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ABSTRACT
Regularly releasing the aggregate statistics about data streams in a
privacy-preserving way not only serves valuable commercial and
social purposes, but also protects the privacy of individuals. This
problem has already been studied under differential privacy, but
only for the case of a single continuous query that covers the entire
time span, e.g., counting the number of tuples seen so far in the
stream. However, most real-world applications are window-based,
that is, they are interested in the statistical information about stream-
ing data within a window, instead of the whole unbound stream.
Furthermore, a Data Stream Management System (DSMS) may
need to answer numerous correlated aggregated queries simulta-
neously, rather than a single one. To cope with these requirements,
we study how to release differentially private answers for a set of
sliding window aggregate queries. We propose two solutions, each
consisting of query sampling and composition. We first selectively
sample a subset of representative sliding window queries from the
set of all the submitted ones. The representative queries are an-
swered by adding Laplace noises in a way satisfying differential
privacy. For each non-representative query, we compose its answer
from the query results of those representatives. The experimental
evaluation shows that our solutions are efficient and effective.

1. INTRODUCTION
Nowadays, data streams are common to many applications, such

as online transactions, disease monitoring, environment sensing,
and financial fraudulence detection. Typically, they arrive at high
speed continuously, and usually are unbounded. Online processing
of such data brings unique commercial opportunities to the compa-
nies. Regularly releasing aggregate statistics about them also serves
valuable social purposes. However, data streams may contain sensi-
tive personal information, e.g., a stream about patients with a highly
infectious disease. Aggregate results released from such a stream
can help health department better control the disease, but on the
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other hand, the query results about the sensitive information may
potentially put the individual privacy at risk.

Differential privacy [12] has become the de facto standard notion
of privacy. In this paper, we adopt it to protect the privacy of in-
dividuals, whose data appear in the stream. Informally, differential
privacy requires that the output of aggregated queries be approx-
imately the same, even if any single tuple in the input database
is arbitrarily modified. Such a concept ensures that the adversar-
ial attacks against a person are essentially equally likely to occur,
whether that person’s tuple is in the database or not. Till now, most
approaches [6, 19, 26, 20, 32, 22, 17, 31] proposed to guarantee
differential privacy are developed for static datasets. As such, they
cannot be directly applied to data streams, which are usually un-
bounded, transient, and require query results to be updated when
new data arrive.

Recently, differential privacy has also been investigated in the
context of data streams. As far as we know, all the proposed
methods [11, 13, 8, 14] consider a single aggregate query (i.e., a
counter), which differential-privately releases the number of 1’s
seen so far in a stream. These methods are insufficient for real-
world applications for the following two major reasons. Firstly,
most real-world applications are window-based. Consider a binary
stream about whether individuals are affected by a highly conta-
gious disease. It is more likely that health organizations are in-
terested in the statistics about the streaming data within a most
recent window (e.g., the number of affected persons in last 10
days), instead of the whole unbounded stream. Secondly, a Da-
ta Stream Management System (DSMS) may need to answer nu-
merous correlated aggregate queries simultaneously, instead of just
one. In the above running example, the organizations may submit
queries with various window size and step size (step size specifies
window update frequency, e.g., update the number of affected per-
sons every 2 days).

To cope with the unique requirements posed by data streams,
in this work we propose a differentially-private framework cus-
tomized for sliding window count queries. It operates in two phas-
es. First, it samples a subset of representative queries from all
the submitted ones. The representatives are answered by adding
Laplace noises in a way satisfying differential privacy. For each
non-representative query, we compose its answer from the query
results of those representatives. Our framework answers directly
only a subset of selected representative queries. Such a strategy al-
lows the magnitude of added Laplace noises to be lowered. Thus,
the returned query results can be more accurate. We develop two
solutions from our framework. The former studies a special case,
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in which the step size (i.e., window update frequency) of a bigger
query is always a multiple of that of a smaller one. The latter in-
vestigates the general case, in which a step size can be an arbitrary
positive integer. Our extensive experimental results show that both
solutions achieve query accuracy superior to existing approaches.

The remainder of the paper is organized as follows. The next sec-
tion presents fundamental definitions and background knowledge.
We propose the solution for the special case in Section 3, and that
for the general case in Section 4. Section 5 reports the experimen-
tal results. We survey related work in Section 6, and conclude the
paper in Section 7.

2. FUNDAMENTAL DEFINITIONS AND
BACKGROUND

2.1 Query Model
Similar to existing solutions [13, 8] on differential privacy for

data streams, we consider an unbounded stream of append-only tu-
ples DS[t], where time t ∈ {1, 2, 3, . . . } and each tuple has a
binary value 0 or 1. However, instead of considering a single query
that counts the number of 1’s seen so far as in [13, 8], we inves-
tigate a more flexible model, where a set of continuous sliding-
window count queries are registered. This is more practical, since
real-world applications are interested in most recent information,
rather than the whole unbounded stream. Each query is defined by
three parameters: registration time, window size, and step size. For
simplicity, we assume that the registration time is the same for all
the queries. Table 1 summarizes the notations used.

Table 1: Summary of Notations
Symbol Denotation
DS Data stream with binary-valued tuples (0’s and 1’s)
Γ Set of submitted sliding window count queries
ΓR Set of representative sliding window count queries
L Set of all the distinct steps in Γ
LR Set of all the distinct steps in ΓR

Q[W,S] Query with window W and step S
Sj
i The jth slot of step Si

CW Set of cycle windows

Let Q[W,S] be a continuous query with window W and step
size S. We assume that window size is a multiple of step size,
i.e., W = j × S, where j is a positive integer. Figure 1 shows
4 queries Q1[W1, S1], Q2[W2, S1], Q3[W3, S2], and Q4[W4, S3],
where Q1 and Q2 share the same step S1. The size relationship
between a window and its step is also illustrated, e.g., W2 is three
times as big as its step S1.

S1

S2

S3

W1

W2

W3

W4

Cycle 1 Cycle 2

S1
1 S1

4S1
3S1

2

S2
1 S2

2 S2
3

S3
2S3

1

Figure 1: Steps, windows and cycles.

DEFINITION 1 (SLOT). Let DS be a data stream, and S be
the step of a query. We partition DS into segments, each having
size S. These segments are the slots of step S.

In Figure 1, S1
1 , S

2
1 , S

3
1 , S

4
1 , . . . are the slots of step S1. Simi-

larly, S1
2 , S2

2 , S3
2 , . . . are the slots of step S2, and S1

3 , S
2
3 , . . . are

those of step S3. Essentially, a slot is a time interval; a step’s slots
form a partition of DS. Given slot Sj

i , we denote its begin time by
Sj
i .b, and its end time by Sj

i .e.
For each query Q[W,S], its window W slides forward at ev-

ery time interval of S. Thus, a sequence of windows is generat-
ed. To answer Q, the Data Stream Management System (DSM-
S) returns the number of 1’s within each window. Take query
Q3[W3, S2] as an example: when W3 slides forward, windows
W 1

3 ,W
2
3 ,W

3
3 ,W

4
3 , . . . are generated (Figure 2) and the number

of 1’s in each window is counted. Just like a slot, a window W
represents a time interval. Similarly, we use W.b and W.e to define
the begin and end time of W .

In a DSMS with multiple continuous queries, each query may
slide forward at a different time interval. However, after a certain
time period, the system will return to its initial state. In Figure 1,
after windowW1 andW2 slide 4 times, W3 slides 3 times, andW4

slides 2 times, the DSMS configuration will be the same as at the
origin of time, with the only difference that it is shifted forward by
one cycle. The concept of cycle is formally defined as follows:

S2
W3

1

Cycle 1 Cycle 2

S2
1 S2

2 S2
3

W3
2

W3
3

W3
4

S2
4

Figure 2: Sliding window and its cycles

DEFINITION 2 (CYCLE). Denote by Γ the set of continuous
queries in a DSMS. Let t1 be a timestamp when the begin times
of all sliding window queries in Γ coincide, and let t2 > t1 be
the minimum timestamp when all the windows have again the same
begin time. Then, the time interval [t1, t2] is a cycle for Γ, and its
length is t2 − t1.

The cycle length is determined by the step sizes in Γ. Given
ℓ distinct steps S1, S2, . . . , Sℓ in Γ, the cycle length is the Least
Common Multiple LCM(S1, S2, . . . , Sℓ). Let the lengths of the
three steps S1, S2, and S3 in Figure 1 be 3, 4, and 6, respectively.
Then, the cycle length is LCM(3, 4, 6) = 12.

The repetitive nature of cycles allows us to characterize the
DSMS behavior by studying only the first cycle. Thus, we will
focus on sliding windows only in the first cycle (others are just
shifted forward from them by one or more cycles).

DEFINITION 3 (CYCLE WINDOW SET). The cycle window set
CW is the set of all the sliding windows of queries in Γ, for which
the window begin time falls within the first cycle of Γ.

Figure 1 shows 4 queries; all the sliding windows with their be-
gin times falling in Cycle 1 form the cycle window set. In partic-
ular, for query Q3, the set includes W 1

3 , W 2
3 , and W 3

3 (Figure 2).
Window W 4

3 (not in the set) is similar to W 1
3 , but shifted one cycle

forward.
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2.2 Privacy Model
We adopt the state-of-the-art differential privacy model [12],

summarized next.

DEFINITION 4 (NEIGHBORING STREAMS[8]). Data streams
DS1 and DS2 are neighboring, if they differ only at one times-
tamp x, that is, DS1[x] ̸= DS2[x] and DS1[t] = DS2[t] for
t ∈ {1, 2, . . . } \ {x}.

Differential privacy ensures that an adversary cannot distinguish
two neighboring streams based on the query results on them.

DEFINITION 5 (DIFFERENTIAL PRIVACY [8]). A random
mechanism R satisfies ϵ-differential privacy, if for any pair
of neighboring streams (DS1,DS2) and any measurable
subset O in the query output domain, Pr[R(DS1) ∈ O] ≤
eϵ · Pr[R(DS2) ∈ O].

The L1 sensitivity [12] of a set of functions F is defined as

Sen(F ) = max
∀DS1,DS2

∑
f∈F

|f(DS1)− f(DS2)|

 (1)

where DS1 and DS2 are neighboring streams.
Dwork et al [12] prove that differential privacy can be achieved

by adding to each query answer a noise generated according to
Laplace distribution. Specifically, the noise is a variable Lap(λ)

with probability density function Pr[Lap(λ) = x] = 1
2λ
e−|x|/λ.

Lap(λ) has mean 0 and variance 2λ2. Furthermore, a random
mechanism complies with ϵ-differential privacy, if it adds to each
function f ∈ F independent Laplace noise Lap(λ), where λ =
Sen(F )

ϵ
.

In our model, window size is a multiple of its step size. Thus, any
sliding window can be derived by a concatenation of the slots of its
step. In Figure 2, window W 1

3 is the concatenation of S1
2 and S2

2 ,
whereas windowW 2

3 is the concatenation of S2
2 and S3

2 . Therefore,
instead of answering each window query directly (i.e., count the
number of 1’s in the window), we can first answer each slot query
(i.e., count the number of 1’s in the slot), and then compose the
window query answer by the slot query answers.

Suppose that L is the set of steps in Γ. Then, all the slots of all
the steps in L form F . Although the cardinality of F is infinite
for an unbounded stream DS, changing the value of a streaming
tuple at any timestamp in DS will change the answers of exactly
|L| slot queries. Thus, if we refer to the definition of sensitivity in
Eq. (1), Sen(F ) = |L|. If we add to each slot query Laplace noise
Lap( |L|

ϵ
), then ϵ-differential privacy is satisfied. Consequently, the

noise for a window will be the summation of the noises of its com-
posite slots.

In Figure 1, L = {S1, S2, S3} and we add independent Laplace
noise Lap( 3

ϵ
) to each slot query. Consider query Q3. Its first

window W 1
3 in Cycle 1 is a concatenation of slots S1

2 and S2
2 .

Hence, the query answer for W 1
3 is the summation of answers

to S1
2 and S2

2 . Accordingly, the added noise for the window is
Lap( 3

ϵ
) + Lap( 3

ϵ
).

2.3 Query Accuracy
Adding noise is necessary for privacy, but it reduces query ac-

curacy. Let act and approx be the actual and approximate (i.e.,
noisy) query answers for a sliding window W , respectively. As
in prior work [17, 9], we adopt variance Var(W ) = E[(act −
approx)2] to measure the accuracy of the query answer, where E
denotes mathematical expectation. Let Q[W,S] be a query, and let
CWQ = {W 1,W 2,W 3, . . . } be the set of windows of Q that fall

within the cycle window set CW . We define the error of Q with
respect to CW as

Err(Q, CW) =

∑
∀W i∈CWQ Var(W i)

|CWQ|
,

Due to the repetitive nature of cycles, the error of Q is independen-
t of any specific cycle, so we simplify the notation Err(Q, CW)
to Err(Q). Given a set of queries Γ, their workload error is
WorkloadErr(Γ) =

∑
Q∈Γ Err(Q). Our objective is to ensure pri-

vacy while minimizing workload error.

3. A SPECIAL CASE STUDY
In this section, we present a solution for a special case, where all

the steps satisfy a special relationship, namely the size of a bigger
step is a multiple of that of a smaller one. Formally, denote by
S1, S2, . . . , S|L| all the steps in L sorted in ascending order of
their sizes. The special relationship among steps is represented as
Si+1 = ℓi × Si, where i = 1, 2, . . . , |L| − 1, and ℓi is a positive
integer. The special case ensures that any sliding window with a
bigger step size can always be exactly expressed as a concatenation
of the slots of a smaller step.

Let Γ be the set of all the submitted sliding window count
queries. If we choose to answer each of them in a standard way,
then the sensitivity is |L|, where L is the set of all the steps in
Γ, and the added Laplace noise for each slot query is Lap( |L|

ϵ
).

Instead, we can sample Γ to select a set of representative queries
ΓR ⊂ Γ, and answer them only. Assume LR is the set of all the
steps in ΓR. Now, the added Laplace noise for any slot query of
a step in LR is Lap( |LR|

ϵ
). Clearly, the noise is reduced. Fur-

thermore, we can also see that the representative query set ΓR and
its corresponding set of steps LR is a one-to-one correspondence.
Once LR is calculated, ΓR is automatically determined. Therefore,
in the following we will investigate the sampling of steps.

S
5

1 S
5

4 S
5

3 S
5

2 

S
5 

S
6

1 S
6

2 

S
6 

S
7 

S
7

1 

Figure 3: A motivating example

EXAMPLE 1. Consider 3 queries Q5[W5, S5], Q6[W6, S6],
andQ7[W7, S7], with window (step) sizes of 15, 20, and 350 (5, 10,
and 350), respectively. As such, we have a cycle for them as shown
in Figure 3. If we choose to answer each of them, then the sensitiv-
ity is 3, and the variance for each slot query is 2 · E[(Lap( 3

ϵ
))2] =

18
ϵ2

. The first sliding window W 1
5 of Q5 is composed of three s-

lots S1
5 , S2

5 , and S3
5 , each having a variance of 18/ϵ2. Hence,

Var(W 1
5 ) = 3 × (18/ϵ2) = 54/ϵ2. Since the variance of each

sliding window of Q5 is the same, Err(Q5) = 54/ϵ2. Similarly,
we obtain Err(Q6) = 36/ϵ2 and Err(Q7) = 18/ϵ2. Alternatively,
suppose that we choose to answer only queries Q5 and Q7. Then,
the sensitivity is reduced to |LR| = |{S5, S7}| = 2, and the vari-
ance of any slot query for S5 and S7 is 2 · E[(Lap( 2

ϵ
))2] = 8

ϵ2
.

Accordingly, Err(Q5) = 24/ϵ2 and Err(Q7) = 8/ϵ2. Still, the
query answer for Q6 can be derived by slot queries of step S5. In
particular, the first sliding window of Q6 originally composed of
slots S1

6 and S2
6 is now derivable from S1

5 , S2
5 , S3

5 , and S4
5 . Thus,

Err(Q6) = 4 · 8
ϵ2

= 32
ϵ2

. Obviously, the query errors are smaller.
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Motivated by the above example, we present a strategy to an-
swer count queries in a differentially private way. It consists of two
phases: sampling and composition.

Sampling. We partition the step list S1, S2, . . . , S|L| into a
set of sub-lists LS = {sl1, sl2, . . . , slk}, such that sl1 =
{S1, S2, . . . , Sj1}, sl2 = {Sj1+1, Sj1+2, . . . , Sj2}, . . . , and
slk = {Sjk−1+1, Sjk−1+2, . . . , Sjk} (jk = |L|). From each sub-
list in LS , we sample its first step (i.e., the smallest one) and in-
sert it into LR. Thus, LR = {S1, Sj1+1, . . . , Sjk−1+1}. The slot
queries of all the steps in LR are answered by adding Laplace noise
Lap(|LR|/ϵ), where |LR| = k. However, for any of the remaining
steps (i.e., L \ LR), none of its slot queries is answered. Consid-
er Example 1. The three steps S5, S6, S7 are partitioned into two
sub-lists {S5, S6} and {S7}. Steps S5 in the first sub-list and S7 in
the second are chosen to be representatives, and their slot queries
are answered by adding Laplace noise Lap(2/ϵ).

Composition. Given any continuous query Q[W,S], no mat-
ter whether its step S is sampled into LR or not, we locate the
sub-list containing S. Without loss of generality, assume that
sl = {Si, Si+1, . . . , Sj} (i ≤ j) is the sub-list in LS contain-
ing S. Then, Si ∈ LR, and all the slot queries of Si are answered.
Since S is a multiple of Si, any windowW of queryQ can be com-
posed by the slots of Si. Continue Example 1. Step S6 of query
Q6 is not selected to be a representative. However, S6 falls in the
first sub-list {S5, S6}. Hence, we can use slots of S5 to compose
each window of Q6.

The first phase sampling partitions L into a set of sub-lists
LS = {sl1, sl2, . . . , slk}. Given sub-list sli (i = 1, 2, . . . , k),
let lqi be all the submitted queries with their steps falling in sli.
Then, LQ = {lq1, lq2, . . . , lqk} is a partition of the set of all the
submitted queries Γ. We can compute the workload error of Γ as
follows. Let sl = {Si, Si+1, . . . , Sj} be a sub-list in LS . Then,
Si ∈ LR. Suppose that lq ∈ LQ is the set of queries with their
steps falling in sl. For each query Q[W,S] ∈ lq, its sliding win-
dow is composed of exactly W/Si slots of the representative step
Si. So the error of Q is Err(Q) = 2(k/ϵ)2 × (W/Si), and the
error of all the queries in lq is

Errsl(i, j, k) =
∑

∀Q[W,S]∈lq ∧ S∈sl

Err(Q). (2)

Accordingly, the summation of the errors regarding all lq ∈ LQ (or
correspondingly sl ∈ LS) is the workload error of Γ.

We adopt dynamic programming to sample the steps, so that the
workload error is minimized. Let S1, S2, . . . , S|L| be the list of all
the steps in L sorted in the ascending order of their sizes. Suppose
that k = |LR| steps are to be sampled from them. Let S1, S2,
. . . , Sj be the prefix of j steps of L. Suppose that the prefix is to
be partitioned into n sub-lists. Then, the minimal error regarding
these n sub-lists is

g(j, n, k) = min
n≤i≤j

{g(i− 1, n− 1, k) + Errsl(i, j, k)}. (3)

On the right of Equation 3, steps Si, Si+1, . . . , Sj are assigned to a
sub-list, and step Si is picked as a representative, while a recursion
is applied on steps S1, S2, . . . , Si−1 to partition them into n− 1
sub-lists. The cutting position i is so decided, that the error is min-
imized. If n = 1, then g(j, n, k) = Errsl(1, j, k), that is, the whole
prefix forms a single sub-list.

Function SampleDP adopts memoization [21] (i.e., a dynamic
programming approach) to elaborate Equation 3. Lines 1-3 handle
the case, in which the prefix (i.e., S1, S2, . . . , Sj) forms a single
sub-list. In this case, the first step is selected (line 2). Point, a 3-D
array, stores the indices of the sampled steps. Lines 6-8 splits the

Function SampleDP(j, n, k)

if n == 1 then1
Point[j][n][k] = 1;2

Return Errsl(1, j, k);3

else4
for i = n to j do5

if Reuse(i− 1, n− 1, k) == false then6
V [i−1][n−1][k] = SampleDP(i−1, n−1, k);7

tmp = V [i− 1][n− 1][k] + Errsl(i, j, k);8
if tmp < V [j][n][k] then9

V [j][n][k] = tmp;10
Point[j][n][k] = i;11

Return V [j][n][k];12

prefix into two parts: {S1, S2, . . . , Si−1}, and {Si, Si+1, . . . , Sj}.
The latter part composes a sub-list (line 8), while a recursion is
applied on the former to split it into n − 1 sub-lists (lines 6-7).
Line 6 tries to reuse previous results to split the former part (see
Function Reuse below). V , another 3-D array with each element
initialized to∞, records the errors, that is, V [j][n][k] = g(j, n, k).
Lines 5-12 iteratively test each position i, and record the one that
minimizes the error.

For a given value of k, we call SampleDP(|L|, k, k) to partition
L into k sub-lists, and obtain a minimal workload error with respect
to this specific k value. The value of k varies from 1 to |L|; the one
minimizing workload error is chosen

WorkloadErr(Γ) =
|L|
min
k=1
{SampleDP(|L|, k, k)}. (4)

Suppose that k = α produces the minimum workload error.
Then, LR = {Sc1 , Sc2 , . . . , Scα}, where cα = Point[|L|][α][α],
cα−1 = Point[cα − 1][α − 1][α], . . . , c2 = Point[c3 − 1][2][α],
and c1 = Point[c2 − 1][1][α] = 1.

When calculating SampleDP(|L|, k, k), the number of all the
possible recursions is at most

∑|L|
j=1

∑k
n=1 1 = |L| · k. In each

recursion, j-n+1 tests are enumerated (lines 5-11). Hence, the time
complexity of SampleDP(|L|, k, k) is

∑|L|
j=1

∑k
n=1(j − n + 1).

Value k varies from 1 to |L| to minimize workload error. So the
time complexity of Equation 4 is

∑|L|
k=1

∑|L|
j=1

∑k
n=1(j − n+ 1),

upper bounded by O(|L|4).
According to Equation 4, Function SampleDP (j, n, k) needs to

be called |L| times, each for a different k. However, the theorem
below tells that for any two values n ≤ k1, k2 ≤ |L|, we can derive
the output of SampleDP (j, n, k2) by reusing that of SampleDP
(j, n, k1). That is, we need to call only one of these two functions.
Therefore, the efficiency of finding the minimal workload error can
be improved.

THEOREM 1. Let S1, S2, . . . , Sj be the prefix of j steps of L,
and n be the number of resultant sub-lists by a partitioning on the
prefix. Given any two positive integers n ≤ k1, k2 ≤ |L|, then
g(j,n,k1)
g(j,n,k2)

=
(

k1
k2

)2

.

PROOF. We prove the theorem by contradiction. Assume that
g(j,n,k1)
g(j,n,k2)

̸=
(

k1
k2

)2

. Let sl1, sl2, . . . , sln be the resultant sub-

lists created by g(j, n, k1), and min(sli) be the smallest step in
sli selected into LR, where i = 1, 2, . . . , n. Suppose that lqi =
{Q[W,S]|S ∈ sli} is the set of queries with their steps falling in
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sli. By Equation 2, the error of lqi is

2(k1/ϵ)
2 ·

∑
∀Q[W,S]∈lqi

(W/min(sli)).

Hence, the error for
∪n

i=1 lqi is

g(j, n, k1) = 2(k1/ϵ)
2 ·

n∑
i=1

 ∑
∀Q[W,S]∈lqi

(W/min(sli))

 .

Denote
∑n

i=1

∑
∀Q[W,S]∈lqi

(W/min(sli)) by X , then

g(j, n, k1) = 2(k1/ϵ)
2 ·X. (5)

Similarly, let sl1, sl2, . . . , sln be the resultant sub-lists created by
g(j, n, k2), step min(sli) be the smallest one in sub-list sli, and
lqi = {Q[W,S]|S ∈ sli}. Then, the error for

∪n
i=1 lqi is

g(j, n, k2) = 2(k2/ϵ)
2 ·

n∑
i=1

 ∑
∀Q[W,S]∈lqi

(W/min(sli))

 .

Query set
∪n

i=1 lqi is equal to
∪n

i=1 lqi, since both of them are
the set of queries with their steps in {S1, S2, . . . , Sj}. Denote∑n

i=1

∑
∀Q[W,S]∈lqi

(W/min(sli)) by Y , then

g(j, n, k2) = 2(k2/ϵ)
2 · Y. (6)

Since g(j,n,k1)
g(j,n,k2)

̸=
(

k1
k2

)2

, we have X ̸= Y (by Equations 5 and
6). Without loss of generality, suppose X > Y . As a consequence,
if g(j, n, k1) partitions S1, S2, . . . , Sj into sl1, sl2, . . . , sln, then
the error for

∪n
i=1 lqi is reduced to

(g(j, n, k1) = 2(k1/ϵ)
2 · Y ) < 2(k1/ϵ)

2 ·X, (7)

which contradicts Equation 3.

Function Reuse(i, j, k)

if V [i][j][k] ̸=∞ then1
Return true;2

for ℓ = j to k − 1 do3
if V [i][j][ℓ] ̸=∞ then4

V [i][j][k] = V [i][j][ℓ]×
(
k
ℓ

)2;5

Return true;6

Return false;7

Theorem 1 essentially says that the n resultant sub-lists are in-
dependent of any specific value of k. Based on it, we implement
Function Reuse. If g(i, j, k) does not exist, it checks if there is a
previous call of g(i, j, ℓ), where j ≤ ℓ < k (lines 3-4). If this is the
case, then g(i, j, k) is computed efficiently by reusing the output of
g(i, j, ℓ) (line 5).

4. THE GENERAL CASE FRAMEWORK
In this section, we will investigate the general case, in which a

step size can be an arbitrary positive integer. We preserve the two-
phase strategy structure used in the special case, namely sample a
set of representative steps, and then use them to answer all the slid-
ing window queries. For the general case, the set of representative
steps that we choose is ‘similar’ to the set of all the distinct steps.
The similarity is measured by Earth Mover’s Distance (EMD) [28].
We describe the sampling phase in Section 4.1 and the composition
phase in Section 4.2. In Section 4.3 we provide a unified view of
the entire query answering strategy.

4.1 The Step Sampling
Suppose that there are mi queries with step Si in Γ, i = 1, 2,

. . . , |L|. We define mi as the weight of the step, and define the
weighted step distribution in Γ by

P = (p1, p2, . . . , p|L|) =

(
m1∑|L|

i=1 mi

, m2∑|L|
i=1 mi

, . . . ,
m|L|∑|L|
i=1 mi

)
,

where pi = mi∑|L|
i=1 mi

is the normalized distribution of step Si in

Γ. If we decide that step Si be sampled into LR, then the mi

queries with this step size are put into ΓR. Assume that the sampled
steps are Si1 , Si2 , . . . , Sik . Then, we obtain another weighted step
distribution

Q = (. . . , qi1 , . . . , qi2 , . . . , qik , . . . )

=
(
. . . ,

mi1∑k
ℓ=1

miℓ

, . . . ,
mi2∑k

ℓ=1
miℓ

, . . . ,
mik∑k

ℓ=1
miℓ

, . . .

)
,

where qiℓ (ℓ = 1, 2, . . . , k) is the normalized distribution of step
Siℓ in ΓR and qi = 0 for any i /∈ {i1, i2, . . . , ik} . In Figure 1 we
have 2 queries with step S1, 1 query with step S2, and 1 with step
S3. Thus, we have the weighted step distribution P =

(
2
4
, 1
4
, 1
4

)
.

In the sampling, if we select steps S1 and S3, thenQ =
(
2
3
, 0, 1

3

)
.

We need a distance function to measure the difference between
P and Q to guide our sampling procedure. Here, we adopt Earth
Mover’s Distance (EMD) [28], which considers the semantic rela-
tionship among steps (see below). Please refer to [24] for a detailed
discussion about the advantages of EMD over other distance met-
rics (e.g., KL-divergence).

4.1.1 Earth Mover’s Distance
The Earth Mover’s Distance (EMD) is suggested as a metric

for quantifying the difference between distributions. Intuitively, it
views one distribution as a mass of earth piles spread over a space,
and the other as a collection of holes, in which the mass fits, over
the same space. The EMD between the two is defined as the mini-
mum work needed to fill the holes with earth, thereby transforming
one distribution to the other.

Let P = (p1, p2, . . . , p|L|) be the distribution of “holes”, Q =
(q1, q2, . . . , q|L|) that of “earth”, dij the ground distance of qi from
pj , and F = [fij ], fij ≥ 0 a flow of mass of earth moved from
element qi to pj , 1 ≤ i, j ≤ |L|. The EMD is the minimum value
of the work required to transformQ to P by F :

WORK(P,Q, F ) =
∑|L|

i=1

∑|L|
j=1 dij × fij

Let S1, S2, . . . , S|L| be the set of the steps of all the queries.
Without loss of generality, we assume that the steps are sorted in
the ascending order of their lengths, i.e., Sj > Si when j > i. We
define the ground distance between step pair Si and Sj , 1 ≤ i <
j ≤ |L|, as follows:

dij =
Sj − Si

S|L| − S1
(8)

Based on the defined ground distance above, the minimal work
for transforming Q to P can be calculated by sequentially satis-
fying the earth needs of each hole element, moving earth from/to
its immediate neighbor pile. Thus, the EMD between P and Q is
defined as:

EMD(P,Q) =
|L|−1∑
i=1

Si+1 − Si

S|L| − S1
·

∣∣∣∣∣
i∑

j=1

(qj − pj)

∣∣∣∣∣ (9)
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EXAMPLE 2. Suppose that the three steps S1, S2, and S3 in
Figure 1 have the lengths 3, 4, and 6, respectively. Then, the ground
distance d12 between S1 and S2 is 4−3

6−3
= 1

3
, d23 = 2

3
, and d13 =

1. P = (p1, p2, p3) =
(
2
4
, 1
4
, 1
4

)
. Assume that LR = {S1, S3}.

Then, ΓR = {Q1, Q2, Q4}, and Q = (q1, q2, q3) =
(
2
3
, 0, 1

3

)
.

The EMD between P and Q is calculated as follows. Let P be the
set of holes, andQ be the piles of earth. We fill hole p1 by earth q1
(cost is 0, since d11 = 0). The extra earth q1− p1 = 2/3− 2/4 =
1/6 is moved to pile q2 with a cost of d12 · |q1 − p1| = 1

18
. Earth

pile q2 is now with earth 1/6, and it needs to acquire an amount of
earth |(q1 + q2)− (p1 + p2)| = 3/4− 2/3 = 1/12 from q3 with
a cost of d23 · |(q1 + q2)− (p1 + p2)| = 1

18
. After that, q2 fills p2

(cost is 0), and q3 fills p3 (cost is 0). Therefore, EMD(P,Q) =
d12 · |q1 − p1| + d23 · |(q1 + q2) − (p1 + p2)| = 1

9
. In a similar

way, we can find EMD(P,Q′) = 2
9

.

4.1.2 The Algorithm

Function SampleEMD(Γ, δ)

Store all the steps of Γ into L;1
Sort the steps of L in ascending order of length;2
Let P be the weighted step distribution in Γ;3
Let C be a sorted list, initialize to {0, |L|};4
ΓR = Select(Γ,L, C);5
LetQ be the weighted step distribution in ΓR;6
while EMD(P,Q) > δ do7

Update(ΓR,L,P, C);8
Re-computeQ according to ΓR;9

Return ΓR;10

Function SampleEMD takes as input all the submitted queries
Γ and a distance threshold δ, and outputs a set of representative
queries, whose weighted step distribution differs from that in Γ by
at most δ. The set of steps in Γ is stored in L = {S1, S2, . . . , S|L|}
in ascending order of length (lines 1-2). Function Select chooses
representative queries from Γ into ΓR. In particular, list C stores
a set of sorted cutting positions. For any two consecutive positions
i1 and i2 (i1 < i2) of C, all steps Sj with i1 < j ≤ i2 are pushed
into one group. A step is picked from each group. Among all
the steps in the group, the one with the maximum weight (i.e., the
number of queries with this step size) is chosen. If there is a tie,
we pick the one with the maximum length. Once a step is picked,
all the queries in Γ with this step are pushed into ΓR. Lines 4-5
initialize ΓR by taking all the steps in L as a single group. Then,
SampleEMD iteratively cuts L into smaller groups, and updates
ΓR correspondingly (lines 7-9). In each round, Function Update
chooses a new cutting position, which splits an existing group into
two (line 8). Based on the new set of groups, ΓR is updated, and
Q is re-computed (line 9). The iteration terminates when the EMD
between the distribution in Γ and that in ΓR is at most δ (line 7).

Procedure Update tests on all the possible cutting positions
(lines 2-9), and finds the one (line 10), which minimizes the EMD
between P and Q. Lines 3-4 ignore all the positions that have al-
ready been chosen for the group partitioning in L. Consider each
valid cutting position i (1 ≤ i ≤ |L|). If it is added to C (i.e.,
C ∪ {i}), then L would be partitioned into a new set of group-
s, and Function Select would determine another set of representa-
tive queries (line 5). The EMD between P and the weighted step
distribution for the representatives is calculated (line 7). For each
possible position i, the one that allows minimum EMD is recorded
(lines 7-9). Finally, line 10 inserts this position into C, and ΓR is
recalculated correspondingly (line 11).

Procedure Update(ΓR, L, P , C)

dmin =∞;1
for i← 1 to |L| − 1 do2

if i ∈ C then3
Continue;4

Γi = Select(Γ,L, C ∪ {i});5

LetQi be the weighted step distribution in Γi;6

if dmin > EMD(P,Qi) then7
dmin = EMD(P,Qi);8
pos = i;9

Insert pos into C;10
ΓR = Select(Γ,L, C);11

The time complexity of Function SampleEMD is dominated by
the loop (lines 7-9). Since there are all together |L| − 1 cutting
positions, the loop runs at most |L| − 1 times. If all the cutting
positions are chosen into C, then the representative queries will
be exactly the same as the submitted queries and the EMD will be
0. This also indicates that SampleEMD will finally terminates. In
each round of the loop, Procedure Update is called and a new cut-
ting position is found. Hence, in the i-th round, Update only needs
to test |L| − i positions that have not been selected. When test-
ing one of these available positions, Functions Select and EMD are
called (both of them have a time complexity linear in |L|). There-
fore, the time complexity of SampleEMD is upper bounded by∑|L|−1

i=1

∑|L|−i
ℓ=1 |L|, that is, O(|L|3).

EXAMPLE 3. Once again we examine the query processing sys-
tem in Figure 1. As in Example 2, we assume that the three step-
s S1, S2, and S3 are of lengths 3, 4, and 6, respectively. Then,
P =

(
2
4
, 1
4
, 1
4

)
, and L = {S1, S2, S3} (lines 1-3, Function

SampleEMD). Let δ = 0.2. Without any cutting of L, we will
select S1 (S1’s weight is biggest; lines 4-5). Thus, Q = (1, 0, 0),
and EMD(P,Q) = 1/3. Since 1/3 > δ, we need to partition
L by calling Procedure Update. Possible cutting position i = 1
partitions L into two groups G1 = {S1} and G2 = {S2, S3}. The
selected step from G1 is S1, and that from G2 is S3 (S3 has a longer
length). Hence, Q1 =

(
2
3
, 0, 1

3

)
. If we choose the cutting position

to be at i = 2, then coincidentally, Q2 = Q1. The EMD between
P and Q1 (or Q2) is 1/9. Therefore, pos = 1 is chosen to be
the cutting position (line 10, Procedure Update). After the cutting,
the EMD between P and Q is smaller than δ. Therefore, queries
with steps S1 and S3 are selected as representatives. Furthermore,
if δ < 1/9, then Procedure Update should be called again, and
pos = 2 will be chosen, indicating that G2 needs to be further s-
plit into {S2} and {S3}. Consequently, all the queries would be
selected as representatives.

4.2 The Query Composition
In Section 4.1 we have determined the set of representative

queries ΓR, and thus also LR the set of steps in ΓR. In the fol-
lowing, given any window W , no matter whether it belongs to a
representative query in ΓR or not, we will adopt a dynamic pro-
gramming procedure to compute a set of slots, which belong to
representative steps, to compose W . We start from the calculation
of cumulative noise for W from its composite slots1:

f(W.b,W.e) = min{Noise(S) + f(S.e+ 1,W.e)|
S ∈ LR ∧ S.b =W.b} (10)

1We will use a step to represent any of its slots.
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Any slot S ∈ LR, whose begin time is equal to that of window
W (i.e., S.b = W.b), is a possible candidate to partially cover (or
compose) W . After that, the remaining part of W , not yet cov-
ered, is a time interval [S.e + 1,W.e], whose covering (or com-
position) becomes an independent sub-problem and thus can be
done recursively. If S is adopted, a certain noise quantified by
Noise(S) = Lap( |LR|

ϵ
) needs to be accumulated. In sum, the total

noise is Noise(S) + f(S.e,W.e). We iterate all possible solutions,
and the one with the minimal cumulative noise is chosen.

Function Compose(B, E)

if B == E then1
Vf [B] = 0;2
Return Vf [B];3

foreach slot S ∈ LR with S.b == B do4
if Vf [S.e+ 1] ==∞ then5

Vf [S.e+ 1] = Compose(S.e+ 1, E);6
tmp = Noise(S) + Vf [S.e+ 1];7
if tmp < Vf [B] then8

Vf [B] = tmp;9
Cover[B] = S;10

Return Vf [B];11

Function Compose employs memoization [21] to find the min-
imal cumulative noise for a window W . We use an array Vf to
record noises. In particular, Vf [W.b] is to record the minimal cu-
mulative noise for a window (or a time span), starting at W.b and
ending at W.e, similarly, element Vf [W.b+ 1] will store the mini-
mum noise for a time span [W.b + 1,W.e], and so on. Before the
algorithm is called, we initialize each element in the array to be∞.
The algorithm’s input parameters B and E represent the start and
end times of a window, respectively, and they will be set to W.b
and W.e when it is called. Given a window with size equal to 0, no
noise will be added (lines 1-3). Line 4 selects a slot S that starts
at B. Partially covering window W by S incurs noise Noise(S).
Function Compose is recursively called to calculate the minimum
noise for W ’s non-covered part, which starts at S.e + 1 and end-
s at E (lines 5-7). In addition, we memorize the solution for this
sub-problem by line 6 for a later reuse. If slot S is selected to com-
pose W , then the total noise will be a summation of Noise(S) and
the noise of the sub-problem (line 7). If the summation demands a
smaller noise than the current solution (line 8), then it is recorded
(line 9), and the corresponding slot S is buffered (line 10). After
all the possible slots with begin time equal to B are tested, we ob-
tain the optimal solution (lines 4-10). Finally, line 11 returns the
minimal noise.

Function Compose also buffers in array Cover the group of s-
lots, which composes the window W . In particular, they are st1 =
Cover[W.b], st2 = Cover[st1.e + 1], st3 = Cover[st2.e + 1],
. . . , and stk = Cover[stk−1.e+ 1], where stk.e =W.e.

The time complexity of Function Compose is O(n ·W ), where
W is the window size and n is the number of slots falling inW . Its
analysis is similar to that of knapsack problem [21].

4.3 The Complete Strategy
We summarize our framework by combining Section 4.1 and

Section 4.2. Because of the step sampling, the slot queries of the
non-representative steps are not answered. Still, for any sliding
window W of a continuous query Q, no matter whether its step
is selected as a representative or not, we need to find a group of
slots to compose W . To make sure such a composition is always
possible, we split some slots by injection.

DEFINITION 6 (SLOT INJECTION). Let S1 and S2 be two
distinct steps. Let Si

1 and Sj
2 be any pair of slots, belonging

to S1 and S2, respectively, such that Sj
2.e ∈ (Si

1.b, S
i
1.e). We

say that the slots of S2 are injected into those of S1, if we split
Si
1 into Si,1

1 and Si,2
1 , so that [Si,1

1 .b, Si,1
1 .e] = [Si

1.b, S
j
2.e] and

[Si,2
1 .b, Si,2

1 .e] = [Sj
2.e+ 1, Si

1.e].

Consider the query processing system in Figure 1. Let LR =
{S1, S3} be the set of representative steps. Suppose that the slots
of non-representative step S2 are injected into those of S1 (Figure
4), such that S2,1

1 .e = S1
2 .e, S

2,2
1 .b = S2

2 .b, S
3,1
1 .e = S2

2 .e, and
S3,2
1 .b = S3

2 .b. Now window W 1
3 , originally composed of slots S1

2

and S2
2 , can be derived by slots S1

3 and S3,1
1 . Note that after the

slot injection, some slots of a step are split, thus they do not have
the same size as the step. Still, we will say that they are the slots of
the step.

Algorithm: QueryPlan(Γ)

Initialize Covers be to an empty set;1

Set minwl =∞;2
for δ = 0; δ < 1; δ = δ + incr do3

ΓR = SampleEMD(Γ, δ);4
Let L (LR) be all the steps in Γ (ΓR);5
Find the shortest step SS in LR;6
Inject(SS,L \ LR);7
Calculate C1, the first cycle of Γ;8
CW = CycleWindow(C1);9
Set tmpc to be empty;10
foreach window W ∈ CW do11

Compose(W.b,W.e);12
Buffer in tmpc the slots composing W ;13

Let tmpwl be the workload error of Γ in this round;14

if minwl > tmpwl then15
minwl = tmpwl;16
Covers = tmpc;17

Algorithm QueryPlan combines Functions SampleEMD and
Compose together to calculate the composite slots for each slid-
ing window in a cycle. Given the set of submitted queries Γ and
an EMD threshold δ, it first calls Function SampleEMD to deter-
mine the set of representative steps and the queries containing them
(line 4 ). Line 6 finds the shortest representative step SS. Line 7
performs slot injection, so that all the slots, which belong to non-
representative steps (i.e., L \ LR), are injected into those of SS.
Line 7 is to ensure that we can always find a group of slots to ex-
actly compose each window that belongs to a non-representative
query. Lines 8-9 compute the cycle windows for the first cycle C1

in the stream. We find the composite slots for each window in C1

(lines 11-13), and calculate the workload error of the queries (line
14).

The value of δ decides the set of representative steps, and ac-
cordingly determines the workload error for the queries. Therefore,
we enumerate δ from 0 to 1, each time increasing it by incr (lines
3-17). In the experiments, we set incr = 0.1. The minimum work-
load error is stored in minwl (lines 2, 14-16). The composite slots
for the sliding windows are stored in Covers (lines 1, 17).

EXAMPLE 4. Figure 1 is a query processing system with
queries Γ = {Q1, Q2, Q3, Q4} and steps L = {S1, S2, S3}.
Consider the iteration when δ = 0.2. According to Example 3,
the sampling procedure returns LR = {S1, S3}. Hence, ΓR =
{Q1, Q2, Q4}. We inject the slots of S2 (not appearing in LR) into
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a dynamic programming procedure to compute a set of slots,

. We start

from its

(4)

, whose start time is equal to that of window

S1

S3

Cycle 1 Cycle 2

W3
1

W3
2

W3
3

S1
1 S1

4S1
2,2

S1
2,1 S1

3,2

S1
3,1 S1

5 S1
6,2

S1
6,1

S3
1 S3

2 S3
3

Figure 4: An example of window composition

those of S1 (S1 has the minimum length inLR) as illustrated in Fig-
ure 4. The cycle windows of Cycle 1 contain all the windows whose
start times fall in the interval of Cycle 1. We need to calculate
the composite slots for each window in Cycle 1. In particular, we
show the calculation for those of query Q3 (the processing of slid-
ing windows for other queries is similar and omitted). The optimal
solution with the minimum noise says that windowW 1

3 is composed
by {S1

3 , S3,1
1 } with the error 2×(2/ϵ)2, windowW 2

3 by {S2,2
1 , S2

3}
with the error 2×(2/ϵ)2, andW 3

3 by {S3,2
1 , S4

1 , S
5
1 , S

6,1
1 } with the

error 4× (2/ϵ)2.

5. PERFORMANCE EVALUATION
In this section we evaluate our schemes. Our prototypes were

implemented by Python, and the experiments ran on an Intel Core
Quad 2.83 GHz CPU with 4GB RAM running Windows 7. We de-
note our solution for the special case (Section 3) by DP, since it
adopts dynamic programming to sample representative steps. We
use EMD to represent our solution for the general case (Section 4),
because it chooses Earth Mover’s Distance [28] to obtain the set of
representative steps. In addition, we also implemented two bench-
marks, Base and Binary. Base is a naive scheme, which answers
the slot queries of all the steps.

Binary is an adaptation of the approach in [8] to handle sliding
window queries2. It splits the data stream into segments of T tu-
ples each, where T is a threshold. A binary tree structure is then
built over the tuples in each segment. A leaf node in the tree rep-
resents a sequence of binary values. In the experiments, we set the
sequence length (i.e., the leaf size) to 10, which is equal to the min-
imum step size. The number of 1’s in the sequence is recorded in
the leaf node. A non-leaf node counts the number of 1’s in all the
leaves under the subtree rooted at itself. Obviously, the sensitivity
of such a structure is proportional to the tree depth ⌈log(T/10)⌉,
and Laplace noise Lap( ⌈log(T/10)⌉+1

ϵ
) is added to the count of each

node. Given any sliding window, we compose its answer by select-
ing a minimum number of nodes from the binary trees. By default,
we set T to the size of the largest sliding window among all the
queries.

We created three data streams. (a) uniform– this is a synthetic
stream with 5,000,000 values (0’s or 1’s) generated from a uniform
(Bernoulli) distribution. (b) adult– it contains 32,561 values de-
rived from the raw dataset [1] as follows: a tuple in the raw dataset
is mapped to 0 if its salary value ≤ 50K, and 1 otherwise. (c)
census– it has 500,000 numbers created from another raw dataset
[2] by mapping raw tuples with the salary value ≥ 25k to 1’s, and
all the others to 0’s. Unless otherwise stated, the default stream
used is census. To measure the accuracy of the query answers,
we employ three utility metrics. The first is the workload error

2Similar approach is proposed in [7] to study private sums on de-
cayed streams.

as defined in Section 2. The other two metrics are absolute er-
ror = |approx − act| and relative error = |approx − act|/act,
where approx and act are the released approximate count value
and the actual count value for a query, respectively. Furthermore,
since Laplace noises are random, we repeat each experiment 10
times, and report the average results.

5.1 Special Queries
In this section, we study queries for the special case, where the

size of a bigger step is a multiple of that of a smaller one. EMD,
our general method, can process queries with any step sizes. Thus,
the experiments also include it. We first create a sequence of 10
steps 20, 40, 80,. . . , 10240, such that for any two consecutive steps
in the sequence the bigger one is twice the size of the smaller one.
Then, for each query Q[W,S], its step size S is selected randomly
from the set {20, 40, 80, . . . , 10240} (i.e., steps in the sequence),
and its window size W is set to j×S, where j is randomly chosen
from [1, 10]. In this way, we generate 100 queries.

We first investigate the effect of ϵ on the workload errors of the
four involved schemes. From Figure 5 (a), we observe that all
schemes behave in a similar way – the workload error deceases as ϵ
increases. This means as ϵ increases, a lower magnitude of Laplace
noise would be added into answers; it also means that lower degree
of privacy would be guaranteed. This validates the fact that the low-
er the degree of privacy guaranteed, the lower the error incurred.
From the results, it is also clear that our proposed approaches, D-
P and EMD, perform almost equally effective while consistently
incurring lower errors than Base and Binary at the same level of
privacy guarantee. This is expected as both Base and Binary have
much bigger sensitivity.

Figure 5 (b) compares the four methods as we fix ϵ = 1.0 and
vary window size. The window size of a query Q[W,S] is equal to
j × S, where j is an integer falling in [1, 10]. We vary the window
size by increasing it toNW ×j×S, whereNW ranges from 1 to 5.
The results show that the workload error for all schemes increases
as a function of NW . This is because as window size becomes
larger, more slots are needed to compose the window and hence
more noises are added.

Next, we examine the effect of step size on workload error. A-
gain, we set ϵ to be 1.0. For each query Q[W,S], we increase its
step size to NS × S, where NS is from 1 to 5. Figure 5 (c) re-
ports the results. As step sizes increase by varyingNS , the Laplace
noises added to the slot queries of the steps stay the same. Thus,
the error of each sliding window, which is composed of slots, does
not change either. Consequently, the workload errors of the three
schemes, i.e., DP, EMD, and Base, are independent of NS . How-
ever, as step size increases, the segment size T (equal to the size of
the biggest sliding window) of the Binary approach also increases.
Hence, the sensitivity ⌈log(T/10)⌉+1 for Binary becomes larger.
Therefore, in general its workload error increases as a function of
NS .
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(a) varying ϵ (b) varying window size (c) varying step size

Figure 5: Workload error (special case)

(a) varying ϵ (b) varying window size (c) varying step size

Figure 6: Average absolute error (special case)

Our next experiment examines absolute error. Figure 6 is the re-
sults as we vary ϵ, window size, and step size. Workload error is
a measure of variance. The square root of the variance (i.e., the
standard deviation) is an upper bound on the expected absolute er-
ror. Therefore, the curves of the average absolute errors of the four
schemes (Figure 6) are very similar to those about the workload
errors (Figure 5).

We now evaluate the elapsed time. It consists of two parts: a)
query planning time, i.e., the time for DP and EMD to plan how
to answer queries (Sections 3 and 4), and b) query running time,
i.e., the time of running the planned queries on streaming data. Let
us first consider the query planning time. DP performs very effi-
ciently. In all the cases, it takes less than 0.1 seconds. By contrast,
EMD is less efficient; it spends around 18 seconds. However, it
is still acceptable, since query planning can be done offline before
queries start to run on the data streams. Now we report the running
time. Figure 7 is the results of the four schemes. All the schemes
are efficient. In particular, DP and EMD are equally efficient as
Base. In all the cases, it takes DP and EMD less than 1 second to
complete the processing. Binary has better performance, since each
sliding window generally can be constructed by only a few nodes
in the binary trees.

5.2 General Queries
In general case, there is no restriction on the step size. We ran-

domly select 10 steps from [10, 100]. Based on them, we also cre-
ate 100 queries just like the experiments for the special queries.
Since scheme DP is not applicable in the general case, we will on-
ly report the results of the other three methods.

As discussed in Section 2, the cycle length of a query process-
ing system is the Least Common Multiple of the set of all the

steps in the system. In general case, a step size can be an ar-
bitrary positive integer, and the number of distinct steps can be
big. Under such circumstances, the cycle length may be extreme-
ly big (can up to billions easily). In real-world applications each
sliding window query is usually attached with an expiration time,
which says how long the query can run before it expires. Let ET
be the smallest expiration time among all the submitted queries,
and LCM be the cycle length for the steps of the queries. We set
MEL = min{ET,LCM}. We process only queries that end be-
fore MEL. Queries beyond MEL would not be processed, since
they must be expired then. In the following, we setET to be 5, 000
by default.

Figure 8 and Figure 9 show the performance of the three schemes
regarding workload error and absolute error, respectively. The
trends of the curves in the two figures are similar to those in Fig-
ure 5 and Figure 6 for special queries. Once again, EMD clearly
outperforms the two benchmarks, that is, Base and Binary.

In order to further evaluate the performance of our approaches,
we also examine the relative error. The experimental results of rel-
ative error for special queries are close to those for general queries.
Due to space limitations, we only report the latter. We adopt three
streams, that is, uniform, adult, and census, in the experiments.
Figure 10 is the results when we vary ϵ. When ϵ is larger, the pri-
vacy restriction becomes looser. So a lower magnitude of Laplace
noise is added to the query answer, and the relative errors of all the
schemes decrease.

Figure 11 investigates the effect of window size on the per-
formance. Relative error is equal to |approx − act|/act, where
approx and act are the approximate answer and actual answer for
a query, respectively. For the simplicity of discussion, consider u-
niform stream (Figure 11 (a)), in which the numbers of 0’s and 1’s
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(a) varying ϵ (b) varying window size (c) varying step size

Figure 7: Query running time (special case)

(a) varying ϵ (b) varying window size (b) varying step size

Figure 8: Workload error (general case)

(a) varying ϵ (b) varying window size (b) varying step size

Figure 9: Average absolute error (general case)

(a) uniform (b) adult (c) census

Figure 10: Relative error by varying ϵ
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(a) uniform (b) adult (c) census

Figure 11: Relative error by varying window size

(a) uniform (b) adult (c) census

Figure 12: Relative error by varying step size

in a window are roughly the same. As the window size increases
by varyingNW from 1 to 5, the value of act (i.e., the number of 1’s
in a window) can be NW times as big as before. At the same time,
the number of slots to compose a window could also be NW times
as many as before. However, Laplace noise has a mean of 0; each
independently generated noise can be equally likely to be positive
and negative. Consequently, the noises (each for a slot compos-
ing the window) added to the window can partly cancel each other.
Therefore, the numerator |approx − act| (i.e., the summation of
the noises) increases slower than the denominator act. According-
ly, when window size increases as a function of NW , the relative
error decreases. In Figure 12, relative error also decreases as step
size becomes bigger. As the step size increases by varying NS

from 1 to 5, the window size also increases. Thus, act increases.
However, the increase of step size does not change the number of
slots to compose a window. So the noises (each for a slot) added
to the window are almost the same (some variance can be incurred
by the randomness of Laplace noise). Therefore, the relative error
decreases as a function of NS .

6. RELATED WORK
Privacy-preserving data release has been a very important re-

search area for the past decade. A number of syntactic privacy
models have been proposed, such as k-anonymity [29], ℓ-diversity
[25] and t-closeness [24]. However, these models have been shown
to be vulnerable to attacks, and a new direction of semantic pri-
vacy has been pursued, culminating in the concept of differential
privacy [12]. Differential privacy limits the disclosure risk due to
the participation of an individual in a database, by adding random
noise to all queries answered on the data. In recent years, numerous
techniques [6, 19, 26, 20, 32, 22, 17, 31] have been proposed to im-

prove the accuracy of differentially private queries under a variety
of data sharing models and application scenarios. Related semantic
models have also been investigated which focus on the increased
risk to one’s privacy due to participation in datasets [10, 15].

Differential privacy has a wide range of applications. In partic-
ular, Korolova et al. [20] develop an algorithm to privately publish
queries and clicks for search logs. McSherry and Mironov [26] de-
compose popular recommendation algorithms in Netflix Prize com-
petition into two phases: a learning phase guided by differential pri-
vacy, followed by a recommendation phase to provide personalized
recommendation. These adaptive approaches yield accuracy com-
parable to their non-privacy-preserving counterparts. Xiao et al.
[32] apply wavelet transforms on frequency matrix before adding
noise. The resultant matrix can answer range-count queries with
a higher accuracy than previous methods. Inan et al. [18] signif-
icantly improve the efficiency of private record matching [3] by a
hybrid approach, which combines differential privacy with secure
multi-party computation (SMC). Other applications of differential
privacy include but not limited to releasing contingency tables [4],
frequent pattern mining [5], computation of private coresets [16].

Recently, Li and Miklau [23] proposed a technique to answer a
batch of queries. They first define a set of strategy queries, and then
derive the answer for each query in the batch based on the strategy
query results. However, their proposed algorithm and theoretical
analysis are highly dependent on L2 sensitivity for approximate
differential privacy [26]. Whether the results are extendable to L1

sensitivity is not clear. In addition, the technique is proposed for
static settings. How to extend it to the context of data streams is
unclear.

Closer to our work, differential privacy has been studied in the
context of data streams [11, 13, 8, 14], where aggregate statistics
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are continuously released as new data arrive. These approaches
consider the model of a single-query on a binary stream, and re-
lease differentially private aggregate results about the number of
1’s seen thus far in the stream. However, in practice users typically
submit a large number of queries, and are only interested in a par-
ticular time window of the data, rather than the entire unbounded
stream. Therefore, such techniques are insufficient in real-world
applications. In contrast, we focus on how to release differentially
private answers for a set of sliding window queries.

Rastogi and Nath [27] consider a recurring aggregate query on
time-series data (e.g., a dataset which records the weights of par-
ticipants in each month for a whole year). A recurring query can
be seen as a sequence of n queries Q1, Q2, . . . , Qn. (e.g., the 12
queries, each counting the number of participants with a weight
larger than 100 KG in a distinct month). To improve the accura-
cy, they adopt Discrete Fourier Transform (DFT), and reduce the n
queries to k (k < n) Fourier coefficients, which can approximate-
ly reconstruct the n query answers. However, such an approach
requires that the whole time-series dataset is available before the
DFT is enforced. Consequently, it cannot be directly applied to
usually unbounded data streams. Shi et al. [30] have also studied
differential privacy on time-series data. They assume an untrusted
aggregator, which sums the values periodically uploaded by a set of
distributed users. To ensure the privacy of the users, the values are
added noises before uploaded to the aggregator. Such an assump-
tion is different from our scenario, in which the stream engine is
trusted.

7. CONCLUSION AND FUTURE WORK
This paper proposed two solutions to release differentially pri-

vate answers for a set of sliding window count queries. The first
solution considers a special case, in which the size of a bigger step
is always a multiple of that of a smaller one. The second one ex-
tends the research to the general case, in which the size of any step
can be an arbitrary positive integer. The experimental evaluation
demonstrated that our solutions are effective and efficient.

We have examined a data stream containing a single attribute.
Still, a stream can have multiple ones. Hence, an interesting di-
rection for the future work is to develop a scheme to release dif-
ferentially private aggregate statistics of data streams with multi-
ple attributes. An adversary may be able to observe the internal
states of the solutions (i.e., algorithms to realize differential pri-
vacy). Therefore, another possible future work is to extend our
solutions to achieve pan-privacy [14], which ensures differential
privacy even if an adversary can observe the internal states of the
solutions. In the experiments for both special and general cases, we
tested 100 queries. It is also interesting to test the scalability of our
solutions with respect to larger sets of queries.
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