$.#-&.5&67#&4"#$%&'($)*(+,&
8($#-#6&-./#& 0"12#$&(3&9+*"#:;+.$-&'.67&7.<7&-+9.5<&.3&=+=7#,&
0(5:=($#-#6&-./#& 0"12#$&(3&9+*"#:;+.$-&'.67&*('&-+9.5<&.3&=+=7#,&
>6.=).5#--&'.5,('&-./#& 0"12#$&(3&,.-6.5=6&9+*"#&;+.$-&$#=#56*%&4"#$.#,&67+6&

'.**&2#&)#;6&+=6.9#&3($&+&'7.*#&
>6.=).5#--&;$(2+2.*.6%&?@'.5,('A& @$(2+2.*.6%&67+6&67#&5#'&4"#$%&.-&+&$#;#6.6.(5&(3&+&

;$#9.("-&4"#$%&-#*#=6#,&3$(1&67#&-6.=).5#--&'.5,('&
8($#-#6&;$(2+2.*.6%&?@=($#A& @$(2+2.*.6%&67+6&67#&5#'&4"#$%&.-&(9#$&+&9+*"#&;+.$&

3$(1&67#&=($#-#6&
&

4&05+()&#&*+,+#-(
.&*+(/+-0#12,1"3(
8+=7#&-./#& B+C.1"1&5"12#$&(3&9+*"#&;+.$-&67+6&=+5&2#&=+=7#,&
D#;*+=#1#56&;(*.=%& E7#&$#;*+=#1#56&;(*.=%F&GDH&($&>DI&

&
& Figure 16: Summary of simulation parameters.

coreset size is the number of nasty atom pairs in the “coreset,” which
is defined as a set of pairs with very high savings (above 95%) if
cached. Similarly, the “non-corset” is defined as a set of atom pairs
with low savings if cached, and the non-coreset size specifies the
number of such pairs. In the experiments, we vary the savings from
caching non-coreset items to be below 5%, 30%, or 60%. To model
the evolution in popularity (i.e., number of repetitions in the work-
load) of the different atom pairs, we define a sliding window, called
the “stickiness window,” over the sequence of queried pairs. The
stickiness window size determines the number of distinct, recently
queried pairs that are likely to be queried again; the larger the sticki-
ness window size, the longer a pair will persist in the workload. A
new query in the workload selects randomly and uniformly from
the “active” atom pairs in the window with stickiness probability
Pwindow. The coreset probability Pcore is the probability that the next
query, if not a repetition from the stickiness window, will select
a value from the coreset items; otherwise, the query selects from
the non-coreset items. Thus the workload is generated by flipping
a coin with probability Pwindow to either repeat a query from the
stickiness window or create a new query. In the latter case, atom
pairs are then selected randomly and uniformly from the coreset
with probability Pcore and from the non-coreset with probability
1− Pcore. The cache parameters consist of the cache size, i.e., the
number of entries in the cache, and the replacement policy, which
is either LRU or SFR. In the case of SFR, we experimented with
various values of the amplification factor λ, and report results for
λ = 1.001 and λ = 1.0001.

Evaluation metric: We use the wave-savings percentage to mea-
sure the effectiveness of the SFR and LRU caching techniques. The
wave-savings percentage is an aggregate metric over all queries Qi

in the query workload and is formally defined as follows. Let W i
m,

and W i
h be the number of waves of mappers executed by query

Qi in the case of a cache miss and a cache hit. The wave-savings
percentage is then computed as 1− (

∑
iW

i
actual/

∑
iW

i
m), where

W i
actual equals eitherW i

m orW i
h depending on whetherQi is a cache

miss or a cache hit. We use this evaluation metric because it highly
correlated with the wall-clock query response time.

Results: The trellis plot in Figure 17 displays the results of a
set of experiments in which the distinction between the coreset and
non-coreset items is very sharp. That is, the savings from caching
a non-coreset item is below 5% compared to 95% savings from
caching a coreset item. In this case, the coreset items are “precious”
and need to be detected and cached. In the experiment, we use
coreset and non-coreset sizes of either 1,000 or 10,000 atom pairs,
and the stickiness-window sizes of either 10 or 1,000 active atom
pairs. We set Pwindow to 0.1, 0.3, and 0.6 and Pcore to 0.2, 0.5, and
0.8. The cache size is set to 1,000. We observed that non-coreset
size and stickiness window size do not discriminate between LRU

!
!

!

Cache Size = 1000

WindowStickiness_Probability

%
 W

av
e

Sa
vi

ng
s

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

!

!

!

!
!
!

Coreset Prob.=0.2
Coreset Size=1000

!

!

!

!

!

!

!

!

!

!
!
!

Coreset Prob.=0.5
Coreset Size=1000

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

!

!
!
!
!
!

Coreset Prob.=0.8
Coreset Size=1000

!

!

!

!

!

!

!

!

!
!
!!

Coreset Prob.=0.2
Coreset Size=10000

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

!

!

!
!
!!

Coreset Prob.=0.5
Coreset Size=10000

20

40

60

80

!

!

!

!

!

!

!

!

!
!
!
!

Coreset Prob.=0.8
Coreset Size=10000

LRU
SFR_1.001
SFR_1.0001

!

!!!!!!!!!"#$!!!!!!!!!!!!!!!!!!!!!!!!%&#'()**(!!!!!!!!!!!!!!!!!!!!!!!!!%&#'()***(!+!

Figure 17: Cache performance (5% Savings from Non-coreset)

and SFR, and hence are omitted from the figure for clarity.
Figure 18 displays results in a scenario where the difference

between coreset and non-corset items is muted. Specifically, non-
coreset items have up to 60% savings in splits if cached. We ob-
served that non-coreset size becomes an important factor in cache
performance in these experiments, so we present results separately
in Figures 18(a) (non-coreset size = 1, 000) and 18(b) (non-coreset
size = 10, 000).

The two key findings are as follows.

1. SFR performs consistently better than LRU, especially when
the amplification factor λ is set to 1.001. The reason is that
SFR is able to detect and cache valuable coreset items whereas
LRU gets distracted by the non-coreset items.

2. SFR with λ = 1.001 performs well in virtually all experi-
mental conditions, and is the best or near-best of the methods
in the majority of situations. In additional experiments with
other values of λ, not reported here, the value of 1.001 was
found to be the most robust. The exception is when coreset
items are precious and the coreset can fit into the cache (lower
half of Figure 17). In this case, use of the smaller value of
λ = 1.0001 puts greater emphasis on savings, so that the
coreset, once in the cache, stays in the cache, thereby max-
imizing performance. (Even then, SFR with λ = 1.001 is
almost the best algorithm in most cases.)

In our final experiment, we study the resilience of SFR to sudden
changes in the query workload by instantaneously replacing the
entire coreset by a completely different coreset halfway through
the workload. LRU is expected to adapt quickly to this kind of
“shock” since it only considers recency when caching items. In the
experiment, we set the coreset and non-coreset sizes to 1,000 and
the parameters Pcore and Pwindow to 0.8 and 0.1. Notice that because
Pcore is high, the cache performance is sensitive to the coreset items,
and because Pwindow is small, the effect of changing the coreset items
is magnified. We set the savings from caching a non-coreset item to
below 5%. To compare the behavior of LRU and SFR, we divided
the workload (100,000 queries) into small non-overlapping windows

98

Cache Size = 1000

WindowStickiness_Probability

%
 W

av
e

Sa
vi

ng
s

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

Coreset Prob.=0.2
Coreset Size=1000

Non−Coreset Size=1000

!

!

!

!
!

!

Coreset Prob.=0.5
Coreset Size=1000

Non−Coreset Size=1000

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!
!

!

!

Coreset Prob.=0.8
Coreset Size=1000

Non−Coreset Size=1000

!

!

!

!

!

!

Coreset Prob.=0.2
Coreset Size=10000

Non−Coreset Size=1000

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

Coreset Prob.=0.5
Coreset Size=10000

Non−Coreset Size=1000

20

40

60

80

!

!

!

!

!

!

Coreset Prob.=0.8
Coreset Size=10000

Non−Coreset Size=1000

LRU
SFR_1.001
SFR_1.0001

!

Cache Size = 1000

WindowStickiness_Probability

%
 W

av
e

Sa
vi

ng
s

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

Coreset Prob.=0.2
Coreset Size=1000

Non−Coreset Size=10000

!

!

!

!
!

!

Coreset Prob.=0.5
Coreset Size=1000

Non−Coreset Size=10000

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

Coreset Prob.=0.8
Coreset Size=1000

Non−Coreset Size=10000

!

!

!

!

!

!

Coreset Prob.=0.2
Coreset Size=10000

Non−Coreset Size=10000

0.1 0.2 0.3 0.4 0.5 0.6

!

!

!

!

!

!

Coreset Prob.=0.5
Coreset Size=10000

Non−Coreset Size=10000

20

40

60

80

!

!

!

!

!

!

Coreset Prob.=0.8
Coreset Size=10000

Non−Coreset Size=10000

LRU
SFR_1.001
SFR_1.0001

!

!!!!!!!!!"#$!!!!!!!!!!!!!!!!!!!!!!!!!%&#'()**(!!!!!!!!!!!!!!!!!!!!!!!!!%&#'()***(!+!

(a) Non-Coreset size = 1000 (b) Non-Coreset size = 10,000

Figure 18: Cache performance (60% Savings from Non-coreset).

0

10

20

30

40

50

60

70

80

90

100

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351 365 379 393 407 421 435 449 463 477 491

W
a

v
e

 S
a

v
in

g
s

 %

in

 W
in

d
o

w

Window Number

Cache Performance under Workload Changes

LRU

SFR_1.001

SFR_1.0001

Figure 19: Cache performance under a workload change.

of size 200 each, and then measured the wave-savings percentage
over each window separately

Figure 19 displays the results. The x-axis in the figure shows the
sequential window number (from 1 to 500) and the y-axis shows
the average savings in each window. As can be seen, SFR with
λ = 1.001 adapts as fast as LRU while yielding greater savings that
are 20% larger. In contrast, when λ = 1.0001, SFR adapts more
slowly to the changes since it puts more weight on savings than on
recency. The results show also that SFR, in general, does not require
too many queries to start outperforming LRU. For example, SFR
started to outperform LRU after around 10 windows.

5. RELATED WORK
Despite the desirable features of Hadoop—such as scalability,

flexibility, low start-up costs, and attractive price-performance char-
acteristics—a performance gap remains between Hadoop and paral-
lel databases; see, e.g., [8, 27].

The Hadoop++ system [8] incorporates “Trojan index” and “Tro-
jan join” techniques to enhance the performance of selection and join

queries, respectively. These techniques, however, require changes to
the data layout, specifically, augmenting the data with “Trojan files.”
Jiang et al. [16] propose several techniques to enhance Hadoop’s per-
formance, such as using range-indexes (building range statistics for
each chunk of data on a sorted field), block-level indexes (building
an index for each chunk of data over an unsorted field), and other
I/O and memory-based optimizations. Unlike E3, all of the forego-
ing methods initiate map tasks for each split in the input file even
when a split is irrelevant to the query. Moreover, these techniques
require physical design: users need to specify the data that is to be
indexed. Finally, Hadoop++ does not handle the cases addressed by
E3’s materialized view and adaptive caching mechanisms. As dis-
cussed previously, a recent extension of Hadoop++ called HAIL [9]
has demonstrated that record-level indexes do not yield wall-clock
savings unless HDFS and Hadoop are thoroughly re-engineered. In
contrast, our techniques can immediately be applied to HDFS and
Hadoop as-is.

HadoopDB [1] proposes heavyweight changes to the Hadoop
framework by storing the data in a local DBMS. HadoopDB thereby
enjoys the benefits of a DBMS such as query optimization and use
of indexes. These benefits, however, come at the cost of disrupting
the dynamic scheduling and fault tolerance mechanisms of Hadoop;
the data is no longer under the control of HDFS but is managed by
the DBMS, and so cheap commodity hardware no longer suffices.

To optimize regular-expression queries over text fields, Lin et
al. [17] propose building a full-text inverted index at the level of
the blocks used by the Fedora DBMS data compression module
(LZO). In contrast, E3 supports selection queries over any data type,
e.g., strings, numbers, dates, and it also handles range predicates.
Moreover, our proposed techniques go beyond use of inverted in-
dexes to handle cases where the index does not help, e.g., building a
materialized view over infrequent, scattered values and maintaining
a cache of value pairs that are highly selective.

Several techniques have been proposed for optimizing join and ag-

gregation queries in Hadoop. These include co-partitioning the data
for fast joins [8], co-locating files that are expected to be joined or
aggregated together [10], supporting arbitrary theta-join in Hadoop
where the join condition is not limited to equality predicates [21],
supporting set-similarity joins [32], and optimizing join operations
in generic MapReduce environments [4, 2, 18]. These methods
are orthogonal to the techniques proposed in this paper as they
focus mostly on join and aggregation queries and do not address
optimization of selection queries.

The literature contains several instances of caching strategies re-
lated to ours; see [25] for a survey. For traditional DBMSs, Palpanas
et al. [24] provide an adaptive strategy for caching intermediate and
final query results to speed up the execution of subsequent queries.
The proposed replacement policy takes into account the expected
execution-time savings from a cached object, as well as the fre-
quency of accesses to the object. In [26], exponential damping is
used in the context of web caching as a method for reducing the im-
portance of prior queries that have not been executed recently. Our
adaptive caching method is inspired by these techniques and uses
a novel cache replacement policy that takes into account savings,
frequency and recency, and is adapted to a Hadoop environment.

Partition elimination (also known as data localization [23]) is a
common technique used by parallel database systems. E3 differs
from such systems by using not only partitioning attributes, but all
data fields for split elimination, and by not requiring an a priori
physical database design or a given query workload for selecting
indexes and materialized views. Our use of range statistics is in the
spirit of [19], which proposed storing aggregates such as min and
max for blocks of contiguous tuples in a relational data warehouse
and exploiting these values for selection predicates and aggrega-
tion queries. We use this idea in a different context, with random
access to the range statistics and simple, explicit algorithms for
segmentation.

6. CONCLUSION
We have presented the E3 indexing framework for speeding up

queries with selection predicates in a Hadoop environment. E3 is
potentially applicable to an important class of analytical settings
because it does not require data movement, a particular physical data
layout, or prior knowledge about the query workload. Instead, E3
employs a novel combination of split-level range index and inverted
indexes, a special materialized view, and an adaptive cache to avoid
processing irrelevant data splits. E3’s split-elimination techniques
avoid unnecessary I/O and mapper-startup costs. Our experiments
on both semi-structured (TPoX) and structured (TPCH) datasets
show that, while incurring only a modest storage overhead, use
of E3 can reduce query response times by up to a factor of 20.
E3 exploits the fact that many attributes—beyond just partitioning
key(s)—are effective in split elimination. This inclusive approach
significantly differentiates E3 from both parallel databases and from
earlier attempts at query optimization in Hadoop [1, 8, 16].

7. REFERENCES
[1] A. Abouzeid et al. HadoopDB: An Architectural Hybrid of

MapReduce and DBMS Technologies for Analytical Workloads.
PVLDB, 2(1):922–933, 2009.

[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce
environment. In EDBT, 2010.

[3] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh,
C.-C. Kanne, F. Özcan, and E. J. Shekita. Jaql: A scripting language
for large scale semistructured data analysis. PVLDB, 4(12):1272–1283,
2011. http://code.google.com/p/jaql.

[4] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian.
A comparison of join algorithms for log processing in MapReduce. In

SIGMOD, pages 975–986, 2010.
[5] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses

for massive data: Samples, histograms, wavelets, sketches.
Foundations and Trends in Databases, 4(1-3):1–294, 2012.

[6] G. B. Dantzig. Discrete-variable extremum problems. Oper. Res.,
5(2):266–288, 1957.

[7] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. In OSDI, pages 137–150, 2004.

[8] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing). PVLDB, 3(1):518–529, 2010.

[9] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, and
J. Schad. Only aggressive elephants are fast elephants. PVLDB,
5(11):1591–1602, 2012.

[10] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and
J. McPherson. CoHadoop: Flexible data placement and its exploitation
in Hadoop. PVLDB, 4(9):575–585, 2011.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[12] S. W. Golomb. Run-length encodings. IEEE Trans. Inform. Theor.,
10(3):399–401, 1966.

[13] The Apache Hadoop Project.
http://hadoop.apache.org/core/, 2009.

[14] D. Hilley. Cloud computing: A taxonomy of platform and
infrastructure-level offerings. Technical Report GIT-CERCS-09-1,
Georgia Institute of Technology, 2009.

[15] O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack
and sum of subset problems. Journal of the ACM, 22:463–468, 1975.

[16] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of
mapreduce: An in-depth study. PVLDB, 3(1):472–483, 2010.

[17] J. Lin, D. Ryaboy, and K. Weil. Full-text indexing for optimizing
selection operations in large-scale data analytics. In MapReduce,
pages 59–66, 2011.

[18] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu. Llama: leveraging
columnar storage for scalable join processing in the MapReduce
framework. In SIGMOD, pages 961–972, 2011.

[19] G. Moerkette. Small materialized aggregates: A light weight index
structure for data warehousing. In VLDB, pages 476–487, 1998.

[20] M. Nicola, I. Kogan, and B. Schiefer. An XML transaction processing
benchmark. In SIGMOD, pages 937–948, 2007.

[21] A. Okcan and M. Riedewald. Processing theta-joins using MapReduce.
In SIGMOD, pages 949–960, 2011.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD,
pages 1099–1110, 2008.

[23] M. T. Ozsu and P. Valduriez. Principles of Distributed Database
Systems. Springer, 2011. Third edition.

[24] T. Palpanas, P. Larson, and J. Goldstein. Cache management policies
for semantic caching. Technical Report CSRG-439, Dept. of
Computer Science, University of Toronto, 2001.

[25] S. Podlipnig and L. Pöszörmenyi. A survey of web cache replacement
strategies. ACM Comput. Surv., 35(4):374 – 398, 2003.

[26] M. Reddy and G. P. Fletcher. Exp1: a comparison between a simple
adaptive caching agent using document life histories and existing
cache techniques. Computer Networks and ISDN Systems,
30(22-23):2149–2153, 1998.

[27] M. Stonebraker et al. MapReduce and parallel DBMSs: friends or
foes? Commun. ACM, 53(1):64–71, 2010.

[28] Z. Svitkina and L. Fleischer. Submodular approximation:
Sampling-based algorithms and lower bounds. SIAM J. Comput.,
40(6):1715–1737, 2011.

[29] The Apache Software Foundation. HDFS architecture guide.
http://hadoop.apache.org/hdfs/docs/current/
hdfs_design.html.

[30] A. Thusoo et al. Hive - a warehousing solution over a Map-Reduce
framework. PVLDB, 2(2):1626–1629, 2009.
https://cwiki.apache.org/Hive/tutorial.html.

[31] TPC-H specification 2.8.0. http://www.tpc.org/tpch.
[32] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity

joins using MapReduce. In SIGMOD, pages 495–506, 2010.

100

