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ABSTRACT
Enabling data sharing among mobile apps hosted in the same cloud
infrastructure can provide a competitive advantage to the mobile
apps by giving them access to rich information as well as increasing
the revenue for the cloud provider. We introduce a costing tool that
allows application owners (i.e., consumers) and the cloud service
provider to assess the cost of a desired data sharing. The costing
tool enables the consumers to effectively explore the cost space by
choosing between alternative configurations of varying data quali-
ties, specified by the staleness and the accuracy of the data sharing.
In other words, staleness and accuracy requirements on the data
sharing are used as levers for controlling costs. These capabilities
are implemented in a What-if analysis tool, which has been inte-
grated with a large data-sharing platform. We conducted extensive
experiments on the integrated platform with a sharing ecosystem
created around Twitter data and show the effectiveness of the results
produced by the What-if tool.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services—Data Sharing

General Terms
Algorithms

Keywords
Data Sharing, Mobile Cloud, SLA, Staleness, Accuracy, Pricing,
Negotiation, Budget, Materialized Views, Pareto-optimal

1. INTRODUCTION
The cloud is hosting an ever increasing number of web and mobile

applications in the same infrastructure. There is an incentive for
apps to share information with one another as reliable access to
rich information can spur new features. This can result in a much
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richer experience for their users as well as increased revenue for the
cloud operator [22]. Sharing among apps can be enabled through
data markets in the cloud. Such data markets already exist and are
emerging [1, 2, 4].

As a motivating example, consider the Tesco store mobile app [3].
Tesco displays pictures and barcodes of its grocery products at sub-
way stations. While the users are waiting for the metro, they can
shop for groceries by simply scanning the barcodes using their mo-
bile phones, and the purchases are delivered to their homes in a few
hours. Tesco could benefit from data sharing in the cloud if it obtains
access to the user’s restaurant checkin information. The checkin
information could either be a publicly available data set hosted by
the cloud provider or possibly be created by another application
such as Foursquare. The Tesco app could then recommend items to
purchase based on the users’ favorite cuisine types, which can be
deduced by analyzing the checkin information.

We focus on the costing process for a consumer (e.g., Tesco app
developer) who is interested in new data sets (e.g., checkin data)
available through the sharing service offered by the provider. In
our setup there are several base relations available for sharing. The
consumer is interested in creating a new sharing, which he specifies
as a transformation on the base relations. Although there are many
ways of enabling sharing in the cloud [22], including API [1, 4],
web service [2], and direct SQL access [26], a sharing in this work
is enabled by the creation of a materialized view, which is defined
by a set of transformations over the base relations. A discussion
of the pros-and-cons of each of these methods is given in [22].
Note that it is not the goal of this paper to make a case for the
importance, feasibility, or the value of data sharing in the cloud as
well as its privacy, infrastructure, and economic implications as they
are discussed elsewhere [8, 12, 22].

As the base relations are being constantly updated, the cloud
provider is responsible for setting up the sharing and maintaining
it. The consultation between the consumer and the provider starts
as soon as the consumer has identified the base relations and the
transformation he is interested in and wants to cost the sharing
before committing to it.

The main goal in the paper is to present our “What-if” cost ex-
ploration tool that is designed to aid the consumer’s cost assess-
ment. The tool is an integral part of a large data-sharing platform,
SMILE [22], that aims at providing a seamless, SLA-driven data
sharing platform primarily for mobile apps. The What-if tool acts
as a stand-in for the provider by answering the hypothetical sharing
related questions from the consumers. The What-if estimation tool
is fast enough in the sense that it allows for interactive querying
by multiple consumers at the same time, and the cost estimates
produced by it are close to real costs.

The consumer is concerned about the cost of the sharing and so



we provide two levers for controlling the cost. First, the consumer
can tolerate data that is not fresh up to a certain extent. For example,
the Tesco app can stipulate that once a user checks into a restaurant,
the information can be delayed by say, 60 seconds before it is
delivered to it. This is referred to as the acceptable staleness of the
sharing. Next, the consumer can tolerate some amount of missing
data. For example, the Tesco app can specify that only 90% of the
new checkin information needs to be delivered, as long as it reduces
the cost. We refer to this as the acceptable accuracy of the sharing.
In this work, we use staleness and accuracy to control the cost for
the consumer.

The consumer wants to know from the provider how much it
would cost for a sharing with some specified staleness of x and
accuracy of y. The difficulty in answering this question comes from
estimating the cost of these sharings quickly and ensuring that the
cost estimates reasonably agree with the actual costs.

While staleness and accuracy are good levers to control cost, they
can be intuitively difficult for the consumers to specify. It is not clear
if most applications have rigid staleness and accuracy requirements,
nor if there are bounds on both these values beyond which they
render the sharing not very useful to the application. For example,
it is not clear what is more suitable for the Tesco application – 90
seconds staleness and 90% accuracy, or 80 seconds staleness (better)
and 80% accuracy (worse).

The most natural way a consumer would specify the requirements
is using a cost budget. For example, the consumer can specify
“What can I get for $z?” The difficulty in answering this question
is in being able to provide the consumer with the appropriate set
of staleness and accuracy configurations without overwhelming the
consumer with too many answers. To that effect, the set of answers
has to be both interesting to the consumer as well as different from
one another in the answer set to provide the consumer with a range
of options. The consumer can examine the set of answers for a
certain budget and if not satisfied may pose subsequent questions.

In a mature sharing framework, there may be several existing
sharings with new ones being added frequently. In this context, an-
other opportunity to reduce the cost for a new consumer is by taking
advantage of some of the commonalities of the new sharing with
existing sharings in the system, not to mention that it also reduces
the infrastructure cost for the provider by reducing duplicated work.
For example, if another app wants to implement an alerting feature
that informs users when their friends are nearby by creating a new
sharing using the checkin information. The new sharing may benefit
from its commonality (i.e., use of checkin data) with some of the
existing sharings in the system (e.g., Tesco app). These savings
can be passed along to new consumers making them more willing
to commit to sharing. So, we consider the above cost estimation
questions both with and without existing sharings in the system.

To our knowledge our work is the first systematic, generic ap-
proach for exploring the cost of a data sharing in cloud applications
using staleness and accuracy to control costs. We make the follow-
ing contributions during the course of the design and implementation
of the What-if tool:

1. We design a “What-if” tool that helps consumers explore
the space of staleness, accuracy and cost, based on either a
specific requirement or a cost budget.

2. We propose a Pareto optimality based method that provides
an interesting set of staleness and accuracy configurations to
the consumers for data sharing.

3. We propose an algorithm to further reduce the cost for the
consumers and the provider in the case of multiple sharings.

4. Experimental results show that the cost estimates produced
by our What-if tool is within 10–30% of the actual execution
costs when compared to an implementation of the sharing
infrastructure with a real workload.

2. TWO NOTIONS OF “COST”
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Figure 1: Producer and consumer’s interaction with the What-
if tool

For the provider, cost is the expense incurred to create and main-
tain the sharing, while for the consumer the cost is the amount paid
for the sharing, which may include a profit for the provider. Typical-
ly, the latter is referred to as price, while the former is referred to
as the provider’s cost, or simply cost. So, all hypothetical questions
posed by the consumer during the cost assessment, such as “What
is the price of ...?”, or “What can I buy with a price budget of ...?”,
are all based on price.

The problem of how to price a sharing is usually complicated as
they are often driven by business priorities [11] or by other concerns,
such as making the pricing fair to all consumers [12, 26]. Sharing
creates expensive artifacts in the clouds, such as copies of base
relations, or materialized views, which future sharings entering
the system can make use of. This means that the cost incurred by
the first sharing in the system can be quite high, which can get
progressively less if subsequent consumers are interested in similar
sharings. A pricing strategy that is proportional to cost is inherently
unfair to the initial consumers. Recently, [12, 26] show how to
amortize the consumer’s cost by predicting the potential future use
of these expensive artifacts. A consumer creating a new artifact in
the system pays only a fraction of the cost to the provider, while
the future sharings that use these artifacts pay the remaining. So, it
is not even necessary that the price always be greater than the cost,
as conventional wisdom would suggest. While, the pricing model
in [12, 26] is applicable to our work, it is not our focus. Essentially,
we design the What-if tool in a way that a pricing model can be
plugged into the tool, which will then be used by the pricing module
as shown in Figure 1.

The What-if tool we propose in the paper is a costing tool that
will be used by the provider. The What-if tool along with the pricing
module becomes a pricing tool which will be used by the consumer,
which is captured in Figure 1. The provider defines appropriate
cost and price models, which are used by the What-if tool. An
implementation of a cost model is given in Section 5.2.

We later show in Section 7 that many reasonable pricing models
can be incorporated into our What-if tool to make it a pricing tool.
However, for the sake of simplicity, we describe the What-if as a
costing tool and define a pricing module to be part of the What-
if tool through which a consumer interacts. The pricing module
converts price to cost, and vice-versa by discounting or adding the
provider’s profit. We will use cost and price interchangeably in the
following context: When we describe the consumer’s hypothetical
questions during the cost assessment in terms of cost budget of
$z, we actually imply that the consumer specified a different price



budget, which the pricing module converted to a cost budget of
$z. We also describe scenarios involving direct interactions of the
consumer with the What-if tool. In reality, however, all interactions
between the consumer and the What-if tool is via the pricing module
and the consumer always deals with price.

3. SHARINGS
A sharing is specified in terms of a set of transformations (select-

project-join in our case) on the base relations. The sharing results
in a materialized view (MV) for use by the consumer, which is
created and maintained by the provider. Since the base relations
are constantly updated, the MV lags behind the original data. The
staleness requirements need to be specified as some applications
need highly fresh data. If new records are inserted into the base
relations at a high rate, it becomes expensive for the consumer to
maintain the MV. So, some of the updates can be dropped up to a
certain rate if the application permits.

The staleness captures the freshness of the data obtained by the
consumer. A staleness of x seconds means “if there is an update to
the shared data, the consumer should be able to see the update within
x seconds”. For example, in order to make timely recommendations,
the Tesco app may get into an additional sharing to obtain the user’s
current location. The app may need to know the user’s location
within 30 seconds of entering a subway station as the wait for the
metro is not more than a few minutes.

The accuracy regulates missing records (tuples) in the shared
data. An accuracy of y means that “the number of missing tuples
will be no more than a fraction of 1−y of the total number of update
tuples”. This criterion is intended to give the consumer flexibility in
selecting a tradeoff between data quality and cost. As an example,
the Tesco app can afford to lose say, up to 20% of the users’ checkins
since the app only computes coarse cuisine interests of the users.

A sharing with a staleness of x seconds and an accuracy of y%
means that at any point in time the MV contains at least y% of the
records of the actual data from x seconds ago. Note that staleness
also makes the data inaccurate so to speak. While the staleness is a
delay and the data will be delivered to the consumer at a later time,
accuracy means that the dropped records will never be shown to the
consumer.

Once the consumer is satisfied with the staleness, the accuracy and
the cost of the sharing, the two parties (i.e., provider and consumer)
enter into a Service Level Agreement (SLA), which specifies what
is to be shared at what staleness and accuracy.

The consumer explores different configurations of staleness, ac-
curacy and cost before entering into an SLA with the provider. This
exploration process should be automated for the service provider,
since the cloud may host a large number of applications and the
provider cannot afford to answer each of them manually. Hence,
the job of costing and answering all of the consumer’s hypothetical
questions is given to a “What-if” exploration tool, which can answer
two common types of What-if questions.

1. Given the sharing I want, what is the cost for the staleness of
x seconds and the accuracy of y%?

2. Given the sharing I want, what configurations of staleness and
accuracy can I get if I have a budget of z dollars?

Those consumers who know the specific staleness and accuracy
requirements for their applications may pose the first question, while
the second question will be posed by consumers who have limited
budgets and may not know what they want.

The costing of these hypothetical questions can be performed
under two different settings that differ from each other in their as-

sumptions about the nature of interactions between the sharings in
the system. First, we can cost sharings in isolation in the sense
that we need not allow sharings to benefit from one another. This
forms the first setting. However, one way of reducing the cost of
the sharings is by taking advantage of the commonality with the
sharings already present in the system, which forms the second
setting. The commonality here refers to the common subexpres-
sions [20, 23] and to merge them we apply a well-known strategy
from traditional materialized view maintenance [18,20] and multiple
query optimization [23]. Some of these savings can be passed on the
consumer (through some pricing function such as in [12, 26]) which
may entice the consumer to enter into an SLA with the provider,
not to mention that this results in lower infrastructure cost for the
provider by saving on duplicated work. We will examine the above
two questions in isolation as well as accounting for the cost savings
due to existing sharings.

Since the inter-relationship between staleness, accuracy and cost
is not straightforward, the best way of selecting a suitable con-
figuration is by allowing the consumer to choose from a list of
configuration options. If the consumer did not find any of the con-
figurations suitable, he may repose the question by specifying a
different budget.

Given a fixed budget, there may be practically unlimited num-
ber of staleness and accuracy configurations that satisfy the budget.
Considering the nature of the problem we adopt a Pareto optimal-
ity based approach [16, 17]. To prevent information overload, we
generate evenly distributed samples on the Pareto frontier. The
configurations are also Pareto-efficient for the given budget, which
means that it is not possible to find any other configuration that is
better in terms of both the staleness and the accuracy for the same
budget. We use a Pareto frontier generation algorithm [16], which
will be presented in Section 7.

4. SETUP

SHARING INFRASTRUCTURE 

SHARING	
  EXECUTOR	
  

META-­‐	
  
DATA	
  
STORE	
  

SHARING	
  
OPTIMIZER	
  

WHAT-­‐	
  
IF	
  	
  

TOOL	
  
Sharing 

Sharing 
Plan, cost 

Base 
Relations, 
Capacities 

Updates 
Sharing Plan,  
SLA 

Questions 

Cost 
Estimates 

What is available for sharing? 

MV 
Base 
Relation 

AGENT	
   AGENT	
   AGENT	
   AGENT	
  

Update 
 commands 

Figure 2: Block diagram of SMILE system with What-If tool

Our What-if tool is implemented as the cost assessment front-end
of the SMILE sharing framework [22] (SMILE standing for Sharing
MIddLEware). The interaction with the tool is via a user interface
that enables the consumer to examine what is available for sharing
as well as iteratively arrive at the desired staleness and accuracy.
While the provider directly interacts with the tool and obtains cost
estimates, the consumer interacts via a pricing module and obtains
price estimates.

Figure 2 shows the block diagram of the SMILE system consisting
of a front-end What-if tool, a meta-data store that maintains useful
statistics on the base relations as well as the current state of the
infrastructure for use by the sharing optimizer. The existing sharings
in the system are maintained by the sharing executor.



Once the consumer has decided on the sharing, he starts posing
a number of hypothetical questions to the What-if tool. The What-
if tool queries the sharing optimizer module of SMILE, which
generates a low cost sharing plan (similar to a query execution plan)
that implements the sharing. The optimizer works akin to a database
optimizer in the sense that it generates all the possible sharing plans
that implement a sharing with a specified staleness and accuracy.
The sharing optimizer uses the meta-data store to obtain statistics
on the base data, including join selectivities, update rates, and the
current available capacities on the machines in the infrastructure.
Section 5 describes how the sharing optimizer generates admissible
sharing plans as well as how it costs these sharing plans. The cost
of a sharing not only includes the cost of resource consumption
(i.e., infrastructure cost), but also the possible penalty the consumer
is considering in case the staleness or accuracy requirements are
violated.

We capture the interactions of the What-if tool and the sharing
optimizer for the three hypothetical questions we detailed earlier.

1. In case the consumer specifies both the staleness and the
accuracy, the What-if tool queries the sharing optimizer to
obtain a low cost sharing plan, providing the cost of this plan
as the cost estimate to the consumer. We provide an algorithm
for this scenario in Section 6.

2. In case a cost budget of $z is specified, the What-if tool
queries the sharing optimizer several times as it enumerates
the two-dimensional configuration space of staleness and ac-
curacy. At each step, it estimates the cost of a configuration
and compares it against z. The end result is a set of configura-
tions with an estimated cost of around z that are drawn from
the Pareto frontier. We provide an algorithm for this scenario
in Section 7.

3. In case the cost estimates have to take into account existing
sharings in the system, the What-if tool first obtains all pos-
sible plans implementing the sharing. It then merges these
plans one by one with the existing global sharing plan, which
corresponds to the sharing plan of all existing sharings in
the system. It chooses the merged global plan with the least
estimated cost. We provide an algorithm in Section 8 that
revisits the first two scenarios but also takes into account the
potential savings due to commonalities with existing sharings.

Once the consumer and provider both agree on the staleness, accu-
racy and the cost, they enter into a Service Level Agreement (SLA),
which may also specify a penalty component in case the system
misses the SLA. The SLA along with an admissible sharing plan is
given to the sharing executor which performs run time optimizations
so that all the sharings in the system are always maintained at or
below the specified staleness level.

The sharing executor is an implementation of an asynchronous
view maintenance algorithm [21]. Our implementation is lazy by
design in the sense that it determines, using a learning model, the
most appropriate time to refresh a MV. The refresh is neither too
early nor too late, but finishes just before a sharing is about to miss
its staleness SLA. Each machine in the infrastructure runs an agent
that communicates with the sharing executor via a pub/sub system
(e.g., ActiveMQ). The agents send periodic messages to the sharing
executor about the last modification timestamps of the base relations
and MV. The sharing executor is aware of the staleness of a sharing,
which is calculated as the difference between the maximum of the
timestamps of all the base relations to that of the MV. The executor
keeps track of which of the sharings will soon miss their staleness

SLA, and hence schedules updates to be applied to the MVs so that
their staleness is reduced. We provide a few more details on the
sharing executor in Section 9.

5. SHARING PLAN GENERATION
The update mechanism of a sharing is implemented using a shar-

ing plan, which is generated by a plan generation algorithm. A
sharing plan is analogous to a query execution plan in that it is ex-
pressed in terms operators that transform the updates from the base
relations of the sharing to the MV. The sharing plan is expressed us-
ing 5 operators implemented in the system, which are a) an operator
to apply updates, b) copy updates between machines, c) join updates,
d) merge updates and e) selectively drop tuples from updates. We
will briefly describe some of the implementation details of these
operators in Section 9 and provide an example below of a sharing
plan that joins two base relations.
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Figure 3: One possible sharing plan involving an in-place join
of a base relationA on machinem1 andB on machinem2 such
that the resulting MV A 1 B is placed on machine m3

EXAMPLE 1. Figure 3 shows the sharing plan of a sharing S
that performs a transformation A 1 B on two base relations, A
and B. The sharing plan is a DAG consisting of 13 vertices and
11 edges. The vertices are either base relations (e.g., A, B or its
copies), MVs (e.g.,A 1 B) or temporary views (e.g., ∆(∆A 1 B)).
(∆A stands for updates applied to the base relation A.) The edges
corresponds to operators that either apply, copy, merge, join or drop
updates, to complete the transformation path from the base relations
to the MV.

Our sharing plan generation algorithm is based on the polynomial
time heuristic solution developed for System-R [9] and its analo-
gous distributed variant R∗ [15]. Given a sharing involving a join
sequence R of base relations, our algorithm explores different ways
of obtaining R by considering all placements of R − a on any of
the machines with available resources, with copies of the base rela-
tion a in R available on any machine. Any select, project, or drop
operators specified in the sharing are handled using a pushdown
heuristic [9]. The placement of plan operators on a machine de-
pends on the available capacity of the machine. If there is no spare
capacity (i.e., CPU, disk, network) in the set of machines available
for a sharing, then the provider has to add additional machines to
the infrastructure. This enumeration generates all the sharing plans
that implement the sharing, however not all of them satisfy the con-
straints that we will develop in the remainder of this section. In
particular, we concern ourselves with two key properties of a sharing
plan, namely its critical time path and cost.



5.1 Critical Time Path
The critical time path of a sharing plan is the longest path in

terms of seconds that represents the most time consuming data
transformation path in the sharing plan. Note that the sharing plan is
admissible only if the length of its critical time path is less than the
desired staleness of the sharing, or else the system cannot maintain
it. The sharing optimizer estimates the critical time path of a sharing
plan, using a time cost model for each operator that can estimate the
time taken for each operator given the size of the updates. Note that
finding the longest path between two vertices on a general graph is
an NP-hard problem, but sharing plans are DAGs, on which longest
path calculation is tractable. The system implements the procedure
CP(p) that takes a sharing plan p and outputs its critical time path
in seconds. For example, in the sharing plan p shown in Figure 3,
CP(p) computes the time taken along the longest transformation
path from A or B to the MV A 1 B.

5.2 Cost Model
The cost of the sharing plan, expressed in dollars per month,

is computed by the amount of CPU, network, and disk capacity
consumed to keep the sharing at the desired staleness and accuracy.
This can be expressed as the sum of static cost, representing an
initial investment to setup the sharing, and a dynamic cost, which is
the expense incurred to periodically move the updates.

Since static cost is sharing-independent, in the following we
mainly discuss the dynamic cost associated with a sharing. The
dynamic cost can be further divided into two categories: resource
usage (e.g., CPU, disk, network) and penalty due to occasional SLA
violations.

Resource Usage. There are existing analytical models that esti-
mate the usage of various resources for maintaining a materialized
view, based on update rate, join selectivity, data location, etc. (e.g.,
[19]). Furthermore, the resource usage should also vary with the
staleness SLA of the sharing. When the required staleness is much
longer than the critical time path, e.g., the critical time path is 1 sec-
ond and the staleness requirement is 30 seconds, the service provider
has much flexibility in deciding when to update the view. Specifical-
ly, given a new tuple to the base relations, the service provider can
push it to the view immediately, or wait for as long as 29 seconds
before pushing it. On the other hand, when the staleness becomes
close to the critical time path, the service provider has much less
flexibility, and since there are other sharings in the infrastructure,
they may compete for resources such as database, network, CPU,
etc., which may cause the sharings to miss their SLAs.

In order to reduce the negative interaction at low staleness values,
the resources allocated to the sharing plan are over-provisioned by a
factor inversely proportional to the required staleness. This simple
strategy ensures that the negative interactions are mostly avoided,
especially for low staleness values.

SLA Penalty. At low staleness values the natural fluctuations in
the update rates may cause a sharing plan to miss the SLA. This is
because the sharing plan estimates the critical time path using the
average arrival rate, but in practice this is an over simplification as
the updates frequently vary. So, we have to estimate how much of
penalty may be incurred given the required staleness and accuracy,
which also has to be factored into the cost. We estimate this by
assuming a Poisson arrival of updates, and modeling the sharing
plan as an M/M/1 queuing system. Given the arrival rate of each
base relation, we can estimate the arrival rate of tuples in the view
based on the selectivity of joins. The average service time of the
M/M/1 queue corresponds to the most time consuming operator in
the sharing plan.

For an M/M/1 queue with arrival rate λ and service rate µ, the

percentage of items with sojourn time larger than s is

P (S > s) = e(λ−µ)·s

Thus the dynamic cost of a sharing plan p with staleness s and
accuracy a is calculated as

COST(p) = resCost(p) · (1 +
CP (p)

s
) + e(λ·a−µ)·s · pens (1)

resCost(p) is the cost of resource usage. As discussed before,
to avoid SLA violation due to multiple sharings competing for
resource, we over-provision the resource by a factor of CP (p)/s

where CP (p) is the length of the critical time path of p. e(λ·a−µ)·s ·
pens is the estimated penalty of missing the staleness SLA due to
higher-than-expected tuple arrival rate, where pens is the penalty of
missing the staleness SLA for a single tuple.

6. SCENARIO I: BASIC USE CASE
In this section we consider the following simple question, Given

a sharing S with a specific staleness and accuracy, how much does
it cost? To obtain the cost of implementing S, the What-if tool
generates all sharing plans for S and then chooses the cheapest
plan among them that satisfies both the staleness and accuracy
requirements. This is shown in Algorithm 1 given below.

Algorithm 1 sub GENERATESHARINGPLAN(S, t, a)
1: /* S is a sharing, t is staleness in sec and a is accuracy */
2: Generate all possible plans P of S with accuracy a
3: Choose p ∈ P such that:
4: a. CP(p) ≤ s /* Critical time path of p ≤ s */
5: b. COST(p, s, a) is minimum
6: return p

The algorithm takes as input a sharing S, the desired staleness
t and accuracy a and produces the cheapest cost plan p that imple-
ments S as well as satisfying the staleness and accuracy require-
ments. It starts by generating all possible plans P for S with an
accuracy of a. The transformation specified in the sharing can in-
volve joining different base relations on different machines. The
sharing plans in P denote the different ways in which joins can
be ordered as well as all possible placements of the intermediate
results on machines with available capacity. For each of the plans
we examine its critical time path and cost.

The algorithm chooses a plan p from P to be the sharing plan
for S if it satisfies the following criteria: First, p is admissible in
the sense that its critical time path CP(p) should be less than the
specified staleness t. Second, p has the lowest cost among all the
admissible plans in P .

Note that this scenario estimates the cost of implementing S
without considering its commonalities with other sharings in the
system. We will show later in Section 8, that there can be potential
savings in cost for S due to other sharings present in the system.

7. SCENARIO II: WHAT CAN A $Z COST
BUDGET BUY?

The previous scenario dealt with the simple case where the con-
sumer requires a specific staleness and accuracy on the sharing. In
reality, consumers do not have such a specific preference and hence
a What-if tool that only answers this question may not be very use-
ful in practice. In many cases, applications can tolerate a range of
staleness and accuracy configurations. So choosing an appropriate
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Figure 4: Figure shows the working of the Pareto sample generation algorithm

configuration is driven by a budget constraint. In other words, the
consumer suggests a budget that he is willing to spend and the sys-
tem presents a number of configurations that fit the budget. Hence,
this scenario focuses on a consumer asking: For a given sharing,
what staleness and accuracy can a cost budget of $z buy?

Answering this question is significantly more complex, since pre-
senting all the plans less than a budget of z is not a feasible strategy.
First of all, there may be too many possible (staleness, accuracy)
configurations that fit the given budget, as both staleness and accu-
racy can take up continuous values, which causes an overload of
information. Second, the consumer is usually not interested seeing
a (staleness, accuracy) configuration that is dominated by another
configuration (i.e., either with strictly better staleness and no-worse
accuracy or vise versa). The non-dominated configurations form
the Pareto frontier of the solution space. Thus we aim to generate a
few sample configurations from the Pareto frontier. These samples
should be diverse and represent the different scenarios, so that the
consumer sees a wide range of options.

We generate these equi-spaced Pareto samples on the frontier
by adapting the normalized normal constraint approach [16]. The
What-if tool takes as input a sharing S and a budget z, and gener-
ates k configurations as answers such that they are not dominated
and their cost is no more than $z. Algorithm 2 is a divide and
conquer based approach to generate equi-spaced Pareto samples.
The algorithm first computes two extreme configurations on the
Pareto frontier. The first one has minimum possible staleness (i.e., a
configuration that has the smallest staleness over all configurations
that satisfy the budget), and the second one has maximum possible
accuracy (e.g., 100%). All other configurations on the Pareto fron-
tier has staleness and accuracy values that are contained by these
two extreme configurations. Then, it draws a straight line between
these two configurations and evenly selects points on the line. Since
these points represent configurations that may be dominated (i.e.,
not necessarily on the Pareto frontier), it performs binary searches
based on these points to find Pareto-optimal configurations. The
details of the algorithm are shown in Algorithm 2.

Algorithm 2 sub GENERATEPARETOSAMPLE(S, z)
1: /* S is a sharing, and z is the budget */
2: PP = ∅ /* set of Pareto points */
3: A = set of anchor points
4: L = CONSTRUCTUTOPIALINE(A)
5: U = GETUTOPIASAMPLES(L)
6: for u ∈ U do
7: <rhigh, rlow> = GETPERPLINEENDPOINTS(u, L)
8: rpareto = LINEBINARYSEARCH(S, rhigh, rlow, z)
9: PP = PP ∪ rpareto

10: end for
11: PP = FILTERPARETOCANDIDATES(PP )
12: return PP

1. (line 3) We find the two extreme configurations with minimum
staleness and maximum accuracy, respectively, that satisfy the
budget. These two points are referred to as the anchor points
(Figure 4a) and define the search region. The search region
is bounded by the x axis, the y axis, a horizontal line corre-
sponding to the accuracy when staleness is minimized, and a
vertical line corresponding to the staleness when accuracy is
maximized (i.e., 100%).

2. (line 4) We connect the two anchor points with a straight line
called Utopia line (Figure 4b).

3. (line 5) We evenly select k − 2 points on the Utopia line,
where k is the number of Pareto-optimal configurations we
would like to generate (Figure 4b).

4. (lines 6–10) For each of the sample points on the utopia line,
we generate a line perpendicular to the utopia line crossing
at the sample point. Each such line contains a Pareto-optimal
configuration. For example, the perpendicular line in Fig-
ure 4c extends from the region of valid configurations down
to a region with no valid configurations, crossing the frontier
separating these two regions. The crossing point represents
the Pareto-optimal configuration.

5. (line 8) We perform a binary search on this perpendicular
line in the range from the point where the perpendicular line
intersects with either x- or y-axis to the point where the per-
pendicular line intersects with upper or right side of the search
region, to find the Pareto-optimal configuration on this per-
pendicular line (Figure 4d).

6. (line 11) We examine all the generated points and eliminate
those points that are dominated by another point in PP .

Since the feasible region of our problem is a convex set, the
configurations found by the above procedure are guaranteed to be
Pareto-optimal configurations [16].

Algorithm 3 sub LINEBINARYSEARCH(S, rhigh, rlow, z)
1: /* S is a sharing, rhigh and rlow are two end-points of the line,

and z is the budget */
2: rmid = rhigh
3: rmid−old = rlow
4: while GEOMETRICDISTANCE(rmid−old, rmid) > ε do
5: rmid−old = rmid
6: rmid = geometric middle of rhigh and rlow
7: pr = GENERATESHARINGPLAN(S, rmid.stl, rmid.acc)
8: if pr = ∅ or COST(pr , rmid.stl, rmid.acc) > z then
9: rlow = rmid

10: else
11: rhigh = rmid
12: end if
13: end while
14: return rmid

We describe the binary search in Algorithm 3 that finds a Pareto-



optimal configuration. The configuration’s distance from the frontier
is bounded by a small constant ε ≥ 0.

1. The algorithm starts by generating a middle point rmid (line 6)
between the two points (rhigh, rlow) bounding the search line.
Initially, rhigh is the point where the perpendicular line inter-
sects the upper or the right side of the search region, and rlow
is the point where the perpendicular line intersects with either
x- or y-axis. Since the feasibility region is convex, rhigh must
be a feasible point where rlow must be an infeasible point.

2. (line 7) generates the cheapest plan using
GENERATESHARINGPLAN given in Algorithm 1. rmid.stl,
rmid.acc refers to the staleness and accuracy of the
configuration denoted by rmid.

3. (lines 8–12) If no plan exists for the configuration denoted
by rmid or if its budget is greater than z, then the search
continues in the upper line segment, else the search proceeds
to the lower line segment.

4. The algorithm continues until the distance between (rhigh,
rlow) is less than ε.

Finally, the What-if tool we presented here can be made into a
pricing tool by replacing the cost model with a price model given
by the PRICE function. As mentioned before, the price function
can be complex as it is usually driven by business priorities and
considerations. If the feasible region upon replacing the COST
function with the PRICE is still a convex set, the algorithm will work
with no further modifications. On the other hand, if the feasible
region becomes a non-convex set, then the perpendicular line can
intersect the boundary of the feasible region at multiple points and
our binary search method will have to be modified. We also need to
perform a final filtering step to remove non-Pareto solutions from
the result set using the method detailed in [16].

8. SCENARIO III. COST SAVINGS DUE TO
EXISTING SHARINGS

In this section we revisit the previous two scenarios but take
into account sharings already present in the system. Suppose that
we want to add a new sharing S in the system. S could benefit
from having commonalities with existing sharings in the system.
The commonalities manifest themselves as common expression
between the sharing plans of the existing sharing and that of S.
Potential savings in costs can be realized if these expressions are
made common between the existing and the new sharing plans.
This results in part of the cost being amortized across multiple
consumers, leading to savings for the consumer interested in S.
Taking advantage of these commonalities also reduces the cost for
the provider by improving resource utilization.

Although our idea of merging commonalities in sharing plans is
similar as merging common subexpressions in concurrent running
query execution plans [23], there are two main differences. First,
our infrastructure contains multiple servers and the cost of moving
the data across the servers has to be considered. Second, instead
of optimizing multiple queries at the same time as in [23], we
only optimize a single sharing given the global plan of the existing
sharings. In other words, our goal is to find a plan for the new sharing
that has the lowest cost when combined with existing sharings, and
we do not modify the plans of existing sharings. This ensures that
existing sharings are serviced with no interruption. And because of
this, our problem has a much smaller search space than the problem
in [23], and we can afford to search for the best sharing plan rather
than relying on some heuristic methods.

As one can easily imagine, the best plan for a sharing generated
by Algorithm 1 may no longer be the best when combining with the
existing global plan, since another plan that costs more individually
may have more commonality with the existing global plan, thus the
combined cost is lower. Next, we illustrate that given a specific
sharing plan p, how to plug it into the existing global plan GP and
take advantage of the commonalities.

A sharing plan can be represented as a DAG, where the top
level nodes represent base relations and a single bottom level node
represents the destination (i.e., MV). When we make use of the
commonalities and feed the tuples from the global plan GP to an
operator o in the sharing plan p, the nodes in p that leads to o may
be removed. For example, in Figure 5, e is an operator in the global
plan GP , and o is an operator in the plan p of the new sharing. If
the output of e is the same as the input of o (i.e., commonality), we
may “plumb” o into GP by making operator e feed operator o. In
this way, any operator in p above o that is no longer needed can be
removed, which saves the cost. On the other hand, it also incurs a
new cost of moving the output of e to the machine that contains o
(if e and o are on different machines). Thus such “plumbing” may
either increase or decrease the total cost.

Note that different plumbing options are not independent. Sup-
pose in plan p, operator o’s predecessor is o′. Both o and o′ may
be plumbed to the global plan; but if we plumb o, o′ may be sub-
sequently removed, and thus plumbing o′ is no longer an option.
Therefore we cannot check the possible plumbings in an arbitrary
order. Instead, either a top-down approach or a bottom-up approach
can guarantee to identify the optimal set of plumbings. Next we
illustrate the bottom-up approach.

The key procedure is PLUMBANDCOSTOPERATOR. It is invoked
in Algorithm 4 on the root node of plan p (i.e., MV), and is illustrated
in Algorithm 5, where it recursively invokes itself on other operators
of p. Procedure PLUMBANDCOSTOPERATOR computes the best
way of realizing operator o, by possibly making use of the global
plan.

The idea is that, if o can be plumbed to the global plan, then
one option to realize o is to make this plumbing. Other options
are to not plumb o, then the input of o needs to come from the
predecessors of o in plan p. To evaluate which option is the best, we
recursively invokes procedure PLUMBANDCOSTOPERATOR on o’s
predecessors, and compute what is the best way of realizing each of
o’s predecessors. If an operator o has no predecessor (i.e., it directly
operates on the source table), then there are only two options for o:
plumb it to the global plan (if possible), or run o on the source table.
Next we explain Algorithm 4 and Algorithm 5 in details.

Algorithm 4 sub PLUMBPLAN(p, t, a)
1: /* p is a sharing plan of S of accuracy a, staleness t,GP current

global sharing plan */
2: GPnew = GP
3: PLUMBANDCOSTOPERATOR(GPnew, ROOT(p))
4: if all sharings in GPnew are still admissible then
5: return GPnew
6: else
7: return ∅
8: end if

Algorithm 4 is the main procedure for computing the lowest cost
of integrating a sharing plan p with the global plan.

1. (line 3) Starting with the root of p, the algorithm
tries to plumb each operator in p with GP by calling
PLUMBANDCOSTOPERATOR.



2. (line 4) Ensure that the new global plan meets the staleness
requirement of all sharings already present in the system as
well as S.

Algorithm 5 sub PLUMBANDCOSTOPERATOR(GP , o)
1: /* GP is existing sharing plan, o is operator to plumb */
2: E = Set of identical operators to o in GP
3: Choose e ∈ E such that plumbing o with e is cheapest
4: plmbCst = cost of plumbing e with o
5: upCst = OPERATORCOST(O)
6: for o′ ∈ all upstream operators of o do
7: upCst += PLUMBANDCOSTOPERATOR(GP , o′)
8: end for
9: /* plumb here vs. up */

10: if upCst < plmbCst then
11: GP = GP ∪ o
12: return upCst
13: else
14: GP = PLUMB(GP , o, e)
15: return plmbCst
16: end if
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Figure 5: Plumbing of common expressions, e in a new sharing
plan p and o in the current global plan GP

Algorithm 5 recursively calls procedure
PLUMBANDCOSTOPERATOR on nodes in plan p to find the
optimal cost of realizing each operator in p, which are ultimately
used to calculate the optimal plumbing that leads to the lowest cost
of the root operator of p.

1. (lines 2–4) First, we find a common expression e in GP , such
that plumbing o and e results in maximum savings (i.e., least
cost) among all possible plumbings involving o. The cost of
this plumbing is plmbCst.

2. (lines 5–8) Next, we have to decide if it is beneficial to
plumb e and o, or perform the plumbing at the predeces-
sors of o. Hence, we compute the cost of retaining o (i.e.,
OPERATORCOST(o)), while recursively finding plumbings
at the predecessors that would produce the maximum sav-
ings. We recursively call the PLUMBANDCOSTOPERATOR()
method and the maximum savings from not plumbing here at
o is given in upCst.

3. (lines 10–15) The algorithm compares the saving in plumbing
e and o with the plumbing upstream. If it is cheaper to plumb
upstream (i.e., upCst < plmbCst), o is added to GP else
e is plumbed with o, in which case o and all its up stream
operators are removed.

We can now implement the two scenarios as before by a small
modification to GENERATESHARINGPLAN which both the scenar-
ios use. The COST function invocation in Algorithm 1 is replaced
to be the difference between the cost of GPnew and GP . With this
small modification both scenarios will now take into consideration

the savings from existing sharings in the system, which can be quite
considerable as our experimental results show in the next section.

9. EXPERIMENTS
Our primary experimental setup creates a sharing ecosystem

around Twitter dataset. We collected tweets from a gardenhose
stream, which is a 10% sampling of all the tweets in Twitter, for
a six month period starting from September 2010. The tweets ob-
tained were unpacked into several base relations. Three of them are
used in the experiments, including the information about the user
(i.e., users relation), the tweets (i.e., tweets relation), and the
current location of the user (i.e., curloc relation). The sharing in
the evaluation is specified as equijoins of these base relations.

We populate our base relations by processing 7 million tweets. In
the experiments, we replay the incoming tweets at different rates
and estimate the rate of updates on the other base relations using
a probabilistic method that is dependent on the number of tweets
already injected into the system. Hence, we can precisely control the
rate of updates on the tweets relation, and have a coarser control
over the rates of updates on the other two base relations.

Applying, copying and merging update operators are based on
their standard interpretations. Our join operator performs a compen-
sation [28] algorithm as it joins asynchronous base relations (i.e.,
asynchronous as updates on sources can happen independently). A
drop operator is implemented using the technique in [10] that pushes
down the operator to one of the base relations across a join with
skewed keys. Due to the unique skewed nature of the join keys in
our evaluation setup, a simpler drop operator would suffice here,
which is described next.

In all the sharings evaluated in this section, the joins involving
base relations either happen over common tweets ids or user ids.
Among the unique users in the 7 million tweets we processed, the
number of tweets the unique users have sent, and the number of
times these users have posted their current location, both follow
long-tailed distributions. For example, in the tweets relation
containing 7 million users, 98% of these users have sent less than
10 tweets (with 76% sending one or two only). Given the long tailed
distribution of the user ids, our drop operator with a drop rate of
f can be implemented using a coin flipping method that uniformly
samples based on a bias proportional to f .

We use Amazon EC2 pricing (as of Oct 2012)1 in order to cost
sharings for the provider. Our machines are assumed to be equivalent
to large Linux instances, which costs $0.32/hour. For the network
cost, we assume that the instances are in different availability zone
but in the same region, which has a transfer cost of $0.12 per GB.
For storage, we use EBS storage at $0.125 per GB per month.

Finally, note that all the interactions with the What-if tool in this
section are from a consumer’s perspective and in terms of cost.

9.1 Base Case: Varying Single Dimension
In the base case, we evaluate the effect of staleness, accuracy

and the shared data’s update rate on the sharing cost, as well as
the accuracy of our cost model. We use two machines and one
base relation. The first machine hosts the base relation (users),
while the sharing specifies that a copy of users be maintained
on the second machine. In other words, the sharing involves no
transformation of the base relation.

Figure 6a shows the What-if cost estimation for maintaining the
sharing with varying staleness between 5 and 1000 seconds, while
keeping accuracy fixed at 1 (drop rate defined to be is 1 - accuracy,
hence a drop rate of 0) and an update rate at 100 tuples/second on

1
http://aws.amazon.com/ec2/pricing/
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Figure 6: The effect of a) staleness, b) accuracy, and c) update rate on the cost estimated by the What-if tool for a simple sharing

the users relation. The curve shows that for small staleness values,
the estimated cost of maintaining the sharing increases quite steeply.
As the staleness of the sharing becomes close to its critical time path,
any negative interaction with other sharings in the infrastructure may
cause it to miss the SLA. In other words, there is very little slack
time for the sharing executor to account for negative interactions and
it is remedied by over provisioning resources. Hence, the sharing
executor allocates more infrastructure resources (i.e., CPU, network
and disk) to the sharing at these low staleness values resulting in
increased estimated cost. Further, the lower the staleness the higher
the probability of staleness SLA violations due to data fluctuations,
which also increases the cost.

Next, Figure 6b shows the What-if cost estimation for maintaining
the sharing for increasing drop rate (i.e., decreasing accuracy), while
keeping the staleness fixed at 20 seconds and the rate of updates
fixed at 100 tuples/second. The cost of sharing reduces linearly
as the drop rate increases, as now the amount of tuples pushed
through the sharing plan is proportionally fewer as the drop rate
increases. Note that there are some additional savings at lower data
rates from being able to update the MV in fewer batches, as well
as lower probability of missing the SLA, but they do not show up
significantly in the figure.

Finally, Figure 6c shows the What-if cost estimation when vary-
ing the update rate on the users relation between 50 and 2,000
tuples/second, while keeping the staleness fixed at 20 seconds and
the drop rate at 0. As the update rate increases the sharing cost in-
creases proportionally, which is because more tuples are processed
through the sharing plan. As the staleness of 20 seconds is suffi-
ciently greater than the critical time path even for a sharing plan for
high update rates, the estimated cost linearly increases.

Next, we verify if the cost estimates generated by the What-if
tool reflect the actual cost of maintaining the sharing in the SMILE
system as well as the penalties due to the SLA violations. Our setup
consists of two machines with the first machine hosting the users
relation and the second machine hosting a (possibly staled) copy of
the users relation. We then measure the running cost incurred by
the sharing executor as it keeps the sharing at the desired level of
staleness and accuracy. The SMILE system computes the running
cost in dollars using a snapshot process, which is an independent
auditing module that periodically tallies up the infrastructure cost
spent by the sharing executor in the last time period since the previ-
ous invocation of the snapshot module. We use this to calculate the
monthly cost of maintaining the sharing. We sampled four points
from each of the curves in Figure 6 and provided them as the SLA
to the sharing executor. We then measured the real cost by running
each experiment for about 30 minutes using updates from a Twitter
traffic generator at the update rates specified above. The results
shown in Figure 7 show both the estimated cost as well as the real
running costs.

Figure 7a shows the comparison between the estimated and real
cost for varying values of the drop rate. The relative errors between
the real and estimated cost for this setup range from 10–22%. Fig-
ure 7b shows the comparison results for varying staleness values,

and Figure 7c shows the comparison results for varying update rates.
In both these figures, we can see that the estimated and real cost
curves show a similar trend, but the estimated error for both these
cases is around 5–30%. The relative error between the estimated and
the real cost can be mainly attributed to the following two reasons.
First, What-if cost estimates are based on the estimated time of each
operator in the sharing plan, while the real costs in SMILE are based
on the actual running time of each operator. Second, it is hard to
ensure a fine-grained control over the update rate of the users
relation, which results in estimation errors.
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Figure 8: The measured staleness of the sharing as observed by
the snapshot module

Finally, Figure 8 illustrates the actual observed staleness of the
sharing. The setup for this experiment is same as before except
that the staleness SLA is set to 35 seconds with a rate of 100 tu-
ples/second update on the users relation. As can be seen from
the figure, the observed staleness has large fluctuations. This is
because the sharing executor waits until the most opportune moment
(almost 30 second staleness) to refresh the MV. Note that the MV is
updated just before it exceeds the SLA staleness of 35 seconds, thus
illustrating the workings of the sharing executor.

9.2 COST Function Complexity
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Figure 9: Estimated cost surface for users 1 tweets 1

curloc for varying staleness and accuracy values

To demonstrate the complexity of the costing problem, we consid-
er the first scenario (detailed in Section 6). In this first scenario, the
consumer specifies a sharing along with the desired staleness and
accuracy. The What-if tool produces the estimated cost of maintain-
ing such a sharing in the SMILE system. For this evaluation, we use
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Figure 7: The effect of varying a) staleness, b) accuracy, and c) update rate for a simple sharing on the actual running cost

three base relations namely tweets, users, and curloc, such
that the sharing is specified by tweets 1 users 1 curloc.
The update rates on tweets, users, and curloc were 1000,
200, and 110 tuples/second, respectively. We varied the staleness
and the drop rate between 5 and 1000 seconds, and between 0 and
1.0, respectively. For each pair of staleness and drop rate we invoke
the What-if tool which produces a cost estimate.

Figure 9 shows the resulting estimated cost surface for the sharing.
The figure shows the complexity of the staleness-accuracy-cost
3D space and motivates the need for an exploration tool to help
the consumer navigate this space. Our What-if tool distills this
space into a few interesting sample points that can be used by the
consumer.

9.3 Scenario II: What can a Cost Budget
Buy?
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Figure 10: Pareto curves for cost budgets of $450, $550 and
$650 for a sharing denoted by tweets 1 users 1 curloc

In this scenario, the consumer specifies a sharing and a price
budget which is converted to a cost budget $z by the pricing mod-
ule. The What-if tool produces a set of staleness and accuracy
configurations denoting the Pareto curve, such that their estimat-
ed cost is less than z. Our setup consists of three base relations:
tweets, users, and curloc with update rates of 1000, 200 and
110 tuples/second, respectively. The sharing is denoted by tweets
1 users 1 curloc. The setup uses four machines. The con-
sumer first specifies a cost budget of $450/month and subsequently
increases his budget to $550/month and later to $650/month.

Figure 10 shows the different staleness and accuracy configura-
tions provided by our What-if tool for the three budgets. For the
same budget the tool presents a set of Pareto-optimal configurations.
For instance, with a cost budget of $450/month the consumer can
select between getting an accuracy of 1.0 (i.e. 0 drop rate) with
staleness of 216 seconds, or can opt to getting an accuracy of 0.75
(0.25 drop rate) for a better staleness of 87 seconds. Further, the fig-
ure shows that when the cost budget is increased, the staleness and
accuracy values improve quite significantly. For example, suppose
we draw an horizontal line denoting a drop rate of 0.25 and examine
the points where it intersects the three curves. The figure shows

that when the budget increases from $450/month to $550/month
the staleness decreased from 87 seconds to 30 seconds. When the
budget was further increased to $650/month, the staleness further
dropped to 18 seconds. This experiment shows that the consumer
is able to progressively get better staleness and accuracy values by
increasing his budget.
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Figure 11: Pareto curves showing actual running cost given
a budget of $600/month for a sharing denoted by tweets 1

users 1 curloc

Next, to verify if the cost estimates align with the actual running
costs, we created the above setup on the SMILE system given a
budget of $600/month. We generated a set of staleness and accuracy
configurations using the What-if tool and obtained the real costs
from running these on SMILE. Figure 11 shows that the running
cost of each of these setup overlaid near each Pareto point on the
curve. As we can see that the running costs for all the points are
close to $600 with a relative error of less than 7%. This validates
our What-if tool for this case.
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Figure 12: Pareto curve showing actual running cost for a shar-
ing given by the join of curloc and users given an incoming
gardenhose input and a query workload of 25 queries/second
on the MV

We test if our cost estimates align with the real cost values for
a more realistic setup involving a live update traffic and a read
query workload being applied to the MV. Our setup consists of four
machines, such that the sharing is denoted by users 1 curloc.
The updates to users and curloc was from a gardenhose stream
from Twitter which has large fluctuations in the arrival rate. The
average update rate on users and curloc was observed to be 20,
and 10 tuples/second, respectively. We applied a workload of 25
queries/second on the MV, thus consuming some of the available



resources on the machine hosting the MV. Figure 12 shows the
resulting Pareto curve for $150/month specified by the consumer.
The actual costs overlaid around the Pareto curve show an error rate
of 15–30%.

Finally, we observed that the sharing executor did not miss the
staleness SLA even once during the course of the experiments, each
lasting up to 30 minutes. Moreover, we examined if the system
missed the accuracy SLA by measuring the drop rate for two data
points from Figure 12. We found that the recorded accuracy was
sufficiently higher than the SLA accuracy.

9.4 Scenario III: What can a Cost Budget
Buy, Given Existing Sharings?
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Figure 13: Pareto curves for a budget of $450 for the sharing
denoted by tweets 1 users 1 curloc in three setups: no,
low, and high commonality with exiting sharings.

In this scenario, the consumer specifies a cost budget as before but
the What-if tool provides answers taking into account the potential
savings in cost due to existing sharings present in the system. Our
setup consists of a sharing S1 denoted by tweets 1 users 1

curloc, with an update rate of 1000, 200 and 110 tuples/second on
the tweets, users, and curloc relations, respectively. Another
sharing S2 is already present in the system. We examine the effects
of commonality between S1 and S2 on the cost of S1 by devising
the following three cases.

In the no commonality case, S2 has nothing in common with S1,
not even base relations. In the low commonality case, S2 has two
base relations – users, curloc, in common with S1. S2 produces
a join subexpression users1 curloc, which S1 does not initially
use. However, during the plumbing phase, the algorithm recognized
the potential benefit in reusing this subexpression from S2 and took
advantage of it. For the high commonality case, S2 is identical to S1

but is present on different machine, the plumbing phase identifies
this similarity and, instead of recomputing the sharing, it copies the
updates on the final MV from S2 to S1 .

Figure 13 shows the What-if cost estimates given a budget of
$450/month. It can be seen from the figure that there is a dramatic
reduction in the staleness and accuracy values between the low and
no commonality cases. The improvement is even more remarkable
for the high commonality case. This experiment indicates that S1

benefited significantly from the presence of S2 in the system.
To demonstrate that the What-if estimates match with the actual

running cost in the SMILE system, we implement the sharing in
SMILE with a staleness of 30 seconds and a drop rate of 0.0. The
staleness of S2 for all the three cases was chosen to be 9 seconds.
Figure 14 shows the cost comparisons for the maintaining S1 in
the presence of another sharing S2. It can be seen that S1 has a
cost of almost $600/month for the no commonality case, which
reduces to about $112/month for the low commonality case. For
the high commonality case the cost plummets to about $20/month.
This shows that dramatic reduction in costs is possible by taking
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Figure 14: The estimated and actual cost of S1 in the presence
of S2 for the no, low and high commonality cases

advantage of the commonality with the existing sharings in SMILE.

10. RELATED WORK
Data markets for purchasing data are now being offered by sev-

eral vendors [1, 2, 4]. A data sharing effort in the cloud is the
FLEXSCHEME [6], where multiple versions of shared schema are
maintained in the cloud, with the focus on enabling evolution of
shared schema used by multiple tenants. Orchestra [25] casts data
sharing as a data integration problem, where reconciling the differ-
ence in schema, formats, and trust between peers is achieved using
provenance information associated with the tuples. A model for cost-
ing resources based on availability is developed in Mariposa [24],
which is distinguished from our approach in the sense that in our
case operators are fixed to a machine while in Mariposa they are
executed at the machine with the cheapest cost.

Recently, there has been quite of work in pricing data in the
cloud. Balazinska et al. [8] look at the challenges in providing a
fine-grained pricing model in the cloud. In a subsequent work [7],
they discuss the difficulty in coming up with a consistent pricing
scheme when there are several MVs on the data that are available
for sharing. This captures some of the complexities in designing a
pricing model for our setup, which achieves sharing using MVs. A
sharing plan creates expensive artifacts in the cloud that can be used
by other sharings in the cloud. Upadhyaya et al. [26] and Kantere et
al. [12] examine how to amortize the cost for such consumers that
make expensive artifact investments that benefit other consumers
in the cloud. Pricing from a consumer’s perspective has also been
studied [27] in the more general setting of a cloud service, which is
applicable to our work.

Sharing using MVs adds interesting dimensions to a well studied
problem domain. An MV maintenance process traditionally is bro-
ken into a propagation step, where updates to the MV are computed
and an apply step, where updates are applied to the MV. Given that
the base relations available for sharing are updated independently, a
compensation algorithm [28] is needed, where the propagation step
is computed on asynchronous base relations [5,21,29]. In particular,
MVs over distributed asynchronous sources have been studied in the
context of a single data warehouse [5, 29] to which all updates are
sent. The key optimization studied in [5, 29] is in terms of reducing
the number of queries needed to bring the MVs to a consistent state
in the face of continuous updates on the source relations. [21] shows
how n-way asynchronous propagation queries can be computed in
small asynchronous steps, which are rolled together to bring the
MVs to any consistent state between last refresh and present, which
forms the basis of our sharing executor.

Reducing the cost of maintenance plans of a set of materialized
view S is explored in [18], where common subexpressions [20, 23]
are created that are most beneficial to S. Their optimization is to
decide what set of common subexpressions to create and whether
to maintain views in incremental or recomputation fashion. Stale-



ness of MVs in a data warehouse setup is discussed in [14], where
a coarse model to determine periodicity of refresh operation is
developed. Our problem shares common aspects with the cache
investment problem [13] in terms of placement (what and where to
be cached) of intermediate results and the goodness (another notion
of staleness) of cache. Cache refresh in [13] piggybacks on queries,
whereas we establish a dedicated mechanism to keep the MVs at the
desired staleness.

11. CONCLUSION
In this paper we discussed the challenges and solutions in build-

ing a data sharing framework that hosts a large number of web and
mobile applications. Similar to the app market ecosystems where
the app developers publish apps and the users can purchase them,
the data sharing ecosystem enables different applications to share
data among one another as needed. We use two levers for control-
ling the cost a sharing, namely staleness and accuracy, which can
become part of the SLA. We then proposed a What-if tool capable
of answering the following questions both taking and not taking
existing sharings into account. a) How to estimate the cost of a
sharing with a specific staleness and accuracy? b) How to enable
consumers to explore the configuration space for the most desirable
configuration within a given budget? The What-if tool makes our
sharing framework easy to use and facilitate data sharing.

In the future, we would like to study the problem of finding a
fair and effective pricing model that avoids such “free rides” by
some consumers at the expense of others, similar to [26]. We are
also interested in investigating the problem of admitting multiple
sharings at the same time instead of one by one. In this paper, we
only consider staleness and accuracy as the two levers for controlling
cost, but one could consider other dimensions or even provide fine-
grained controls on staleness and accuracy for controlling costs. For
example, the consumer could specify that the address field of a user
relation can be updated with a relaxed staleness of a few days, while
the location field should be updated within a few seconds.
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