
Data Exchange with Arithmetic Operations∗

Balder ten Cate
UC Santa Cruz

btencate@ucsc.edu

Phokion G. Kolaitis
UC Santa Cruz &

IBM Research - Almaden
kolaitis@cs.ucsc.edu

Walied Othman
University of Zurich

walied.othman@geo.uzh.ch

ABSTRACT

Data exchange is the problem of transforming data struc-
tured under a source schema into data structured under a
target schema, taking into account structural relationships
between the two schemas, which are described by a schema
mapping. Existing schema-mapping languages lack the abil-
ity to express arithmetic operations, such as addition and
multiplication, which naturally arise in data warehousing,
ETL applications, and applications involving scientific data.
We initiate the study of data exchange for arithmetic schema
mappings, that is, schema mappings specified by source-to-
target dependencies and target dependencies that may in-
clude arithmetic formulas interpreted over the algebraic real
numbers (we restrict attention to algebraic real numbers to
maintain finite presentability).

We show that, for arithmetic schema mappings without
target dependencies, the existence-of-solutions problem can
be solved in polynomial time, and, if a solution exists, then a
universal solution (suitably defined) exists and can be com-
puted in polynomial time. In the case of arithmetic schema
mappings with a weakly acyclic set of target dependencies, a
universal solution may not exist, but a finite universal basis
exists (if a solution exists) and can be computed in poly-
nomial space. The existence-of-solutions problem turns out
to be NP-hard, and solvable in PSpace. In fact, we show
it is ∃R-complete, which means that it has the same com-
plexity as the decision problem for the existential theory of
the real numbers, or, equivalently, the problem of deciding
whether or not a quantifier-free arithmetic formula has a
solution over the real numbers. If we allow only linear arith-
metic formulas in the schema mapping and in the query,
interpreted over the rational numbers, then the existence-
of-solutions problem is NP-complete. We obtain analogous
complexity results for the data complexity of computing the
certain answers of arithmetic conjunctive queries and linear
arithmetic conjunctive queries.

∗Research on this paper was partially supported by NSF
Grants IIS-0905276 and IIS-1217869.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

Categories and Subject Descriptors: H.2.5 [Database
Management]: Heterogeneous Databases; H.2.4 [Database
Management]: Systems - relational databases

General Terms: Algorithms, Design, Languages

Keywords: schema mappings, arithmetic, data exchange

1. Introduction & Summary of Results

Data exchange, also known as data translation, is typically
described as the problem of transforming data structured
under one schema, called the source schema, into data struc-
tured under a different schema, called the target schema.
The formal study of relational data exchange (i.e., data ex-
change between relational schemas) was initiated in [14] and
was followed by numerous investigations (see [5, 20]).

The transformation of source data into target data must
satisfy certain constraints that specify the relationship be-
tween the source and the target schemas. Thus, a central
direction of research in data exchange has focused on the
schema-mapping languages used to express this relation-
ship. In the case of relational data exchange, the most
widely used and studied schema-mapping language is the
language consisting of source-to-target tuple-generating de-
pendencies (s-t tgds), target tuple-generating dependencies
(target tgds), and target equality-generating dependencies
(target egds). An s-t tgd is an expression of the form
∀x(ϕ(x) → ∃yψ(x,y)), where ϕ(x) is a conjunction of
source atoms and ψ(x,y) is a conjunction of target atoms.
A target tgd is an expression of the same form, except that
both ϕ(x) and ψ(x,y) are conjunctions of target atoms. Fi-
nally, a target egd is an expression of the form ∀x(ϕ(x) →
xi = xj), where ϕ(x) is a conjunction of target atoms, and
the variables xi and xj are among those in x. From now on,
we will refer to this framework as the standard relational
data exchange.

The language of s-t tgds, target tgds, and target egds
strikes a good balance between expressive power and overall
tame algorithmic behavior as regards data exchange pur-
poses. There are, however, important applications in which
this language cannot express the required constraints. In
particular, s-t tgds cannot express constraints involving op-
erations on data values, and relationships between data val-
ues, beyond equality. Such constraints arise naturally in
several different contexts, including data warehousing, ETL
(extract-transform-load) applications, and applications in-
volving scientific data.

In this paper, we initiate the study of data exchange
with built-in arithmetic operations. This framework extends

537

standard relational data exchange by allowing arithmetic
formulas, using comparisons (order), addition, and multi-
plication, in the specification of dependencies. In particular,
it makes it possible to express the following constraints (we
have omitted universal quantifiers in the front):

• TempF(date, x)→ ∃y TempC(date, y) ∧ y = 5
9
(x− 32)

• Transaction(date, x) ∧ ExchRate(date, rate)→
∃y Record(date, y) ∧ y = x× rate

• Location(a, x, y) ∧ Location(b, x′, y′)∧
(x− x′)2 + (y − y′)2 ≤ 52 → Adjacent(a, b)

• Location(a, x, y) ∧ Location(b, x′, y′)→
∃d (Distance(a, b, d)∧d ≥ 0∧(x−x′)2+(y−y′)2 = d2).

When formalizing data exchange with arithmetic opera-
tions, the first task is to make precise the domain of values
on which the arithmetic operations are defined. In [2], a
study of data exchange with arithmetic comparisons was
carried out, that is, a linear order < was allowed to be used
in dependencies and this linear order was interpreted over
the rational numbers (equivalently, over a countable dense
linear order without endpoints). When addition + and mul-
tiplication × are also allowed in dependencies, it is no longer
possible to work with rational numbers only, since, for ex-
ample, the last of the above four dependencies may force the
generation of irrational numbers. In view of this, it is natural
to consider interpreting the arithmetic operations <, +, and
× over the set of real numbers. However, the real numbers
form an uncountable set and so they do not admit a finitary
representation, which is an important requirement in analyz-
ing algorithmic problems and taking into account the size of
inputs. To overcome this, we restrict attention to instances
containing only algebraic real numbers. Recall that a real
number is algebraic if it is the root of a polynomial with
integer coefficients. Thus,

√
2 is an algebraic real number,

while e and π are known not to be. Algebraic real numbers
possess several different finitary representations with good
computational properties. Furthermore, the set A of alge-
braic real numbers, equipped with <, +, and ×, forms a
countable elementary substructure of the real numbers; this
implies that the algebraic real numbers satisfy precisely the
same first-order sentences that the real numbers do.

By Tarski’s theorem [28], the real numbers with <, +, and
× (hence, also the algebraic real numbers) admit quantifier-
elimination, which means that every first-order formula is
equivalent to a quantifier-free one. Thus, in formalizing data
exchange with arithmetic operations, we may (and we will)
restrict attention to quantifier-free arithmetic formulas.

In what follows, we will study data exchange with source-
to-target arithmetic dependencies and target arithmetic de-
pendencies. A source-to-target arithmetic dependency is an
expression ∀x(ϕ(x)∧β(x)→ ∃y ψ(x,y)∧γ(x,y)), such that
ϕ is a conjunction of source atoms, ψ is a (possibly empty)
conjunction of target atoms, and β and γ are quantifier-free
arithmetic formulas. A target arithmetic dependency is a
syntactically similar expression in which both ϕ and ψ are
conjunctions of target atoms; note that target egds are a
special case of target arithmetic dependencies. Therefore,
this framework generalizes both the framework of standard
relational data exchange in [14] and the framework of data
exchange with arithmetic comparisons in [2].

In standard relational data exchange, universal solutions
play a crucial role. Intuitively, given a source instance I,
a target instance J is a universal solution for I if J is the

“most general” target instance that can be materialized so
that the dependencies at hand are satisfied. An important
property of universal solutions is that the certain answers of
target conjunctive queries can be obtained by simply eval-
uating the conjunctive queries on a universal solution; in
fact, this property characterizes universal solutions [14]. In
general, universal solutions in standard data exchange are
target instances that contain null values. In data exchange
with arithmetic operations, it becomes necessary to consider
target instances in which the interpretation of these null val-
ues is further constrained by an arithmetic formula, because,
otherwise, even very simple source instances do not have a
universal solution (Proposition 3.16). Intuitively, this is so
because the arithmetic dependencies may impose arithmetic
constraints on the possible interpretations of null values in
target instances. For this reason, we define suitable notions
of solution and universal solution using instances of the form
J = (J, α), where J is a target instance (possibly with null
values) and α is a quantifier-free arithmetic formula.

Summary of Results We show that in data exchange
settings with source-to-target arithmetic dependencies, but
without target constraints of any kind, every source instance
that has a solution has a universal solution; moreover, a uni-
versal solution can be constructed in polynomial time via a
chase procedure tailored to source-to-target arithmetic de-
pendencies. In data exchange settings with source-to-target
arithmetic dependencies and with target arithmetic depen-
dencies, universal solutions need not exist in general, even
when solutions exist. However, we show that if the tar-
get arithmetic dependencies form a weakly acyclic set, then
a finite universal basis of solutions exists and can be con-
structed in PSpace via a more sophisticated disjunctive
chase procedure tailored to target arithmetic dependencies.

A universal basis can be used to compute the certain an-
swers of arithmetic conjunctive queries, that is, queries that
are conjunctions of target atoms and a quantifier-free arith-
metic formula. It turns out that the exact complexity of
the certain answers of arithmetic conjunctive queries is in-
timately connected to a well-known decision problem about
first-order logic on the real numbers, namely, the problem of
deciding whether or not a given existential arithmetic sen-
tence is true on the structure R of the real numbers. In terms
of the standard computational complexity classes, the best
result known about this problem is that it is NP-hard and
that it belongs to PSpace (NP-hardness is an easy obser-
vation, while membership in PSpace is a highly non-trivial
theorem due to Canny [10]). For this reason, Schaefer [27]
introduced ∃R, a new complexity class consisting of all deci-
sion problems that can be reduced in polynomial time to the
problem of deciding whether or not an existential arithmetic
sentence is true on R. In [27], several geometric and topo-
logical problems were shown to be ∃R-complete, such as the
Rectilinear Crossing Number Problem, which asks for
the minimal number of crossings in a straight-line drawing
of a graph (see also [9]). We show that, in the presence of
source-to-target arithmetic dependencies and weakly acyclic
target arithmetic dependencies, the problem of computing
the certain answers of target arithmetic conjunctive queries
is co∃R-complete in data complexity.

We also investigate linear arithmetic dependencies and
linear arithmetic conjunctive queries, that is, arithmetic de-
pendencies and arithmetic conjunctive queries in which the
quantifier-free arithmetic formulas involve only order < and

538

addition +. In this context, it makes perfectly good sense to
go back to the rational numbers, since the rational numbers
equipped with < and + form an elementary substructure of
the real numbers equipped with < and +, and also admit
elimination of quantifiers [15]. We show that, in the pres-
ence of source-to-target linear arithmetic dependencies and
weakly acyclic target liner arithmetic dependencies, comput-
ing the certain answers of target linear arithmetic conjunc-
tive queries is a coNP-complete problem in data complexity.
It should be noted that, as shown in [2], the same complexity
result holds in the presence of dependencies and conjunctive
queries that involve only order. Thus, extending the data ex-
change framework from order to order and addition does not
increase the complexity of query answering, while extending
the framework to order, addition, and multiplication does,
unless NP = ∃R, which is considered an unlikely possibility.

Due to space limitations, the proofs of several results are
only sketched or omitted altogether. Detailed proofs will be
provided in the full version of the paper.

2. Preliminaries
In this section, we introduce the arithmetic language used

and present the necessary background material.

Definition 2.1 (Arithmetic formulas). A polynomial is an
expression built up from variables and rational numbers, us-
ing the binary functions + and ×. As usual, tk is a short-
hand for the k-fold multiplication t × · · · × t, while t − t′

is a shorthand for t + (−1 × t′). A polynomial comparison
is an expression of the form t1 O t2, where t1 and t2 are
polynomials and O ∈ {<,≤,=,≥, >, 6=}.
• A quantifier-free arithmetic formula α(x) is a Boolean

combination of polynomial comparisons.

• An arithmetic formula α(x) is a first-order formula built
from polynomial comparisons.

• An arithmetic formula is linear if it uses no multiplica-
tion, other than multiplication by a constant.

The length of an arithmetic formula is simply its length as
a syntactic expression, where the coefficients are written in
binary notation.

The variables (free and quantified ones) in arithmetic for-
mulas range over real numbers. More precisely, we consider
the mathematical structure (R,+,×, <, (c)c∈Q), where R is
the set of real numbers and Q is the set of rational numbers.
For simplicity, we denote this structure by R as well.

• A solution of an arithmetic formula α(x) is a tuple of
real numbers r such that R |= α(r).

• An arithmetic formula is solvable if it has a solution.

• Two arithmetic formulas are equivalent if they have the
same solutions.

Examples of polynomial comparisons are y = 5
9
(x− 32) and

x < y2. An example of a quantifier-free arithmetic formula
is (y = 5

9
(x−32))∧(y < 300); in fact, this is a linear one. An

example of an arithmetic formula with quantifiers is ∃y(y2 =
x), which happens to be equivalent to the quantifier-free
arithmetic formula x ≥ 0. The following classical result by
Tarski asserts that this equivalence is no accident

Theorem 2.2 (Elimination of Quantifiers over the Reals).
Every arithmetic formula is equivalent to a quantifier-free

arithmetic formula [28]. Moreover, given an arithmetic for-
mula, an equivalent quantifier-free one can be constructed in
2ExpTime [18, 25].

This result is tight: there are arithmetic formulas for
which the smallest equivalent quantifier-free arithmetic for-
mula has doubly exponential length [31, 11].

The following decision problem, called the solvability prob-
lem for quantifier-free arithmetic formulas, will be of great
interest to us: given a quantifier-free arithmetic formula,
does it have a solution? Equivalently, this problem asks:
given an existential arithmetic sentence (i.e., an arithmetic
sentence in prenex normal form in which all the quantifiers
are existential), is it true on R? It is easy to see that this
problem is NP-hard; moreover, Canny [10] has shown that it
is in PSpace. However, the exact complexity of this problem
has not been pinpointed in terms of the standard computa-
tional complexity classes (e.g., it is not known to be in NP
or to be PSPACE-complete). For this reason, Schaefer [27]
introduced a new complexity class, called ∃R, that is built
around this problem. By definition, ∃R is the collection of
all decision problems that have a polynomial-time reduc-
tion to the solvability problem for quantifier-free arithmetic
formulas. Thus, the solvability problem for quantifier-free
arithmetic formulas is ∃R-complete. Several other decision
problems of geometric character have been shown to be ∃R-
complete, a fact that justifies the introduction and study of
∃R as a complexity class in its own right. In terms of stan-
dard complexity classes, ∃R is sandwiched between NP and
PSpace, that is to say, NP ⊆ ∃R ⊆ PSpace.

The next result summarizes the preceding discussion.

Theorem 2.3. The solvability problem for quantifier-free
arithmetic formulas is ∃R-complete; in particular, it is NP-
hard and decidable in PSpace.

Since the real numbers form an uncountable set, they do
not admit a finitary representation system. In contrast,
the algebraic real numbers do admit finitary representations.
Recall that a real number is algebraic if it is a root of a poly-
nomial with integer coefficients. There are several different
well known representations of algebraic real numbers that
are known to have good computational properties. Here,
we will use the isolating-interval representation of algebraic
real numbers (see, e.g., [13]). Specifically, if an algebraic
real number a is the root of a polynomial p(x) with inte-
ger coefficients, then an isolating-interval representation 〈a〉
of a is an expression 〈a〉 = (p(x), r, s), where r and s are
rational numbers such that a is the only root of the polyno-
mial p(x) in the interval [r, s]. For example, (x2 − 2, 0, 1.5)
is an isolating-interval representation of

√
2. Clearly, every

algebraic real number has more than one isolating-interval
representations. However, for the results presented here, any
such representation will suffice.

The algebraic real numbers form a countable set, which
we will denote by A; we will use the same symbol to also
denote the substructure (A,+,×, <, (c)c∈Q) of R induced by
the algebraic real numbers. The following theorem tells that,
as regards arithmetic constraints, we may restrict attention
to algebraic real numbers.

Theorem 2.4 (Algebraic Numbers Suffice (from [28])). An
arithmetic formula is solvable if and only if it has a solution
consisting of algebraic real numbers. Moreover, if α(x) is an
arithmetic formula and r a tuple of algebraic real numbers,
then we have that R |= α(r) if and only if A |= α(r).

539

In addition, the arithmetic calculations on algebraic real
numbers, using the isolating-interval representation, can be
carried out efficiently in parallel.

Theorem 2.5 ([8]). Let α(x) be a fixed quantifier-free arith-
metic formula. The following problem is in NC: given
a sequence of algebraic real numbers r specified using the
isolating-interval representation, is r a solution for α(x)?

As is well known, NC is a subclass of PTime that captures
the notion of efficient parallel computation (see [17]).

We will also be interested in the solvability problem for
linear quantifier-free arithmetic formulas. This problem is
NP-complete. Indeed, membership in NP follows from lin-
ear programming together with propositional satisfiability:
to decide solvability, guess a truth assignment for the com-
parisons occurring in the given formula, such that the for-
mula evaluates to true, and check consistency of the chosen
truth assignment in polynomial time via linear programming
[19]. NP-hardness for this problem follows immediately from
propositional satisfiability by using the comparisons x > 0
and x ≤ 0 to encode the truth values “true” and “false”.

Let LR = (R,+, <, (c)c∈Q) be the structure formed by
the real numbers equipped with addition and order. Simi-
larly, let LQ = (Q,+, <, (c)c∈Q) be the structure formed by
the rational numbers equipped with addition and order. As
shown in [15], the structure LR admits elimination of quan-
tifiers; moreover, as regards linear arithmetic formulas, we
may restrict attention to rational numbers.

The next result summarizes the preceding discussion
about linear arithmetic formulas.

Theorem 2.6. The following statements are true.

• The solvability problem for linear quantifier-free arith-
metic formulas is NP-complete.

• A linear arithmetic formula is solvable if and only if it
has a solution consisting of rational numbers. Moreover,
if α(x) is a linear arithmetic formula and r a tuple of
rational number, then we have that LR |= α(r) if and
only if LQ |= α(r).

3. Data Exchange over A
To simplify presentation, we assume that all constant val-

ues occurring in source instances are algebraic real numbers.
The results can be lifted to the setting in which attributes of
relations in the schemas are typed, and arithmetic formulas
are restricted to attributes that have a numerical type.

3.1 A-Instances and Ground A-Instances

Definition 3.1. Let A be the set of algebraic real num-
bers. Let Nulls be a countably infinite set of labeled nulls
(or, variables) disjoint from A, and let R = (R1, . . . , Rn) be
a schema.

• An A-instance over the schema R is a pair I = (I, α)
with I = (RI1, . . . , R

I
n), where each RIk is a finite relation

over A∪Nulls of appropriate arity, and α is a quantifier-
free arithmetic formula whose free variables are the nulls
occurring in I.

• A ground A-instance over a schema R = (R1, . . . , Rn)
is a tuple I = (RI1, . . . , R

I
n), where each RIk is a finite

relation over A of appropriate arity.

• If I is an A-instance, then Rep(I) denotes the set of all
ground A-instances over R that can be obtained from
I = (I, α) by uniformly substituting algebraic real num-
bers for the labeled nulls occurring in I, subject to the
arithmetic formula α. Formally, we say that a function
f : Nulls → A satisfies α if α evaluates to true when
each variable is mapped to its f -image. Let f(I) be the
ground A-instance over R obtained by replacing each
null in I by its f -image. Then for I = (I, α), we define
Rep(I) = {f(I) | f satisfies α}.

In the above definition, we use algebraic real numbers to
ensure that instances are finitely presentable. Note that ev-
ery ground A-instance I can be viewed as the A-instance I =
(I,>), where > stands for a trivial arithmetic formula that
always evaluates to ‘true’. As an example of a non-ground
A-instance, let I = (I, α), where I consists of the single fact
Location(r,N1, N2, 1030) and α is the constraint (N1+N2 <
200)∧ (N1 < 150)∧ (N2 > 50). Then the ground A-instance
{Location(r, 100, 75, 1030)} is a member of Rep(I), whereas
the ground A-instance {Location(r, 130, 75, 1030)} is not.

It follows from the definition that for a given A-instance
I = (I, α), we have that Rep(I) = ∅ if and only if the
quantifier-free arithmetic formula α has no solution.

Proposition 3.2. The following problem is co∃R-complete:
given an A-instance I, is Rep(I) = ∅?

A geometric view of Definition 3.1 is as follows. If n is the
number of nulls that appear in I = (I, α), then α defines
an algebraic surface in An. Every point on that surface
represents a ground A-instance and is an element of Rep(I).
Note that this relationship is not one-to-one, since multiple
points may represent the same ground A-instance.

3.2 Arithmetic Conjunctive Queries

Definition 3.3 (Arithmetic conjunctive queries). Let R be
a schema and k a positive integer.

• A k-ary arithmetic conjunctive query over R is an ex-
pression q(x) = ∃y φ(x,y) ∧ β(x,y), where x is a k-
tuple of variables, φ(x,y) is a conjunction of atoms over
R containing all the variables in x,y, and β(x,y) is a
quantifier-free arithmetic formula. Arithmetic terms are
not allowed in the relational atoms of φ(x,y), but can
be simulated using the arithmetic formula β(x,y).

• If I is a ground A-instance, then q(I) denotes the answers
of q in I, defined in the standard way.

• If I = (I, α) is an A-instance I, then q(I) is defined as⋂
{q(I ′) | I ′ ∈ Rep(I)}.

For example, consider a schema consisting of a single bi-
nary relation R. Let I be the ground A-instance consisting
of the facts R(1, 2), R(2, 2), and R(3, 4), and let q(x) be the
query ∃y (R(x, y) ∧ x+ y ≥ 4). Then q(I) = {2, 3}.
Proposition 3.4. Let q be a fixed arithmetic conjunctive
query q. The following problem is solvable in PTime: given
a ground A-instance I, compute q(I).

Proof. We can compute q(I) by first considering only the
relational part of q, enumerating all satisfying variable as-
signments (there are polynomially many, because q is fixed),
and then, for each such assignment, testing whether it sat-
isfies the arithmetic formula. The latter task can be done in
NC, and, hence, in PTime, by Theorem 2.5.

540

Theorem 3.5. Let q be a fixed arithmetic conjunctive
query. The following problem is in co∃R: given an A-
instance I = (I, α) and a tuple a, test whether a ∈ q(I).
Moreover, there are conjunctive queries without arithmetic
formulas for which the problem is co∃R-complete.

Proof. For the upper bound, we give a polynomial-time re-
duction to the solvability problem for quantifier-free arith-
metic formulas. Let q(x) be the query ∃y(φ(x,y)∧β(x,y)),
where all variables in x and y occur in φ(x,y). Let
φI(x,y) be the formula obtained from φ(x,y) by replac-
ing each relational atom R(z1, . . . , zn) by the disjunction∨
{(z1 = a1)∧ · · · ∧ (zn = an) | (a1, . . . , an) ∈ RI}. We have

that a ∈ q(I) if and only if the quantifier-free formula

α ∧ ¬
∨

h:{y}→adom(I)

(φI(a, h(y)) ∧ β(a, h(y)))

is unsolvable. On the face of it, this formula is not an arith-
metic one, since algebraic real numbers occur in it as con-
stants. However, the isolating-interval representation makes
it possible to transform it to an equivalent quantifier-free
arithmetic formula. Specifically, if the isolating-interval rep-
resentation of an algebraic real number a in a is (p(x), r, s),
then we replace a by a new variable v and add as a conjunct
the arithmetic formula (p(v) = 0) ∧ (r ≤ v) ∧ (v ≤ s). The
unsolvability of the resulting quantifier-free arithmetic for-
mula can be tested in co∃R. In general, the above formula is
exponentially long, but it is of polynomial length when the
query is fixed.

The lower bound follows from Proposition 3.2: if P is a
relation that is empty in I, then ∃xPx is true in I if and
only if Rep(I) = ∅.

3.3 Arithmetic Dependencies

Definition 3.6. An arithmetic dependency over a schema
R is a first-order sentence of the form

∀x(φ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y)),

where φ(x) is a conjunction of atoms from R containing all
variables in x, ψ(x,y) is a (possibly empty) conjunction of
atoms from R containing all variables in y, and β(x) and
γ(x,y) are quantifier-free arithmetic formulas (possibly >,
in which case we will omit them in our notation).

A constraint-generating dependency (cgd) is an arithmetic
dependency as above in which y and ψ(x,y) are empty. An
arithmetic equality-generating dependency is a constraint-
generating dependency in which γ(x) is a single equality.

For a ground A-instance I, the semantics of arithmetic de-
pendencies are the standard semantics of first-order logic on
I. For an A-instance I = (I, α), the semantics of arithmetic
dependencies a are given by considering Rep(I).

Definition 3.7. Let I = (I, α) be an A-instance and let σ
be an arithmetic dependency over a schema R. We say that
I = (I, α) satisfies σ if every ground A-instance I ′ ∈ Rep(I)
satisfies σ.

Theorem 3.8. Let σ be a fixed arithmetic dependency. The
problem of testing whether a given A-instance satisfies σ is in
co∃R. Depending on σ, this problem can be co∃R-complete.

Proof. The proof is along the same general lines as that of
Theorem 3.5. Let I = (I, α) and let σ be of the form

∀x(φ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y)).

Let φI(x) be the formula obtained from φ(x) by replac-
ing each relational atom R(x1, . . . , xn) by the disjunction∨
{(x1 = a1) ∧ · · · ∧ (xn = an) | (a1, . . . , an) ∈ RI}; we de-

fine ψI analogously.
Then I satisfies σ if and only if the quantifier-free formula

α ∧ ¬
∧

h:x→adom(I)

(
φI (h(x) ∧ β(h(x))) →

∨
g:y→adom(I)

ψI (h(x), g(y)) ∧ γ (h(x), g(y))

)
has no solution; this is decidable in co∃R. Note that, al-
though the above formulas are in general exponentially long,
they are only polynomially long when σ is fixed.

The co∃R-hardness result holds because R(x) → Q(x) is
satisfied in I if and only if Rep(I) = ∅, where R is a relation
occurring in I and Q is a relation not occurring in I.

3.4 Data Exchange and Certain Answers

Definition 3.9. Let S and T be two disjoint schemas, called
the source schema and the target schema.

• A source-to-target arithmetic dependency is an arith-
metic dependency

∀x(φ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y)),

such that φ contains only relations from S and ψ contains
only relations from T.

• A target arithmetic dependency is an arithmetic depen-
dency over T.

• An arithmetic schema mapping is a tuple of the form
M = (S,T,Σst,Σt), where Σst is a finite set of source-
to-target arithmetic dependencies and Σt is a finite set
of target arithmetic dependencies.

We now introduce two notions of solutions in data ex-
change with arithmetic operations, as well as the notion of
the certain answers.

Definition 3.10. LetM = (S,T,Σst,Σt) be an arithmetic
schema mapping and let I be a ground A-instance over the
source schema S.

• A ground A-instance J over the target schema T is a
ground solution for I w.r.t. M if the pair (I, J) satisfies
Σst, and J satisfies Σt. The set of all ground solutions
for I is denoted by GSol(I).

• An A-instance J = (J, α) over the target schema T is a
solution for I w.r.t.M if the pair (I,J) satisfies Σst, and
J satisfies Σt. The set of all solutions for I is denoted
by Sol(I).

• If q is an arithmetic conjunctive query over the target
schema T, then the certain answers of q on I w.r.t. M,
denoted by CertM(q, I) or, simply, Cert(q, I), are defined
as CertM(q, I) =

⋂
{q(J) | J ∈ GSol(I)}.

Observe that the notion of the certain answers was defined
using ground solutions. One could also consider an alterna-
tive definition in which the certain answers are defined using

541

solutions, i.e., by considering the set
⋂
{q(J) | J ∈ Sol(I)}.

It is easy to see, however, that these two notions coincide.
This is so because, as seen earlier, every ground A-instance
can be viewed as an A-instance and also, by Definition 3.3,
if J is an A-instance, then q(J) =

⋂
{q(J ′) | J ′ ∈ Rep(J)}.

Thus, the following result holds.

Proposition 3.11. Assume that M = (S,T,Σst,Σt) is
an arithmetic schema mapping. For every arithmetic con-
junctive query q over the target schema T and for every
ground A-instance I over the source schema S, we have that
CertM(q, I) =

⋂
{q(J) | J ∈ Sol(I)}.

Example 3.12. LetM be the arithmetic schema mapping
specified by the source-to-target arithmetic dependency

Detection(sensor, rfid, t) ∧ SensorLoc(sensor, x, y)→
Location(rfid, x′, y′, t) ∧ (x′ − x)2 < 1 ∧ (y′ − y)2 < 1.

Let I be the ground source A-instance consisting of the
facts Detection(s1, r1, 1800) and SensorLoc(s1, 37, 122),
where s1 and r1 are actual values encoding a sensor and
an RFID tag. Then an example of a ground solution for I
with respect toM is the target A-instance consisting of the
fact Location(r1, 37, 122.5, 1800). Consider also the target
arithmetic conjunctive query

q(r) := ∃x∃y∃t(Location(r, x, y, t) ∧
(30 < x < 40) ∧ (100 < y < 140) ∧ (1200 < t < 2300))

Then r1 belongs to q(J) for every J ∈ GSol(I), and, hence,
r1 ∈ CertM(q, I).

In the by now classical setting of data exchange with
source-to-target tuple generating dependencies and target
tuple-generating dependencies, a universal solution for a
source instance is a solution that can be homomorphically
mapped into every solution. Universal solutions are also
characterized by the property that the certain answers of
every conjunctive query can be obtained by evaluation the
query on the universal solution. We use this latter property
to define the notion of a universal solution in the context of
data exchange with arithmetic schema mappings.

Definition 3.13. LetM = (S,T,Σst,Σt) be an arithmetic
schema mapping and I a ground source A-instance. A target
A-instance J is a universal solution for I w.r.t. M if it is a
solution for I w.r.t.M and for every arithmetic conjunctive
query q, we have that CertM(q, I) = q(J).

Example 3.14. Consider again the arithmetic schema map-
ping and ground source A-instance from Example 3.12. Let
J = (J, α) where J = {Location(r1, N1, N2, 1800)} and α
is the arithmetic formula (36 < N1 < 38) ∧ (121 < N2 <
123). It may be verified that J is a universal solution for I.

As another example, letM be the arithmetic schema map-
ping specified by the arithmetic dependency ∀x (P (x) →
∃y(Q(x, y) ∧ y > 0)). Consider the ground source A-
instance I = {P (0)}. Then the target A-instance J =
({Q(0, N)}, N > 0) is a universal solution for I with re-
spect toM. This example can also be used to show that, in
the context of data exchange with arithmetic comparisons,
it is crucial to allow arithmetic formulas in (non-ground) in-
stances. Indeed, as will be shown in Proposition 3.16 below,
I does not have any universal solution, or even a finite uni-
versal basis (to be defined next), consisting of A-instances
without arithmetic formulas.

In Section 4.1, it will be shown that ifM is an arithmetic
schema mapping with no target arithmetic dependencies,
then if a ground source A-instance has a solution, then it
has a universal solution. In contrast, there are arithmetic
schema mappings with target arithmetic dependencies for
which universal solutions need not exist, even though so-
lutions exist. To see this, consider the arithmetic schema
mappingM with Σst = {∀x(P (x)→ ∃yzR(y, z))} and Σt =
{∀xy(R(x, y) ∧ x 6= y → Q1(x)), ∀x(R(x, x) → Q2(x))}. If
I = {P (a)}, then there is no universal solution for I w.r.t.
M. The reason is that the universality condition implies
that if J were a universal solution, then J must contain no
Q1-atom and also no Q2-atom. This state of affairs moti-
vates the introduction of the notion of a universal basis.

Definition 3.15. Let M = (S,T,Σst,Σt) be an arith-
metic schema mapping and I a ground source A-instance.
A collection {J1, . . . ,Jn} of target A-instances is a univer-
sal basis for I w.r.t. M if each instance Ji, 1 ≤ i ≤ n, is a
solution for I, and for every arithmetic conjunctive query q,
we have that CertM(q, I) =

⋂
1≤i≤n q(Ji).

Consider again the arithmetic schema mapping M with
Σst = {∀x(P (x) → ∃yzR(y, z))} and Σt = {∀xy(R(x, y) ∧
x 6= y → Q1(x)), ∀x(R(x, x)→ Q2(x))}. It is easy to verify
that the A-instances J1 = ({R(N1, N2), Q1(a)}, N1 6= N2)
and J2 = ({R(N1, N1), Q2(a)},>) form a universal basis for
I = {P (a)} with respect to M. The next result shows that
arithmetic formulas are of the essence in the definition of
A-instances.

Proposition 3.16. Let M be the arithmetic schema map-
ping specified by the arithmetic dependency ∀x (P (x) →
∃y (Q(x, y) ∧ y > 0)). Let I = {P (0)} and let {J1, . . . ,Jn}
be an arbitrary collection of target A-instances whose arith-
metic formula is >. Then {J1, . . . ,Jn} cannot be a univer-
sal basis for I with respect to M.

Proof. Towards a contradiction, suppose that {J1, . . . ,Jn}
is a universal basis for I such that the arithmetic formula in
each A-instance Ji is >.

First, we argue that each Ji must contain a fact of the
form Q(0, ai) where ai is a positive number. Indeed, if some
Ji did not contain such a fact, then, by mapping all nulls to
negative numbers, one would have that Rep(Ji) contains a
ground A-instance that falsifies the Boolean arithmetic con-
junctive query q = ∃yQ(x, y) ∧ y > 0; however, the certain
answer of q on I is ‘true’.

Next, let k be a number such that if one of the A-instances
Ji contains a fact of the form Q(0, ai), then we have that
ai < k. Consider the Boolean arithmetic conjunctive query
q′ = ∃x Q(0, x) ∧ 0 < x < k. By construction, q′(Ji) is true
for all i ≤ n, while the certain answer of q′ on I is ‘false’.

4. The Chase and Certain Answers

4.1 The case without target dependencies

Theorem 4.1. Let M = (S,T,Σst) be an arithmetic
schema mapping without any target dependencies. There is
a PTime algorithm that, given a ground source A-instance
I, tests for the existence of solutions for I w.r.t. M, and if
the answer is positive, constructs a target A-instance that is
a universal solution for I w.r.t. M.

542

Proof. For each source-to-target arithmetic dependency σ of
the form ∀x(φ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y)) belonging
to Σst, let γσ(x) denote a quantifier-free arithmetic formula
that is equivalent to the arithmetic formula ∃yγ(x,y). Note
that such a quantifier-free arithmetic formula exists by The-
orem 2.2. The construction of the quantifier-free arithmetic
formulas γσ can be viewed as a pre-processing step whose
complexity depends only on the arithmetic schema mapping,
not on the source A-instance.

For a sequence of algebraic real numbers r, we have that
γσ(r) holds if and only if the quantifier-free arithmetic for-
mula γ(r,N) has a solution, where N is a sequence of dis-
tinct fresh null values. Intuitively, we will make use of γσ in
the following way: whenever the left-hand side of σ is satis-
fied in I under some assignment of values to the universally
quantified variables, we will evaluate γσ to test whether the
right-hand side of σ can be satisfied in the target A-instance.
If the answer is negative, then, clearly, I has no solutions.
If the answer is positive, then a universal solution is con-
structed by choosing fresh null values for the existentially
quantified variables, and adding the facts and arithmetic
formula of the right-hand side of σ to our target A-instance.

We now describe the algorithm for testing the existence of
solutions and for constructing a universal solution, if a solu-
tion exists, in more precise terms. The algorithm maintains
a target A-instance J = (J, α). Initially, J = ∅ and α = >.
For each source-to-target arithmetic dependency

∀x(φ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y))

belonging to Σst, and for each tuple of numbers r from
adom(I) such that I contains all facts in φ(r), and β(r)
holds, the algorithm tests whether γσ(r) holds.

• If the answer is negative, the algorithm terminates and
reports that no solution exists.

• If the answer is positive, the algorithm proceeds as fol-
lows: Consider first the simpler case where r consists en-
tirely of rational numbers. In this case, we may choose
fresh null values N for the variables y, add ψ(r,N) to J
and add γ(r,N) as a conjunct to α. In the general case, r
consists of algebraic numbers, and doing the same would
not yield a valid A-instance, because only rational num-
bers are allowed in the arithmetic formulas defining A-
instances. Instead, in this case, we uniformly replace the
occurrences of each algebraic number a with representa-
tion 〈a〉 = (p(x), r, s) by a fresh null value Na in Ka and
in γ(r,N), and we extend the arithmetic formula with a
further conjunct p(Na) = 0 ∧ r ≤ Na ≤ s, which, intu-
itively, forces Na to take the value a (cf. also the proof
of Theorem 3.5). Note that the newly introduced null
value Na is guaranteed to occur in at least one relational
atom (as required by the definition of A-instances).

To complete the proof, first note that the above procedure
runs in polynomial time (the tests of β(r) and γσ(r) can be
performed in NC by Theorem 2.5). Second, note that, if the
algorithm succeeds, the result J is a target A-instance that,
by construction, satisfies the source-to-target arithmetic de-
pendencies in Σst. Moreover, if the algorithm succeeds, then
Rep(J) 6= ∅, which implies that I has a ground solution. To
see this, note that, whenever during the execution of the al-
gorithm a conjunct γ(r,N) was added to α, then γσ(r) was
true, which means that γ(r,N) has a solution. Since each
conjunct of α uses a disjoint set of nulls, this implies that

the entire formula α has a solution; therefore, Rep(J) 6= ∅.
Now, it only remains to show that, if the algorithm suc-

ceeds, then J is a universal solution for I w.r.t. M. This
follows from the fact that each ground solution K of I has

a subinstance K̃ ⊆ K such that K̃ ∈ Rep(J). Indeed, such

a K̃ may be obtained using a modified version of the above
algorithm: for each source-to-target arithmetic dependency

∀x(φ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y))

belonging to Σst, and for each tuple of numbers r from
adom(I) such that I contains all facts in φ(r) and β(r) holds,
the algorithm, instead of choosing fresh nulls, uses values r′

from adom(K) such that the facts in ψ(r, r′) belong to K
and such that γ(r, r′) is satisfied.

4.2 The case with target dependencies

As we saw earlier, in the presence of target dependencies,
a single universal solution may not exist. Here, we show
that, if the set of target dependencies is weakly acyclic, then
a finite universal basis always exists (if a solution exists) and
can be constructed by a polynomial-space algorithm.

Definition 4.2 (Weak acyclicity). Let Σt be a set of target
arithmetic dependencies. The dependency graph of Σt is
constructed as follows. The nodes are the positions R.A,
where R is a target relation and A is one of its attributes.
Each arithmetic dependency

∀x (ϕ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y))

in Σt gives rise to zero or more edges, as follows. A variable
x that occurs both in the antecedent and in the consequent
of the dependency is said to be a propagated variable (note
that x must appear in φ but may not appear in ψ). For each
propagated variable x, we do the following:

• Draw an edge from every position in which x occurs in
φ to every position in which x occurs in ψ

• Draw a special edge from every position in which x occurs
in φ to all positions in which one or more existentially
quantified variables occur in ψ.

Σt is weakly acyclic if its dependency graph does not contain
a cycle through a special edge.

The above definition of weak acyclicity coincides with the
original definition in [14] for dependencies without arith-
metic formulas. Indeed, for a set Σ of arithmetic depen-

dencies, let Σ̂ be the set that contains, for every σ ∈ Σ
of the form ∀x (ϕ(x) ∧ β(x) → ∃y ψ(x,y) ∧ γ(x,y)), with
ψ a non-empty conjunction of atoms, the dependency ob-
tained by removing β and γ from σ (note that we ignore
all constraint-generating dependencies, i.e., arithmetic de-
pendencies where ψ is the empty conjunction). Then Σ is

weakly acyclic as defined above if and only if Σ̂ is weakly
acyclic as defined in [14]. In particular, equality-generating
dependencies, being a special case of constraint-generating
dependencies, are allowed to occur in Σ.

Definition 4.3 (Chase step). Let K = (K,αK) be a target
A-instance and let

σ = ∀x,y(φ(x,y) ∧ β(x,y)→ ∃z ψ(x, z) ∧ γ(x, z))

be a target arithmetic dependency, where we use the nota-
tion x and y to distinguish between the universally quan-
tified variables that occur in ψ, and the ones that do not.

543

Consider a tuple of values (constants or nulls) w,u from
adom(K) such that all facts in φ(w,u) belong to K.

Intuitively, there are two ways in which the arithmetic
dependency σ may be satisfied when algebraic numbers are
substituted for the nulls in w and in u: either β(w,u) is
false (in which case the left-hand side of the implication is
false, and therefore the implication is satisfied), or the right-
hand side of σ must be satisfied under some assignment that
maps the variables x to w. Correspondingly, we write

• K L σ,w,u−−−−−→ K′ if K′ = (K,αK ∧ ¬β(w,u)), and

• K R σ,w−−−−→ K′ if K′ = (K′, αK ∧β(w,u)∧γ(w,N)), where
N are fresh nulls, and K′ extends K with the facts in
ψ(w,N).

As in the proof of Theorem 4.1, since w may contain irra-
tional algebraic numbers, the above definition of K′ may not
yield a valid A-instance. We solve this problem by uniformly
replacing all occurrences of algebraic numbers a by a fresh
null value Na and then extending the arithmetic formula
with an extra conjunct that, intuitively, forces Na to take
the value a, exactly in the same way as in the proof of The-

orem 4.1. If K̂′ is the A-instance obtained from K′ in this
way, then we use K′ and K̂′ interchangeably. In particular,

we also write K L σ,w,u−−−−−→ K̂′ and, respectively, K R σ,w−−−−→ K̂′.
Note that it may be the case that Rep(K′) = ∅, even when

Rep(K) 6= ∅. This may happen, for example, when β(w,u)
or its negation is implied by the arithmetic formula of K.

From a geometric perspective, the chase step can be un-
derstood as follows. Let K = (K,α) be a target A-instance,
let σ be a dependency as in Definition 4.3, and suppose that
all the facts in φ(w,u) belong to K. If N = N1, . . . , Nn is
an enumeration of all null values that occur in K, then the
arithmetic formulas α and β(w,u) naturally define (possi-
bly empty) algebraic surfaces in An. Let A be the alge-
braic surface defined by α and let B be the algebraic surface
defined by β(w,u). Each point in A corresponds to some
K ∈ Rep(K). The chase step, intuitively, involves splitting
the surface A into A\B and A∩B, by refining the arithmetic
formula α into α∧¬β(w,u) and α∧β(w,u). This partitions
Rep(K) into those ground A-instances where β(w,u) holds,
and those where it does not. Furthermore, in the latter case,
the facts and arithmetical formula in the right-hand side of
the dependency σ are added to the instance as well.

Definition 4.4 (Chase tree). Let K0 be a target A-instance,
and Σt a set of target arithmetic dependencies. A chase tree
for K0 with respect to Σt is a binary tree in which every node
is labeled by a target A-instance, and the edges are labeled
as well, such that the following conditions hold:

• The root is labeled K0.

• Every non-leaf node labeled K has exactly two children,
K1 and K2 with the following property: for some σ ∈ Σt

and for some tuples w,u, we have that K L σ,w,u−−−−−→ K1

and K R σ,w−−−−→ K2 are valid chase steps, and, moreover,
the edge from K to K1 is labeled L σ,w,u, and the edge
from K to K2 is labeled R σ,w.

• Each leaf node is labeled by a target A-instance K satis-
fying Σt (we allow for the trivial case where Rep(K) = ∅).
• No edge label appears more than once on the same

branch of the tree.

The result of a finite chase tree is the set of all labels K of
leaf nodes, for which Rep(K) 6= ∅.

To simplify the exposition of the results below, it is con-
venient to assume that the arithmetic dependencies are in a
special normal form.

Definition 4.5. We say that an arithmetic dependency

∀x(φ(x) ∧ β(x)→ ∃y ψ(x,y) ∧ γ(x,y))

is decoupled if every variable occurs at most once in φ.

Every non-decoupled arithmetic dependency is logically
equivalent to a decoupled arithmetic dependency, which
can be obtained from it in linear time by renaming vari-
ables and adding one or more equalities as conjuncts to β.
For example, ∀x(P (x, x) → Q(x)) is logically equivalent to
∀xy(P (x, y)∧x = y → Q(x)). This transformation does not
affect weak acyclicity.

The following example explains why it is helpful to assume
that the arithmetic dependencies are decoupled. Consider
the target arithmetic dependency σ = ∀x(R(x, x)→ P (x)),
and let J be the target A-instance ({R(a,N)}, N = a).
Clearly, σ is not satisfied by J . In fact, σ is false in ev-
ery J ∈ Rep(J). Nevertheless, there is no chase step that
can be applied here. Intuitively, this is because, in order to
chase J with σ, we need to map the variable x to a and to
N simultaneously, which is not possible. It follows that J
does not have any chase tree with respect to σ. On the other
hand, if we consider the decoupled arithmetic dependency
σ′ = ∀xy(R(x, y) ∧ x = y → P (x), which is equivalent to σ,
then this problem does not arise. Indeed, we have:

Proposition 4.6. If Σt is a set of decoupled target arith-
metic dependencies, then every target A-instance has a, pos-
sibly infinite, chase tree with respect to Σt.

Proposition 4.7. LetM = (S,T,Σst,Σt) be an arithmetic
schema mapping. Let I be a ground source A-instance, and
let J0 be a target A-instance that is a universal solution for
I with respect to Σst. If t is a finite chase tree for J0 w.r.t.
to Σt, then the result of t is a universal basis for I w.r.t.M.

Proof. (Sketch) Let B be the result of t. By construction, B
consists of target A-instances that are solutions of I (note
that the source-to-target arithmetic dependencies in Σst re-
main true as the target A-instance is extended with new facts
and arithmetic formulas during the chase). To see that B is
a universal basis for I, we use the same strategy as in the
proof of Theorem 4.1, i.e., we show that for every ground

solution K, there is a subset K̃ ⊆ K such that K̃ ∈ Rep(J)
for some J ∈ B (such a J can be found as the leaf of a
branch of t that is by obtained by letting the given ground
A-instance K guide our choices in the chase tree).

Proposition 4.8. For every weakly acyclic set of target
arithmetic dependencies Σt, there is a polynomial p(·) such
that for every target A-instance K, the depth of every chase
tree of K with respect to Σt is bounded by p(|K|).

We now establish the main result of this section.

Theorem 4.9. Let M = (S,T,Σst,Σt) be an arithmetic
schema mapping, such that Σt is weakly acyclic. There is

544

a polynomial-space algorithm that, given a ground source A-
instance I, tests whether a solution exists and, if so, pro-
duces a finite universal basis for I, consisting of target A-
instances whose size is bounded by p(|I|), for some polyno-
mial p(·) that depends only on M.

Proof. As discussed earlier, we may assume without loss of
generality that Σt consists of decoupled target arithmetic de-
pendencies. The algorithm first tests for the existence of a
solution of I with respect to Σst. If there is no solution, then
also there is no solution with respect to Σst and Σt. Oth-
erwise, the algorithm continues to construct in polynomial
time a target A-instance J0 that is a universal solution for I
with respect to Σst. Next, the algorithm constructs a finite
chase tree for J0 with respect to Σt, in a depth-first manner,
keeping in memory only one branch at a time. It enumerates
all leafs J and outputs those for which Rep(J) 6= ∅. The
resulting set B of target A-instances is guaranteed to be a,
possibly empty, universal basis for I. Moreover, a solution
for I exists if and only if B is non-empty. The algorithm
requires only polynomial space (using Proposition 3.2 and
Theorem 3.8, and the fact that co∃R ⊆ PSpace).

Note that, in Theorem 4.9, the size of the universal basis
may be exponential, but each member of the universal basis
is of polynomial size; moreover, the algorithm can enumerate
the members of the universal basis (in exponential time)
using only a polynomial amount of memory.

4.3 Query answering

Theorem 4.1, together with Theorem 3.5, immediately im-
plies that, for arithmetic schema mappings without target
dependencies, the certain answers of every fixed arithmetic
query can be computed in co∃R. We will show that the same
holds true in the more general case of arithmetic schema
mappings with a weakly acyclic set of target dependencies;
moreover, computing the certain answers can be a co∃R-
complete problem.

Theorem 4.10. Let M = (S,T,Σst,Σt) be an arithmetic
schema mapping, where Σt is a weakly acyclic set of target
arithmetic dependencies.

1. The problem of testing whether a given ground source
A-instance has a solution with respect to M is in ∃R.
Depending on M, it can be ∃R-complete.

2. For every fixed arithmetic conjunctive query q, the prob-
lem of computing CertM(q, I), given a ground source A-
instance I, is in co∃R. Depending on M and q, it can
be co∃R-complete.

In what follows, we describe the basic approach and main
ingredients of the proof. First, it is easy to see that it suf-
fices to establish the upper bound (membership in co∃R) for
computing the certain answers, and the lower bound (∃R-
hardness) for the existence of solutions problem.

The argument for the upper bound relies on the follow-
ing non-trivial closure property of the complexity class ∃R,
which we establish here: ∃R is closed under NP-reductions.
An NP-reduction from a decision problem A to a decision
problem B is a non-deterministic polynomial-time Turing
machine T with output, such that the (possibly exponen-
tially large) set of possible outputs {b1, . . . , bn} of T on an
input a satisfies the condition that a is in A if and only if

at least one bi is in B. Ordinary polynomial-time many-one
reductions are a special case of NP-reductions, in which the
Turing machine is deterministic. We say that a complexity
class C is closed under NP-reductions if the following holds:
whenever a decision problem A admits an NP-reduction to
a problem B in C, then A is also in C. For example, it is
easy to see that the complexity classes NP and PSpace are
closed under NP-reductions. The complexity class PTime
is not closed under NP-reductions, unless P=NP.

Theorem 4.11. ∃R is closed under NP-reductions.

Theorem 4.11 is used to prove the upper bound for the
second part of Theorem 4.10. Specifically, we give an NP-
reduction from the problem of computing the certain an-
swers of a query to the problem of evaluating the same query
on an A-instance; the latter problem was already shown to
belong to ∃R in Theorem 3.5. Our NP-reduction, roughly,
consists of non-deterministically choosing path in the chase
tree, resulting either in a member of the universal basis or
in a target A-instance J such that Rep(J) = ∅.

For the co∃R-hardness in the first part of Theorem 4.10,
observe first that the input to the existence-of-solutions
problem consists of a ground source A-instance only, i.e.,
an instance without nulls and without an arithmetic for-
mula. At first sight, it is not clear how one would proceed
to reduce the decision problem of the existential theory of
the reals (where the input is an arithmetic formula) to the
problem at hand, and one may even think that this is not
possible. Instead, our proof is based on a reduction from
the Rectilinear Crossing Number Problem, a classical
problem from graph theory that we describe next.

The rectilinear crossing number of a graph G, lin-cr(G), is
the smallest number of crossings in a straight-line drawing
of G, that is, a drawing in which every edge is represented
by a straight-line segment and at most two edges intersect
in a point. Let Kn be the n-element clique. It is easy to see
that lin-cr(K4) = 0. Furthermore, lin-cr(K5) = 1, because,
in every straight-line drawing of this graph, at least one
pair of edges cross, and it is possible to draw this graph
with straight lines, such that only one pair of edges cross
(see [32] for a picture). Computing the rectilinear crossing
number has turned out to be a challenging problem, even
for rather simple graphs, such as cliques. Specifically, over
the past few decades, the exact value of lin-cr(Kn) has been
determined for n ≤ 30, but is currently open for n > 30
(see [24]). The Rectilinear Crossing Number Problem
is the following decision problem: given a graph G and a
natural number k, is lin-cr(G) ≤ k? It has been recently
shown that the Rectilinear Crossing Number Problem
is ∃R-complete ([27], building on [9]).

We show that there is an arithmetic schema mapping
M with a weakly acyclic set of arithmetic target con-
straints, such that, given a graph G and a natural number
k, we can construct in polynomial time a ground source A-
instance IG,k, whose ground solutions, intuitively, represent
the straight-line drawings of G with at most k crossings. In-
terestingly, multiplication is used in the reduction only for
expressing that three points are colinear.

5. Linear Arithmetic and the Rationals
We used the language of arithmetic formulas to specify op-

erations and constraints on real numbers. In this section, we

545

consider linear arithmetic formulas over the rationals. By
definition, a linear arithmetic formula is an arithmetic for-
mula that only uses multiplications with constants. In other
words, we disallow polynomials of degree two or higher.

The restriction to rational numbers and the restriction
to linear arithmetic formulas go hand-in-hand in a natural
way, for the following reasons. To begin with, the first-
order theory of the rationals with addition and multiplica-
tion is undecidable [26] (hence, in particular, it does not
admit quantifier elimination). Moreover, even the decid-
ability of solvability of quantifier-free arithmetic formulas
over the rationals (known as “Hilbert’s 10th problem over
the rationals”) is an open problem. Also, while systems of
linear equations with rational coefficients can be solved in
polynomial time, it is not known whether the same holds
true when algebraic real numbers are allowed as coefficients.
Indeed, this problem subsumes the “sums-of-square-roots”
problem, which asks for given integers k1, . . . , kn, kn+1 (in
binary) whether

√
k1 + · · ·+

√
kn < kn+1, and which is not

known to be solvable in polynomial time (see [4]).
An arithmetic dependency is linear if it uses only lin-

ear arithmetic formulas. Likewise for linear arithmetic con-
junctive queries. A linear arithmetic schema mapping is a
schema mapping specified by linear arithmetic dependencies.

Definition 5.1. Let R be a schema. An LQ-instance over
R is a pair I = (I, α) with I = (RI1, . . . , R

I
n), where each

RIk is a finite relation on Q ∪Nulls of appropriate arity, and
α is a linear quantifier-free arithmetic formula whose free
variables are the nulls occurring in I.

Here, all rational numbers are assumed to be represented
as pairs of integers (written in binary notation).

Let I be an LQ-instance and q a linear arithmetic conjunc-
tive query. In principle, q(I) could be defined in two ways:
in terms of Rep(I), or in terms of just the LQ-instances in
Rep(I). It turns out that this does not make a difference.

Proposition 5.2. Let I be a LQ-instance and q a linear
arithmetic conjunctive query. Then

q(I) =
⋂
{q(I) | I ∈ Rep(I)}

=
⋂
{q(I) | I ∈ Rep(I) and I is an LQ-instance}

In particular, if Rep(I) 6= ∅, then Rep(I) contains an LQ-
instance.

Proof. The first part of the equation holds by definition,
while the second part follows from Theorem 2.4.

Straightforward adaptations of the proofs of Proposi-
tion 3.2, Theorem 3.5, and Theorem 3.8 yield:

Proposition 5.3. Let q be a linear arithmetic conjunctive
query, and let t be a linear arithmetic dependency.

1. The following problem is coNP-complete: given an LQ-
instance I, is Rep(I) = ∅?

2. The following problem is in coNP: given an LQ-instance
I = (I, α) and a tuple of rational numbers a, test whether
a ∈ q(I). Moreover, there are conjunctive queries with-
out arithmetic formulas for which the problem is coNP-
complete.

3. The problem of testing whether a given LQ-instance
weakly satisfies t is in NP. Depending on t, this prob-
lem can be NP-complete.

4. The problem of testing whether a given LQ-instance sat-
isfies t is in coNP. Depending on t, this problem can be
coNP-complete.

A close analysis of the proof of Theorem 4.1 and Theo-
rem 4.9 shows that, when the input consists of a ground
source LQ-instance and a linear arithmetic schema map-
ping, then the output consists of LQ-instances as well. In
other words, no irrational numbers and no multiplications
are introduced during the chase. Based on this, and on the
fact that the complexity class NP is (trivially) closed un-
der NP-reductions, we can adapt the proof of Theorem 4.10
in a straightforward manner to establish the upper bounds
stated in the following result.

Theorem 5.4. Let M = (S,T,Σst,Σt) be a linear arith-
metic schema mapping, where Σt is a weakly acyclic set of
linear target arithmetic dependencies. Then

1. The problem of testing that a given ground source LQ-
instance has a solution with respect to M is in NP. De-
pending on M, it can be NP-complete.

2. For every linear arithmetic conjunctive query q, the prob-
lem of computing CertM (q, I), given a ground source LQ-
instance I, is in coNP. Depending on M and q, it can
be coNP-complete.

The lower bounds in Theorem 5.4 follow immediately from
the fact that there is a schema mapping M without target
constraints and without arithmetic formulas, and a conjunc-
tive query with inequalities q, for which computing certain
answers is coNP-complete [1] (see also [14, 21]).

6. Related Work
In [23], constrained tuple-generating dependencies (ctgds)

were first introduced as a generalization of tuple-generating
dependencies, constrained functional dependencies [22], and
constraint-generating dependencies [6]. These ctgds are de-
fined in [23] relative to a given constraint domain, which is
a pair (D,L), where D is a structure and L is a fragment
of first-order logic. Arithmetic dependencies are the special
case of ctgds where D = (A, <,+,×, (c)c∈Q) and L is the set
of all quantifier-free formulas. In [23], two chase procedures
were proposed for testing implication between ctgds. These
chase procedures, however, do not always terminate; this is
so because ctgds generalize tuple-generating dependencies,
and the implication problem for the latter is undecidable
[7]. In [30], a third (incomplete) chase procedure is intro-
duced, which improves on both previous chase procedures,
and which, moreover, can be used to test implication for dis-
junctive ctgds, that is, the generalization of ctgds that allows
for arbitrary use of disjunction in conclusion of dependen-
cies. In [12], yet another chase procedure for constrained
tuple-generating dependencies is proposed, which is shown
to constitute a sound and complete proof system, when in-
terpreted over possibly infinite instances. Each of these pa-
pers considers arbitrary constraint domains (D,L), and re-
lies on an oracle for testing satisfiability and entailment of
L-formulas over D. In particular, no decision procedures or
computational complexity results are obtained.

In [2], Afrati, Li, and Pavlaki studied data exchange set-
tings with arithmetic comparisons (DEAC). Syntactically,
DEAC settings are the special case of arithmetic schema
mappings in which addition, multiplication, negation, and

546

disjunction are not allowed in the arithmetic formulas. In
particular, DEAC settings are linear arithmetic schema
mappings. The arithmetic comparisons in DEAC settings
considered in [2] are interpreted over an arbitrary countable
dense linear order without endpoints, which we may assume,
without loss of generality, to be the linear order of the ratio-
nal numbers (since all countable dense linear orders without
endpoints are isomorphic to the rational numbers). Sim-
ilarly, the conjunctive queries with arithmetic comparisons
(CQACs) studied in [2] are a special case of linear arithmetic
conjunctive queries. Consequently, our work on linear arith-
metic schema mappings and on linear arithmetic conjunc-
tive queries, can be seen as extending the work on DEAC
settings and CQACs in [2] to a richer schema-mapping lan-
guage. Note, however, that some of terminology used [2] is
different from the one used here; in particular, the term so-
lution is used in [2] for what we called here a universal basis;
we used the latter term because it had been introduced ear-
lier in the context of peer data exchange [16]. Our results
in Section 5 show that the data complexity of the certain
answers of linear arithmetic conjunctive queries w.r.t. linear
arithmetic schema mappings coincides with the data com-
plexity of CQAs w.r.t. DEAC settings. Thus, our results
imply that the extension of the DEAC setting in [2] to the
richer setting of linear arithmetic schema mappings does not
come at the expense of an increase in worst-case complexity.

It is worth noting that the main chase procedure pro-
posed in [2] produces a universal basis (in our terminology)
whose number of elements is at least as big as the number of
elements in the universal basis produced by our chase algo-
rithm, when applied to DEAC settings. Furthermore, there
are DEAC settings for which the universal basis produced
by our algorithm has exponentially fewer members than the
universal basis produced by the main chase procedure in [2].
The following example illustrates this phenomenon.

Example 6.1. LetM be the schema mapping given by the
source-to-target dependencies

∀x(R(x)→ ∃y T (x, y)) and ∀x(P (x)→ ∃y Q(x, y)) ,

and the target arithmetic dependency

∀xy(T (x, y) ∧ x 6= y → Q(x, y)) .

Let I be a source LQ-instance consisting of the facts R(0)
and P (1), P (2), . . . , P (n), for some natural number n. Our
chase algorithm, on input I, produces a universal basis con-
sisting of ({T (0, N0), Q(0, N0), Q(1, N1), . . . , Q(n,Nn)}, 0 6=
N0) and ({T (0, N0), Q(1, N1), . . . , Q(n,Nn)},¬(0 6= N0)}.
This is optimal, because it can be shown that there is no
single target LQ-instance that is a universal solution for
I. On the other hand, the chase method proposed in [2]
yields a universal basis consisting of exponentially many tar-
get LQ-instances (one for each way of ordering the null val-
ues N0, N1, . . . , Nn relative to each other and relative to the
constants 0, 1, . . . , n). Intuitively, this difference in behav-
ior stems from the fact that the chase from [2] maintains,
at each step, a complete linear order on the nulls and the
constants, and therefore, must branch whenever a new null
value is introduced. Our chase, on the other hand, is “lazy”
in the sense that it only branches when needed for evaluat-
ing a specific arithmetic formula in the left-hand side of a
target arithmetic dependency.

Finally, we note that the need for arithmetic compar-

Data Exchange Setting Existence of Sols. Certain Answers

Arithmetic schema mappings
without target dependencies
over (A, <,+,×)

in PTime in co∃R

Arithmetic schema mappings
with weakly acyclic target
dependencies over (A, <,+,×)

∃R-complete co∃R-complete

Linear arithmetic schema
mappings without target
dependencies over (Q, <,+)

in PTime coNP-complete

Linear arithmetic schema
mappings with weakly acyclic
target dependencies over
(Q, <,+)

NP-complete coNP-complete

Table 1: Summary of complexity results

isons arises naturally in computing core universal solutions.
Specifically, as shown in [29], for every schema mapping M
specified by source-to-target tgds, there is a schema mapping
M′ specified by a generalization of source-to-target tgds that
involves arithmetic comparisons, such that for every source
instance I, the core of the universal solutions of I with re-
spect to M can be obtained by chasing I with the depen-
dencies ofM′. Moreover, the use of arithmetic comparisons
cannot be avoided in general.

7. Concluding Remarks

We have initiated the study of data exchange for arith-
metic schema mappings and arithmetic queries. For arith-
metic schema mappings without target dependencies, we
have presented a polynomial-time algorithm that tests for
the existence of solution, and, if there is a solution, com-
putes a universal solution. In the case of arithmetic schema
mappings with a weakly acyclic set of target dependencies,
a universal solution may not exist, but we show that a finite
universal basis can be computed in polynomial space (if a
solution exists). Based on these results, we have classified
the complexity of computing the certain answers of arith-
metic conjunctive queries over the target schema. Our main
complexity results are summarized in Table 1. One question
that remains open is whether computing the certain answers
of arithmetic conjunctive queries w.r.t. arithmetic schema
mappings without target dependencies is a co∃R-complete
problem. Our results also contribute to the understanding of
the complexity class ∃R, because we show that ∃R is closed
under NP-reductions and also because our results identify
several new ∃R-complete problems.

The work reported here opens up several interesting direc-
tions for future research. We conclude by mentioning three
such concrete directions.

The first direction is to identify natural cases of data ex-
change with arithmetic schema mapping for which the prob-
lems of testing for the existence of solutions and computing
the certain answers have complexity lower than ∃R-complete
and co∃R-complete. Going back to the examples of arith-
metic dependencies given in Section 1, we can see that the
third example has no existential quantified variables (i.e.,
it is an example of a full arithmetic dependency), while the

547

other three are of a restricted form, namely, the existentially
quantified variables are determined via polynomials by the
values of the universally quantified variables, hence no gen-
uine nulls are created. We believe that, generalizing from
these examples, it will be possible to identify fragments of
arithmetic dependencies that on the one hand are of practi-
cal relevance and, on the other, have the property that the
basic computational tasks we considered are tractable.

The second direction concerns metadata management.
How do we manage arithmetic schema mappings? In par-
ticular, what are the semantics of the composition and the
inverse operator on arithmetic schema mappings, and what
is the “right” language for expressing these operators?

The third direction is concerned with schema-mapping de-
sign. In [3], a methodology for schema-mapping design was
proposed, based on the use of data examples. A funda-
mental problem in that context is the problem of finding a
schema mapping that “fits” a collection of data examples.
In general, for a given collection of data examples, a fitting
schema mapping consisting of source-to-target dependencies
and target dependencies may not exist. In such cases, the
question arises whether we can find a schema mapping in a
richer language and, in particular, whether we can find an
arithmetic schema mapping that fits these data examples.

Acknowledgements. We thank Nimrod Megiddo and
Marcus Schaefer for helpful discussions and pointers.

8. References

[1] S. Abiteboul and O. M. Duschka. Complexity of
Answering Queries Using Materialized Views. In
PODS, pages 254–263, 1998.

[2] F. N. Afrati, C. Li, and V. Pavlaki. Data exchange in
the presence of arithmetic comparisons. In EDBT,
pages 487–498, 2008.

[3] B. Alexe, B. ten Cate, P. G. Kolaitis, and W.-C. Tan.
Designing and refining schema mappings via data
examples. In SIGMOD, pages 133–144. ACM, 2011.

[4] E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and
P. B. Miltersen. On the complexity of numerical
analysis. In IEEE Conference on Computational
Complexity, pages 331–339, 2006.

[5] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.
Relational and XML Data Exchange. Synthesis
Lectures on Data Management. Morgan & Claypool
Publishers, 2010.

[6] M. Baudinet, J. Chomicki, and P. Wolper.
Constraint-generating dependencies. Journal of
Computer and System Sciences, 59(1):94 – 115, 1999.

[7] C. Beeri and M. Y. Vardi. The implication problem
for data dependencies. In ICALP, pages 73–85, 1981.

[8] M. Ben-Or, D. Kozen, and J. Reif. The complexity of
elementary algebra and geometry. In STOC, pages
457–464. ACM, 1984.

[9] D. Bienstock. Some provably hard crossing number
problems. Discrete and Computational Geometry,
6:443–459, 1991.

[10] J. Canny. Some algebraic and geometric computations
in PSPACE. In STOC, pages 460–467. ACM, 1988.

[11] J. H. Davenport and J. Heintz. Real quantifier
elimination is doubly exponential. J. Symb. Comput.,
5:29–35, February 1988.

[12] D. Dou and S. Coulondre. A sound and complete
chase procedure for constrained tuple-generating
dependencies. Journal of Intelligent Information
Systems, Online First:1–22, 2012.

[13] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real
algebraic numbers: Complexity analysis and
experimentation. In Reliable Implementation of Real
Number Algorithms, pages 57–82, 2008.

[14] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data Exchange: Semantics and Query Answering.
Theoretical Computer Science, 336(1):89–124, 2005.

[15] J. Ferrante and C. Rackoff. A decision procedure for
the first order theory of real addition with order.
SIAM J. Comput., 4(1):69–76, 1975.

[16] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C.
Tan. Peer data exchange. ACM Trans. Database Syst.,
31(4):1454–1498, 2006.

[17] R. Greenlaw, H. Hoover, and W. Ruzzo. Limits to
parallel computation: P-completeness theory. Oxford
University Press, 1995.

[18] J. Heintz, M.-F. Roy, and P. Solernó. Sur la
complexité du principe de Tarski-Seidenberg. Bulletin
de la Société Mathématique de France, tome
118(1):101–126, 1990.

[19] L. Khachiyan. A polynomial algorithm in linear
programming. Soviet Mathematics Doklady,
20:191–194, 1979.

[20] P. G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS, pages 61–75, 2005.

[21] A. Madry. Data exchange: On the complexity of
answering queries with inequalities. Inf. Process. Lett.,
94(6):253–257, 2005.

[22] M. J. Maher. Constrained dependencies. Theor.
Comput. Sci., 173(1):113–149, 1997.

[23] M. J. Maher and D. Srivastava. Chasing constrained
tuple-generating dependencies. In R. Hull, editor,
PODS, pages 128–138. ACM Press, 1996.

[24] The rectilinear crossing number project.
http://www.ist.tugraz.at/staff/aichholzer/research/

rp/triangulations/crossing/. Accessed 10/17/2012.

[25] J. Renegar. On the computational complexity and
geometry of the first-order theory of the reals. Part I.
J. Symb. Comput., 13(3):255–299, 1992.

[26] J. Robinson. Definability and decision problems in
arithmetic. J. Symb. Logic, 14(2):pp. 98–114, 1949.

[27] M. Schaefer. Complexity of some geometric and
topological problems. In Graph Drawing, volume 5849
of LNCS, pages 334–344. 2010.

[28] A. Tarski. A Decision Method for Elementary Algebra
and Geometry. University of California Press, 1951.

[29] B. ten Cate, L. Chiticariu, P. G. Kolaitis, and W. C.
Tan. Laconic schema mappings: Computing the core
with sql queries. PVLDB, 2(1):1006–1017, 2009.

[30] J. Wang, R. W. Topor, and M. J. Maher. Reasoning
with disjunctive constrained tuple-generating
dependencies. In DEXA, pages 963–973, 2001.

[31] V. Weispfenning. The complexity of linear problems in
fields. J. Symb. Comput., 5:3–27, February 1988.

[32] Wolfram MathWorld. Rectilinear crossing problem.
http://mathworld.wolfram.com/

RectilinearCrossingNumber.html. Accessed 10/17/2012.

548

