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ABSTRACT
Commercial analytical database systems suffer from a high “time-
to-first-analysis": before data can be processed, it must be modeled
and schematized (a human effort), transferred into the database’s
storage layer, and optionally clustered and indexed (a computa-
tional effort). For many types of structured data, this upfront ef-
fort is unjustifiable, so the data are processed directly over the file
system using the Hadoop framework, despite the cumulative per-
formance benefits of processing this data in an analytical database
system. In this paper we describe a system that achieves the imme-
diate gratification of running MapReduce jobs directly over a file
system, while still making progress towards the long-term perfor-
mance benefits of database systems. The basic idea is to piggyback
on MapReduce jobs, leverage their parsing and tuple extraction op-
erations to incrementally load and organize tuples into a database
system, while simultaneously processing the file system data. We
call this scheme Invisible Loading, as we load fractions of data at
a time at almost no marginal cost in query latency, but still allow
future queries to run much faster.

1. INTRODUCTION
There are many types of data that, despite being structured enough

to fit into a relational model, are stored in flat files on a file sys-
tem instead of in a database system [11]. Examples include logs
(especially network event logs), machine output from scientific ex-
periments, simulation data, sensor data, and online click-streams.
Much of this data is append-only and usually analyzed many times
over the course of their lifetime. Many of the features available in
database systems, such as ACID guarantees, are often not needed.
Moreover, database systems require that a schema be clearly de-
fined, and data be loaded into the system before it can be used, a
time and effort overhead often deemed unnecessary for this type of
data.

The types of data sets listed above can often be extremely large
(terabytes to petabytes in size), and therefore distributed file sys-
tems are increasingly being used for storing them and even serv-
ing as an analytical platform. Perhaps the most well-known of
these systems is Hadoop, which bundles an open source version of
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Google’s distributed file system called HDFS with an implemen-
tation of a MapReduce framework for data analysis. Hadoop (and
the rapidly growing ecosystem around it) is becoming increasingly
popular as a platform for data analysis.

Hadoop is extremely scalable and has a low “time-to-first anal-
ysis”: as soon as data are produced, they are available for analysis
via MapReduce jobs. This is in contrast with database systems that
require data to be loaded before SQL queries can be run. Hadoop
trades cumulative long-term performance benefits for quick initial
analysis: recent work comparing the performance of Hadoop with
database systems demonstrates that once data have been loaded,
database systems take advantage of their optimized data layout to
significantly outperform Hadoop[15].

Data preparation for database systems involves a non-trivial hu-
man cost (data modeling and schematizing) that is quite different
from the tunable computational costs of copying, clustering and in-
dexing[11]. If a user is not intimately familiar with the data and
understands the meaning of only a few fields, he/she is unlikely
to take the responsibility of generating a schema for the data. For
example, a new member of a research group that inherits a simu-
lation program written by a PhD student who has since graduated
is unlikely to understand the program well enough to generate a
schema for the program’s output. Similar issues exist for a scientist
that wants to analyze the output of experimental data produced by
a machine whose manufacturer’s documentation is unavailable, or
a systems administrator who understands the meaning of only the
first few fields. These users prefer to work in schema-free environ-
ments, writing scripts to process only the fields they understand.
Furthermore, going the through the documentation of the database
system to figure out the right commands to load the data from the
file system to the database system is an additional annoyance that
users prefer to avoid.

Our goal in this paper is to describe Invisible Loading: a scheme
that achieves the low time-to-first analysis of MapReduce jobs over
a distributed file system while still yielding the long-term perfor-
mance benefits of database systems:

1. We provide a mechanism for users to separate parsing code
from data-processing code in MapReduce jobs. Users are not
required to parse any additional attributes beyond what they
already are familiar with and know how to parse (see Section
2). (If the data is already stored using Avro, ProtocolBuffers,
or HCatalog, this step can be avoided).

2. We reduce the loading overhead by only copying some ver-
tical and horizontal partitions of the data into the underlying
column-store database system (in this paper we use Mon-
etDB [13]). We introduce two new points in the ‘upfront
loading overhead cost vs. better cumulative performance’
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tradeoff space, and compare them experimentally with one
another and with traditional implementations that sit at the
extreme edges of this tradeoff (see Section 3).

3. We introduce an Incremental Merge Sort technique to incre-
mentally reorganize data based on selection predicates used
to filter data (see Section 2.2).

4. We manage the loading, reorganization, and querying of dif-
ferent columns that are at different stages of the loading or
reorganization phases. (see Section 2.3).

We also provide a library of operators that are capable of process-
ing data no matter where they might be located (in the distributed
file system or in the database system). User jobs written using these
libraries achieve the most performance benefits (see Section 2.1.1).

We focus on the problem of loading data from a distributed file
system to a shared-nothing parallel database system. We require
that the database system and the distributed file system are located
on the same set of nodes in the cluster. We can therefore load data
from each node of the distributed file system to the corresponding
node of the parallel database system without shipping any data over
the network. This allows us to avoid the problem of global data
sorting: we focus only on how to cluster data locally within each
node of the parallel database system. Therefore, the techniques
presented in this paper are also applicable to loading data from a
single machine file system to a database system sitting on the same
machine.

Before we discuss the architecture and implementation details
of Invisible Loading, we provide a primer on the components of a
Hadoop job and column-stores in the next section.

1.1 Background
The Anatomy of a Hadoop Job. The main components of a

Hadoop job are its map and reduce functions. A map function pro-
cesses one key-value pair at a time to produce zero or more key-
value pairs. On each Hadoop node, a Map task executes the map
function over an individual split of the data set. If a reduce func-
tion is specified, the key-value pairs produced by the Map tasks are
sorted and shuffled by key across one or more Reduce tasks. The
user could also optionally specify configure and close procedures.
A Map task executes the configure procedure before the map func-
tion. After the map function consumes its entire data split, the close
procedure is executed. The user also specifies the data set to pro-
cess, which could be one or more files that are managed by HDFS
and the InputFormat to use. The InputFormat determines how a
data set is logically split and how to read in its contents. Many
InputFormats do not provide parsing functionality: in these cases,
parsing is intermixed with data processing in map functions.

Column-store Database Systems. Column-stores map relational
database tables to disk column-by-column instead of row-by-row:
this enables each column to be accessed independently without
having to waste time reading other irrelevant columns. The savings
in I/O costs often yield significant performance improvements for
analytical workloads that scan only a subset of database columns
per query. However, for point lookups and updates, a column-
oriented data layout is not optimal. Although column-stores store
each column separately, they must still retain the ability to recon-
struct tuples by stitching together values from different columns.
The most common technique is to make sure that the ith value in
each column comes from the ith tuple in the relational table. Tu-
ple reconstruction can then quickly occur by simply doing a linear
merge of the columns. Another technique is to maintain a tuple
identifier (OID) with each column value, and use this identifier to
match up values across columns.

2. INVISIBLE LOADING
Our goal is to move data from a file system to a database sys-

tem, with minimal human intervention (writing MapReduce jobs
using a fixed parsing API) and without any human detection (no
visible increase in response time due to loading costs). Our idea is
to piggyback on special MapReduce jobs written by users, lever-
aging the code used for tuple parsing and extraction to invisibly
load the parsed data tuples into the database system. Our specific
goals are: (i) The user should not be forced to specify a complete
schema, nor be forced to include explicit database loading opera-
tions in MapReduce jobs. (ii) The user should not notice the addi-
tional performance overhead of loading work that is piggy-backed
on top of the regular analysis.

Invisible Loading works as follows:

1) Data are initially stored in the Hadoop Distributed File Sys-
tem (HDFS). These data are immediately available for analysis
using Invisible Loading (IL) Hadoop jobs. Database loading oc-
curs as a side-effect of executing MapReduce jobs over the data in
HDFS. We leverage the runtime scanning and parsing performed
by a job to simultaneously load the parsed data into a database
system. Section 2.1.1 discusses implementation details that im-
prove loading performance and ensure consistency. Each time a
node accesses local HDFS data, we load the local partition of the
parallel database system with these data. Therefore, all loading
occurs locally with no data transfer between nodes.

2) We ensure users do not notice a loading cost overhead by only
loading a vertical and horizontal partition of the data per job (Sec-
tion 2.1.2). We also reorganize data gradually based on data ac-
cess patterns (Section 2.2).

3) As data gradually migrate from HDFS into the database sys-
tems, jobs are redirected to access pre-parsed horizontal data par-
titions from the database for their input instead of scanning and
parsing data from HDFS. Hence, as more jobs access the same
data set, more of it is migrated to the database system, resulting in
performance improvements due to the more efficient data access
provided by the database system (Section 2.3).

We now describe in detail certain aspects of our system imple-
mentation:

2.1 Implementation Details
The core of the Invisible Loading system is an abstract, polymor-

phic Hadoop job, InvisibleLoadJobBase, that hides the process of
data loading from the user. It is abstract, since it requires users to
implement the parsing and processing functions of a map function,
and it must be configured like a typical Hadoop job. It is polymor-
phic, since it dynamically self-configures to modify its behavior as
data migrate from the file system to the database systems. We will
refer to a concrete extension of the InvisibleLoadJobBase as an IL
job.

2.1.1 Leveraging Parsing Code
Our first objective is to leverage the parsing code that exists

within the map function for database loading. In particular, we
would like to inject a load statement in between the parsing and
processing phases of the map function: as soon as an input tu-
ple is parsed, we load the parsed attributes of the tuple into the
database and then continue processing it. There are two approaches
to achieving this objective. One approach is to perform complex
static code analysis, such as used in HadoopToSQL [12] or Mani-
mal [3], to differentiate the parsing from the processing code seg-
ments of a map function and then rewrite the function to parse,
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load, process. Analyzing code at a logical level, however, is non-
trivial and error-prone: parsing can be mistook for processing of a
single-attribute tuple.

We opt for a simpler approach: we impose a parse-process struc-
ture on IL jobs. The user configures the IL job with a Parser object
that reads in an input tuple, extracts the attributes from the tuple rel-
evant for the analysis, and returns these attributes through a simple
getAttribute(int index) interface. The user then writes the map func-
tion to take in as input the parser object instead of the usual key-
value pair. The IL job manages the flow of input tuples through the
parser object into the load process and finally into the map function
defined by the user.

Tables in the database are identified by the source data set and
the Parser implementation used to extract the data. This results in
the following flexible schema for any data set with n attributes:

Table name: <file_name>_<parser_name>;
Schema: (1 <type>, 2 <type>, ...,

n <type>);

Since different parsers could extract different tuples from the
same data set, we store different tables for different parser - data
set combinations. Section 2.1.2 discusses this in detail.

The underlying column-store database system generates a hid-
den address column to maintain a mapping from the loaded data to
the HDFS file-splits. The initial loading sequence of the file-splits
fixes the address range associated with each split: If a file with two
splits F1, F2 has x tuples in each split and the initial loading se-
quence was F2, F1, then the address range [0 − x) is associated
with split F2 and the address range [x − 2x) is associated with
split F1. The address ranges associated with each split are stored
in a catalog. The address column enables the alignment of partially
loaded columns with other clustered columns (see Section 2.3).

The catalog also maintains a mapping between a data set and
one or more tables that contain data loaded from the data set but
were extracted using different Parsers, and keeps track of loading
progress.

The configure function of an IL job first checks to determine if
an entry exists for a particular data set - parser combination. If not,
it issues a SQL CREATE TABLE command. If an entry exists, it
determines which HDFS file splits and attributes have been loaded
into the database system. If the required data is already loaded, the
IL job self-configures to read its input from the database system.
Since data in the database system are pre-parsed, the IL job simply
replaces the Parser object with a Dummy Parser. Otherwise, the
IL job parses and loads the data and then applies the map function.
There are two implementations of the injected load operation: a
direct load and a delayed load.

In a direct load, we immediately load the parsed attributes of
every input tuple as soon as it is scanned and parsed. We only
utilize a direct load if the underlying database system enables effi-
cient streaming inserts. After the map function consumes all inputs
from a split, the close procedure updates the catalog with informa-
tion about the HDFS splits and the attributes loaded, as well as the
Parser implementation used to extract the attributes and then com-
mits the inserts. This ensures consistency through an atomic load:
if a map task fails, then no tuples are committed into the database
and on a re-run of the map task, loading will not result in duplicates.

In a delayed load, we simply write the parsed attributes to a tem-
porary memory buffer (spilling to disk if necessary) and in the close
procedure we execute a SQL ‘COPY’ command to append the file
from the memory buffer into the database table. For the MonetDB
system we found that the delayed load was more efficient than the
direct load.

Imposing a parse-process structure is common in several MapRe-
duce environments: users explicitly define the parsing process in
PigLatin[14] using “LOAD ... USING <parser> AS ...” and in
SCOPE[4] using “EXTRACT ... FROM ... USING <parser>”.

Prior work on systems that split execution across Hadoop and
database systems [1] have found that in order to achieve the full per-
formance potential of using database systems as the storage layer
instead of HDFS, the system must push as much as possible of the
processing into the database (instead of simply using the database
for data extraction). We provide a basic library of operators, such
as filter, aggregate, ... etc, that behave differently depending on the
data source. Several MapReduce programming environments, like
PigLatin [14], provide similar libraries of operators. Such libraries
generally facilitate the user’s programming task.

Even if a user chooses not to use these libraries, the efficient
data scans provided by column-store database systems provide a
performance advantage over vanilla Hadoop scans. Scanning two
columns out of five from a 2GB data set using a database system
takes a 170 seconds, whereas it takes 300 seconds in Hadoop.

2.1.2 Incrementally Loading Attributes
Our second objective is to incrementally load attributes instead

of loading all attributes extracted by the Parser. By only loading the
attributes that are actually processed, we reduce the overall over-
head of loading per job. In addition, we do not waste effort loading
attributes that are never processed by any Hadoop job. Further-
more, users might prefer not to write a complete parser for a data
set if they are not intimately familiar with how data were gener-
ated. Therefore, loading can occur despite incomplete or incorrect
parsing code.

Since the catalog contains information on the loaded attributes,
the IL job utilizes this information to determine which attributes
if any, need to be loaded into the database. If new attributes need
to be loaded, the configure procedure of each Map task issues an
ALTER TABLE command to modify the database schema.

We illustrate the process with an example: two IL jobs are ex-
ecuted in sequence, the first job processes attributes a, b, c and
the second job processes b, c, d. When the first job terminates,
the database is loaded with a horizontal partition of the attributes
a, b, c. The catalog reflects the current database state. When the
second job executes, it examines the catalog and intersects the set
of partially loaded attributes with the set of attributes it processes
and determines that a horizontal partition of attribute d needs to be
loaded. It, then, self-configures its load operations to include at-
tribute d. The configure procedure issues an “ALTER TABLE ...
ADD COLUMN (d, ...)”.

The size of the horizontal partition loaded per IL job is a system-
configured parameter and is specified as a fraction of the HDFS file.
If the system-configured parameter is 1/8 and an HDFS file has 32
splits, then each job will load an unloaded horizontal partition of a
subset of attributes from four file splits.

To efficiently add a column to an existing table, we use column-
stores. A traditional row-oriented database physically stores a tu-
ple’s attribute-values together. Therefore, altering the schema typi-
cally requires a complete re-write of the table in order to make room
for the newly loaded (not null) attributes. However, a column-store
does not need to physically restructure the table, since each column
is stored separately.

2.2 Incremental Data Reorganization
So far, we have only discussed data loading in terms of data

copy from the file system to the database system. We now explain
how we incrementally reorganize data based on selection predicates
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used in the filter operator we provide for users.
In general, in order to optimize the performance of a traditional

database, a (highly paid and skilled) database administrator deter-
mines which indices are necessary given the current query work-
load. Index selection is a hard database design problem: wrong
indexes result in poor query execution plans and high data up-
date costs. Moreover, ad-hoc queries complicate the administra-
tor’s task. To address this problem, self-tuning databases monitor
query workloads and query execution plans and create or remove
indices in response [5]. Traditional indices, however, offer an all-
or-nothing service: until data are completely indexed, no data ac-
cess benefits exist, and while data are being indexed, the overhead
of indexing either interferes with the query execution or brings
querying to a standstill (if tables need to be locked). In addition,
complete index creation can take days to complete depending on
the size of the data set.

Our technique, Incremental Merge Sort, is based on the basic
two-way external merge sort algorithm1.

The basic two-way external merge sort works as follows:

1) First, a column of n tuples is broken down into k slices, such
that each slice fits in memory. For simplicity, assume k is a power
of 2, k = 2a.

2) Each slice is then sorted in-memory using any efficient, cache
conscious, in-memory sorting algorithm such as quicksort or radix-
sort

3) Two slices are merged at a time to create a larger sorted slice.
The entire column is sorted after k − 1 merge operations. In the
first phase, k/21 merge operations perform 2∗n/k tuple compar-
isons each. In the second phase, k/22 merge operations perform
22 ∗ n/k comparisons and so on. The last merge operation per-
forms n comparisons: 2a ∗ n/k = 2a ∗ n/2a = n.

The standard two-way external merge sort performs for every
merge operation in a given phase, twice the amount of work it per-
formed in each merge operation of the previous phase. Hence, the
amount of effort, measured as query response time, exponentially
grows until the data are completely sorted. This exponential growth
behavior defeats the key feature of any incremental strategy: per-
form equal if not less effort for any query in comparison to the
previous query. Therefore, to maintain a monotonically decreas-
ing query response time, each merge operation has to perform a
bounded number of tuple comparisons. Our variant operates like
external merge-sort with an added split step:

1) Partition a column of n tuples into k sorted slices. In our initial
load step, we maintain a one-to-one relationship between logical
file splits and sorted slices. After sorting each slice, we calculate
the range of the data. i.e. the smallest and largest value. From
this range, we calculate a split-bit for the first phase of incremental
merge sort. This is equivalent to the highest power of two that is
less than the largest value. Therefore, if our data range is [0,15],
the split-bit is 810 or 10002.

2) The algorithm then goes through log k phases of k/2 merge and
split operations that process on average 2∗n/k tuples. We perform
the merge operation as usual except we split our results into two
new slices based on whether the logical bit-wise AND of the tuple
and the split-bit is 0 or 1. This step is similar to the partitioning step
in radix-sort. Once a phase is complete, the split-bit is right-shifted
(or divided by two), for the next phase. This ensures that the two
1We describe all algorithms in terms of sorting an integer column, even
though the approaches extend to any data type.
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Figure 1: Incremental Merge Sort on a column of four slices.

newly created slices represent disjoint ranges where one key range
is larger than the other. At the end of the first phase, exactly half the
slices contain key ranges larger than the split-bit — this represents
a major partition in the data: slices from one partition need not be
merged with slices of the other partition as they do not overlap. At
phase p, where p ∈ [1, log k], a slice i, is merged with slice i + p,
if i has not already been merged.

3) After k/2 ∗ log k steps, the data are completely ordered with each
slice containing a contiguous data range. A simple index holding
only k entries describes the distribution of key ranges in each slice.

Figure 1 illustrates the operation of incremental merge sort over
four slices of slightly skewed data in the range [0, 15].

The selection predicate determines which column is used to or-
ganize the entire data set. At data loading, we determine this col-
umn based on the filtering predicate used in the IL job. For exam-
ple, if the first job processes tuples with attributes a, b, c, d that pass
a selection predicate on a, then we order the data set on attribute
a. If another job processes tuples with attributes b, d that pass a
predicate on b, we create a physical copy of columns b, d and we
incrementally order these columns on b. This approach is similar
to cracking [9, 10], which creates a new cracker column every time
an attribute is used as the selection attribute. See Section 2.3 for
more details. Our strategy is not as adaptive as cracking since it is
not query driven: all tuples are treated with equal importance even
if a certain key range is more heavily queried. There is a straight-
forward extension to this basic algorithm that allows the adaptive
merge and split of slices that fall within a heavily queried key range.

If data are skewed, certain slices can be much larger than others.
This means more effort is spent merging and splitting these slices.
To ensure a bounded amount of re-organization work per query, we
spread each merge-split operation over multiple queries by bound-
ing the number of tuples processed by each query to at most 2∗n/k
and preserving a cursor that points to the next tuple that needs to be
processed in a partially-processed slice.

The final output after all incremental reorganization has taken
place is a set of sorted runs and an index over them that can be
used to create a completely sorted scan of the data. If the col-
umn is memory resident, the process stops here (instead of shuf-
fling around the slices to ensure consecutive slices are contiguous),
since slices are sufficiently large, and the overhead of a random in-
memory jump to the next slice (when scanning a column in sorted
order) is small enough that it does not warrant the complete copy of
a column to ensure consecutive slices are contiguous. However, if
the column is not memory resident, the overhead of a random disk
seek when reading slices from disk is much larger. Therefore, the
slices are reorganized step-by-step (using a straightforward incre-
mental process) to ensure a contiguous sorted order on storage.
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Incremental Merge Sort easily integrates compression. Since
slices are sorted as soon as they are loaded, run-length encoding
(RLE) could be applied immediately to the sorted column. This
not only reduces the size of the slice but also the number of sub-
sequent comparisons that occur while merging data. Differential
compression, dictionary encoding and similar techniques that rep-
resent data with order preserving symbols of fewer bits could be
applied to reduce the memory size of each slice. The choice of
which compression scheme to use depends on whether the system
is I/O or CPU limited. More aggressive compression schemes will
fit more data per slice benefiting an I/O limited system but at the
expense of higher CPU costs, especially if decompression is nec-
essary for processing. In section 3.3, we empirically evaluate the
benefit of integrating a lightweight compression scheme with data
reorganization. In addition to data compression benefits, Incremen-
tal Merge Sort also supports reorganizing variable-width data as the
merge operation reads data from the slices in a single pass in se-
quential order and sequentially writes data to new slices in a single
pass.

2.3 Integrating Invisible Loading with Incre-
mental Reorganization

The frequency of access of a particular attribute by different
users determines how much of it is loaded into the database sys-
tem. Filtering operations on a particular attribute will cause the
database system to sort the attribute’s column. Therefore, as differ-
ent users submit jobs that access different subsets of the data, the
set of loaded columns could diverge from each other in terms of
completeness and order.

We rely on two basic tools, address columns and tuple-identifiers
(OIDs) to manage the querying of columns at different loading and
reorganization stages. We use address columns to track the move-
ment of tuples, due to sorting, away from their original insertion
positions. We use tuple-identifiers (OIDs) to determine how much
of a column has been loaded and to align the column with other
columns that have different sorting orders.

The following simple rules deal with the different loading and
reorganization states different columns could exist in:

1) If a set of columns are completely loaded and sorted with the
same order, then they are all positionally aligned with each other
and a simple linear merge suffices when reconstructing tuples from
these columns.

2) Columns that are partially loaded have their OIDs in insertion
order. To reconstruct tuples from completely loaded (and perhaps
reorganized) columns and partially loaded columns, a join is per-
formed between the address column of the index column and the
OIDs of the partially loaded columns.

3) If a column needs to have a different sorting order, then a copy
of that column is created (and other dependent columns). An ad-
dress column is generated to track the movement of tuples from
their original insertion orders to their new sorting orders.

We illustrate how we integrate invisible loading with incremental
reorganization through the application of these rules using case-
by-case examples of different combinations of queries from three
different users named: X, Y, Z.

Consider the data set with four attributes a, b, c, d. User X is
interested in attributes {ā, b}, where ā denotes a selection predicate
on a. User Y is interested in attributes {ā, c}. User Z is interested
in attributes {b̄, d}. Assume the file has only four splits per node
and the horizontal-partitioning fraction is 1/4, so at most one split

is loaded per job per node. The number of slices k is equal to the
number of splits.
Case 0: XXXX-YYYY. For each X query a horizontal partition
of attributes {a, b} is loaded and immediately sorted by attribute
a. After four of user X’s queries, attributes {a, b} are completely
loaded. The hidden address column tracks the movement of tuples
due to the (i) individual sorting of slices by attribute a that occurred
after loading each slice and (ii) the merge-split operations that were
triggered by the third query as two slices were already loaded by
then. Since b is positionally aligned with a, the tuple identifier
(OID) values of a, b are not materialized.

Query Y starts the loading of attribute c. The first query Y is
processed entirely from the file system with a single partition of c
loaded into the database.

The second Y query will execute the following relational expres-
sion in the database system (f(a) is a predicate on a):

πa,c

(
σf(a)(a,addra)./(oidc,c)

)
(1)

The OIDs associated with column c fall within the address range as-
sociated with the first loaded partition. The remaining three splits
are processed entirely over the file system and a second partition is
loaded. All completely loaded columns that depend on a, namely
b, are kept aligned with a. Therefore we make use of the two tuple
re-construction techniques: positional alignment when retrieving
tuples from a and b and tuple-identifier (OID) matching when re-
trieving tuples from a and the partially loaded column c.

After four of user Y’s queries, column c is completely loaded.
The database system then positionally aligns column cwith column
a and drops its materialized OID values.

We evaluate the effect on query response time of loading an addi-
tional attribute to a table in Section 3.2.2. We compare this strategy
with the approach of loading an entire column in one job and im-
mediately aligning it with the other completely loaded columns.
Case 1: XX-YYYY-XX. The first two X queries cause the system
to behave as in case 0. The following two Y queries will load only
attribute c from the first two file-splits. Column c has materialized
OID values and is not positionally aligned with column a. The
relational expression (1) (above) is used to query columns a, c.

After the third Y query, another partition of attributes a, c is
loaded. The newly added slice of column a is immediately sorted
and the first two loaded slices of a are merge-split. Since column
b is no longer aligned with a, its OID values are materialized from
the address column. After the fourth Y query, a and c are com-
pletely loaded. Column c is then positionally aligned with a, and
its OID values are dropped.
Case 2: {Case 0 | Case 1} - ZZZZ. The first query Z loads a parti-
tion of column d into the database system. The second query Z se-
lects tuples {b, d} filtered by b from the loaded database partition of
{b, d} using the following relational expression: πb,d

(
σf(b)(b,addra)./(oidd,d)

)
.

The selection on column b initiates the incremental reorganiza-
tion of column b. A copy of b and the address column is created
- b′, addrb. Column b′ is then sliced, with each slice individually
sorted and so on as specified by incremental merge sort. Column
addrb keeps track of the movement of values within column b′.
After the four Z queries, column d is completely loaded and is po-
sitionally aligned with b′. Any future Z queries will be satisfied
using columns b′, d.
Case 3: XX-ZZZZ-XX. After the fourth Z query, the database
system has a partially loaded column a with an associated address
column addra. Columns b′, d are completely loaded with address
column addrb. The following X queries load the remaining par-
titions of attribute a. The equivalent partitions of column b are
copied from within the database system using the following ex-
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pression: πb′
(
addra./(addrb,b′)

)
. Columns a, b are, therefore, kept

positionally aligned.

3. EXPERIMENTS
We ran several experiments in order to carefully examine the

tradeoffs and performance of invisible loading. These experiments
use a complete load and sort of the entire data set into the database
system (“SQL Pre-load”) and MapReduce jobs over the file sys-
tem (“MapReduce”) as comparison points against which to com-
pare invisible loading. It is expected that SQL Pre-load will incur a
significant upfront performance overhead, but will have long term
performance benefits, while MapReduce will have zero upfront per-
formance overhead, but very poor cumulative performance over the
course of many queries. Therefore, we compare various versions
of invisible loading that serve as a compromise between these ex-
tremes (the different loading and data reorganization strategies that
we will experiment with are outlined in table 1). These versions
of invisible loading vary the fraction of data loaded per MapRe-
duce job along two dimensions: vertically, (i.e. only load a subset
of the parsed attributes) and horizontally (i.e. only load horizontal
partitions of the data set).

We evaluate both the short- and long- term benefits of each ap-
proach by measuring both query response time and cumulative per-
formance. The experiments consist of a sequence of MapReduce
jobs that perform similar analysis repeatedly over the same data
set. We chose this simplistic experimental workload because the
particular type of analysis does not affect our strategies, all that
matters is the data access patterns. We vary our data access pat-
terns through changing the column projections and tuple selection
predicates and present these extended results in Section 3.2.2.

We then evaluate with much finer detail our incremental merge
sort data reorganization strategy. We compare it to pre-sorting and
cracking, MonetDB’s data reorganization technique [9]. Since all
schemes have already copied the data into the database system be-
fore data reorganization begins, this set of experiments is run en-
tirely within the database system so that the differences between
the different approaches can be entirely attributed to the incremen-
tal reorganization algorithms.

3.1 Experimental Setup
Hardware: All experiments were run on a quad core machine with
12GB of main memory, a single 250GB disk partition and a sin-
gle 200MB RAM disk partition. A single machine is sufficient
for the following reasons: all our loading and data re-organization
operations occur locally during the map phase. All strategies that
we evaluate require that the parallel database be configured such
there there is a one-to-one correspondence of distributed file sys-
tem nodes to parallel database nodes (these nodes are collocated
on the same physical machine). All strategies compared in the ex-
periments are “embarrassingly parallel”: there is nothing extra to
be learned from running more than one of these completely inde-
pendent tasks (there is no global redistribution of data whatsoever).
Even loading catalogs are maintained locally — there is no non-
linear cost associated with updating a centralized catalog.
Software: Hadoop (0.19.1) was used to evaluate the performance
of MapReduce executing over a distributed file system (HDFS).
MonetDB 52, was used as the column-oriented database system
into which data were loaded from HDFS. All IL jobs utilize a li-
brary of basic functions: a TabParser, and a Filter function. The
maximum number of concurrent Map or Reduce tasks was con-
figured to one. This restriction was imposed to enable accurate

2MonetDB: 20-Jan-2010 developer’s build

Strategy Description

1 SQL Pre-load
Pre-load the entire dataset into the database using SQL’s
‘COPY INTO’ command. Data are sorted after loading
using ‘ORDER BY’.

2 Incremental Re-
organize (all)

Load the entire dataset into the database system upon its
first access, but unlike Pre-load above, do not immedi-
ately sort the data. Instead, data are incrementally reorga-
nized as more queries access the data.

3
Incremental
Reorganize
(subset)

Same as Incremental Reorganize (all), except that only
those attributes that are accessed by the current MapRe-
duce job are loaded.

4 Invisible Load-
ing (all)

The invisible loading algorithm described in Section 2,
except that all attributes are loaded into the database (in-
stead of the subset accessed by a particular MapReduce
job).

5 Invisible Load-
ing (subset)

The complete invisible loading algorithm described in
Section 2.

6 MapReduce

Process the data entirely in Hadoop without database
loading or reorganization. This is the performance the
user can expect to achieve if data are never loaded into a
database system

Table 1: Loading Strategies

profiling of the systems involved without the overhead of processes
competing for I/O or memory resources. All systems were injected
with appropriate profiling statements to keep track of the precise
time spent in loading, sorting, merging, scanning or selecting data.
Data Set: The data set consists of five integer attributes and a total
of 107,374,182 tuples. The attributes consist of randomly gener-
ated positive integers. In 32-bit integer representation, the binary
size of the data set is 2 GB. In HDFS, the data are contained in 32,
tab-delimited, text, files of 163 MB each (a total size of 5.1 GB).
HDFS block size is set to 256 MB, hence each Map task processes
an entire 163 MB split.

3.2 Loading Experiments
The first experiment models a scenario where a user writes a

simple job to processes two attributes (a0, a1) from an HDFS file.
The user filters tuples by a selection predicate on a0; a0 lies in the
range [lo − hi]. The range results in selecting 10% of the data.
The user uses a TabParser, since the file is tab-delimited, extracts
the first and second attribute and filters out the required data. The
user re-executes the same job with different ranges. The ranges are
randomly selected but maintain 10% selectivity.

The first three strategies from Table 1 immediately copy all the
data that need to be processed into the database system. Therefore,
the filter operation is pushed entirely into the database layer, and
these strategies only differ in how (and when) they reorganize data
within the database system.

However, for the invisible loading (IL) strategies, additional data
are loaded from the file system into the database system for each
job that the user executes, until the data are completely loaded. IL
jobs therefore process data from both HDFS and the DBMS: loaded
data are processed in the database system and the remaining data
are processed within Hadoop (over HDFS).

Figure 2 shows the response time as a sequence of range-selection
jobs are executed. The first job represents a cold start: caches and
memory are cleared and HDFS reads files from disk into memory.
The remaining jobs are hot executions: all required data are con-
tained within the 12GB main memory.

A complete data pre-load and organization leads to the worst ini-
tial response time of about 800 seconds. The baseline MapReduce
response time is only 300 seconds. As we move from 800 to 300
seconds, each loading strategy drops a certain amount of loading
and reorganization work. First, loading all five columns into 32,
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Figure 2: Response time of repeatedly executing selection queries over
attributes a0, a1.

individually sorted, database partitions (“Incremental Reorganiza-
tion (5/5)”) leads to a query response time of 680 seconds. This
120-second decrease is due to relaxing the constraint of completely
sorting the data at one go. Instead, each partition is ordered by a03.
Only after 80 selection queries are issued, is a complete ordering
achieved. We gain an additional 200-second decrease in response
time if we only load the two processed attributes, a0, a1, instead of
the entire data set (“Incremental Reorganization (2/5)”). Not only
is the size of data smaller, but the number of column alignment
operations per partition is reduced from five to two4.

The goal of invisible loading is that the user should not recog-
nize any major slowdown in the initial query. When only a small
fraction of data is loaded from the file system to the database sys-
tem per job we get closer to this goal. Loading 1/8th of the data
set, or four partitions per job (“Invisible Loading (5/5)”), drops the
initial query response time to 350 seconds. If only two attributes
are loaded (“Invisible Loading (2/5)”), the response time becomes
310 seconds, only 3% more than the baseline MapReduce time. By
the second query, response time is already lower than MapReduce
as 1/8th of the data are now processed in the database at a much
faster rate than MapReduce. By the eighth query, 7/8th of the data
are loaded in the database and the last four partitions are processed
by MapReduce while being copied into the database. Incremental
reorganization happens along with loading. Therefore, like the “In-
cremental Reorganization” strategies discussed above, a complete
ordering is achieved after 80 queries are issued.

Once data are loaded into the database systems, query response
time stays within 35 seconds regardless of whether the DBMS is
physically reorganizing the data or not. This is because the queries
for these experiments are expressed in MapReduce (not SQL), so
Hadoop is still used to do the analysis after it reads data from the
parallel database. Hadoop, a batch-oriented data processing sys-
tem, is not well optimized for interactive queries and takes (for our
setup) an average of 35 seconds per query just to get it started.
Therefore, for these queries at 10% selectivity, the overhead of
Hadoop overwhelms the time spent in the database system. A
merge operation of two slices consisting of two columns only takes
450 milliseconds in the database system, and a selection operation
takes about 750 milliseconds on average. This is why we remove
Hadoop and its overhead when comparing reorganization strategies
in further experiments (Section 3.3).

3.2.1 The Cumulative Cost of not Loading Data
3MonetDB uses a quicksort algorithm to sort columns. Sorting smaller
partitions of a column leads to better cache locality than sorting an entire
410MB column at one go.
4Note that in addition to the actual columns, a hidden address column is
generated.
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Figure 3: Cumulative cost of repeatedly executing selection queries
over attributes a0, a1 (Experiment 1).

The short-lived immediate gratification of running MapReduce
jobs over the distributed file system has long-term damages. The
cumulative advantage of invisible loading is easily deducible from
Figure 2.

As seen in Figure 3, the cumulative cost of executing MapRe-
duce jobs over the distributed file system is an order of magnitude
higher than any of the five data loading strategies after only eight
jobs. This is because each job must scan and parse in a brute-force
fashion the entire data set without any making any progress towards
preparing the data for future queries. Invisible Loading strategies
do not pay the high upfront costs of pre-loading. However, because
it must still do some subset of work over the distributed file sys-
tem until the entire data set is loaded, it incurs a higher cumulative
cost than the alternative strategies. The incremental reorganiza-
tion strategies have approximately the same cumulative effort as
preloading the entire dataset over the long run. This result strongly
supports our hypothesis that completely reorganizing data at one
go has little cumulative benefit over incrementally doing so, espe-
cially with analytical-type queries that access large segments of the
data. Finally, loading only two out of five attributes always leads to
better cumulative effort if none of the three unloaded columns are
ever accessed.

3.2.2 Selecting a Different Attribute on Loading
In this experiment, we drop the assumption that none of the other

columns are accessed, modeling a more realistic data access pat-
tern. We examine the cost of loading previously unloaded columns,
and catching them up to the reorganization that has taken place in
the previously loaded columns.

Suppose the user wants to process attributes (a0, a2) instead of
(a0, a1) where a0 lies in the 10% selectivity range [lo − hi]. The
three loading strategies that load all attributes into the database
whether or not they are accessed by a MapReduce job are not af-
fected by this change, since all columns have already been loaded
in the database and are aligned with each other. Partial loading
strategies (3 and 5 from Table 1), that have loaded only two out of
the five attributes, need not only to load the third attribute, but since
the already loaded columns have been incrementally reorganized,
additional work must be done to align this third column with the
already loaded database columns (See Case 0 in Section 2.3).

We compare the approach described in Section 2.3 with a naive
baseline solution that immediately loads and reorganizes the col-
umn that has not yet been loaded (instead of loading and reorganiz-
ing it incrementally).

Figure 4 illustrates the response time achieved by all strategies
when the user selects attributes a0, a2 at Job 84 (this number was
chosen since the first two columns have been completely reorga-
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Figure 5: Cumulative cost of selecting a different attribute than previ-
ously selected.

nized at this point, so this presents the worst case scenario for
catching up the new column with the already loaded columns). The
‘load-at-one-go’ strategy takes about 433 seconds (it is labeled as
“Incremental Reorganization (2/5)” on the figure since the first two
columns were loaded using the incremental reorganization tech-
nique). The total load and reorganize times spent in the database
are 76.1 and 35.1 seconds respectively.

The Invisible Loading strategy follows the same pattern of ini-
tially loading two columns. The eighth job includes the additional
reorganization cost of 15.2 seconds - this explains the slight upward
kink in the graph at job 91.

Figure 5 illustrates the cumulative cost of the different strategies.
Up to job 83, partial loading strategies were performing better than
there full load counterparts. As soon as a new column needs to be
loaded, we are pushed from 35 second response times to at least
290 seconds or the baseline MapReduce response time. Therefore,
both partial loading strategies overtake the full loading strategies.

If we examine time spent in the database system, however, the
picture changes: loading all five columns into 32 partitions has a
total cost of 302 seconds, individually sorting each partition has a
total cost of 28.6 seconds (total: 330.6 seconds). This compares
with a loading cost of 140.45 seconds and a sorting cost of 22.25
seconds for loading two columns. Loading the additional column
costs only 79 seconds and a complete reorganization costs 15.2 sec-
onds (total: 256.9 seconds). Therefore, even without including the
complete reorganization costs of reorganizing five attributes, par-
tially loading attributes does not overtake complete-loading.

Finally, Even if we were to load the remaining two attributes, the

cumulative rise in the partial loading strategies will not overtake
the cumulative cost of MapReduce, which is an order of magnitude
more costly than all loading strategies (as seen in Figure 5).

3.3 Reorganization Experiments
The aim of the reorganization experiments is (i) to analyze the

behavior of three different data reorganization strategies, crack-
ing (MonetDB’s default data reorganization strategy), incremental
merge-sort, and presorting, and (ii) to evaluate the benefit of in-
tegrating lightweight compression (RLE) with data reorganization
as the cardinality of data decreases. Cracking reorganizes column-
store data in an automatic, incremental, query-driven fashion [9,
10]. When a selection query is issued against a column, a cracker
column is created and optimized for the selection range. Data are
partitioned, or cracked, across the range and all values within the
selection range are contiguous. The cracked pieces contain disjoint
key ranges and within each piece data are unsorted. A cracker in-
dex maintains information on the key range of each piece. A key
property of cracking is that key ranges that are never queried are
never partitioned. Heavily querying a specific range with different
sub-ranges will create smaller pieces with finer grained key ranges
that are better represented in the cracker index.

As explained above, all experiments are executed completely
within MonetDB and assume the data have been loaded. There-
fore, we do not include the initial load and sort times and focus
only on the data reorganization operations that follow.

We generate three data sets, each with a single column of 108

integer values. Each data set models a different data cardinality5.
The first, high cardinality, data set consists of 20% unique values.
Values are selected uniformly at random from the range [0, 2 ×
107). The second data set consists of 1% unique values selected
from the range [0, 106). The, third, low cardinality data set has
0.1% unique values, with values selected from the range [0, 105).
For each of the data reorganization strategies we execute a sequence
of 1000 aggregation queries. Each query selects a random range
with fixed selectivity, and then sums all the values within the range.
We vary query selectivity from 0.1% to 10%.

Figure 6 illustrates a matrix of response time graphs where we
vary data cardinality along the columns and selectivity along the
rows. We plot moving average response times with a period of
four to eliminate noise and better highlight the trends. We will first
discuss the general performance of the different data reorganization
strategies in comparison to each other without compression. Then,
we will evaluate the effect of compression on query response time
for presorted and incrementally merge-sorted data.
Presorting: Since data are presorted, the selection operator exe-
cutes two binary searches to determine the end-point positions of
the selected range, and then returns a view of all the tuples within
the two positions. The aggregation operator simply scans and sums
all tuples in the view. Since no further data reorganization is re-
quired, the response time remains constant throughout the sequence
of 1000 queries. As selectivity increases, the query response time
increases proportionally to the increase in the amount of interme-
diate result tuples that need to be aggregated.
Cracking: In all graphs, cracking behaves consistently. Query
response times initially start at 650 milliseconds and within 10
queries drop an order of magnitude. Cracking swaps tuples in-
place such that all tuples that fall within the selection range are
contiguous. A view with pointers to the positions of the first and
last tuple in the range is then passed to the aggregation operator.
The first query causes cracking to copy the data into a new column,
5Cardinality refers to the uniqueness of data values contained in a particular
column.
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Figure 6: Matrix plot of aggregation queries with selectivity varied vertically across rows and data cardinality varied horizontally across columns.
Note: Incremental Merge Sort algorithms manage 64 slices.

the cracker column, and hence it is the most expensive query. Con-
secutive queries partition the column across the selection range. As
cracking continues, tuple movements are usually confined within
the boundaries of smaller sub-partitions of the column; hence query
response times decrease. As selectivity increases, the overall query
response time increases. This is due to the increase in the amount
of intermediate result tuples that need to be aggregated.
Incremental Merge Sort: At loading, data are sliced into 64 in-
dividually sorted slices. Incremental Merge Sort goes through six
phases of 32 merge steps each. Therefore, the entire data set is
completely ordered by the 192nd query and an observable drop in
query response time occurs then. At each merge step, two slices
of roughly 1.5 million tuples each are merged and split. Since,
the amount of reorganization work performed at each merge step
is roughly equal, query response times remain roughly constant.
There is, however, a slight, gradual decrease in response time as
the column morphs into slices of tight, disjoint ranges — the selec-
tion operator makes use of the range index to only access slices that
overlap with the selection range, instead of accessing all slices.

Once data are completely organized, query response time ap-
proaches, but never achieves, presorted response times. This, is be-
cause we maintain a sliced column organization. Therefore, if the
selection range spans multiple slices, the selection operator result-
set will consist of non-contiguous tuples and the aggregation opera-
tor has to navigate through multiple selection views instead of a sin-
gle view. Incremental merge sort consistently outperforms cracking
due to compression.

3.3.1 Compression and Response Times

Presorting with Compression: We implemented a simple RLE
compression operator in MonetDB that associates every value in a
column with a count of the number of times it appears consecu-

tively. Since data are sorted, the compressed column will only con-
tain distinct values and associated counts. We also implemented a
sum aggregation operator that operates directly on RLE encoded
data, without decompression.

With compression, each query (i) searches through less data, (ii)
produces a compressed intermediate selection result-set, and (iii)
takes advantage of the RLE format when aggregating data (i.e.
there is no decompression overhead). Therefore, query perfor-
mance with pre-sorted and compressed data is better than with pre-
sorted and non-compressed data. As the data cardinality decreases,
the amount of data that needs to be processed decreases proportion-
ally, hence query response times decrease proportionally.
Incremental Merge Sort with Compression: Figure 6 illustrates
two key trends: (i) with high cardinality, 20% unique tuples, inte-
grating compression with our data reorganization strategy is, ini-
tially, more costly in terms of query response time, (ii) query re-
sponse times descend in a “stepwise” fashion.

Before the first query is issued, all 64 slices are individually
sorted and run-length encoded. When data cardinality is high, the
average run-length of values in each slice is one. Since RLE as-
sociates an extra count with every value, the RLE-encoded slices
occupy more space than non-encoded slices. Therefore, initially
integrating compression with incremental merge sort is expensive
on high cardinality data sets. However, as soon as the average run-
length starts to increase, due to merging slices, the performance of
compressed incremental merge sort improves and outperforms its
non-compressed variant. At higher compression ratios, compressed
incremental merge sort outperforms cracking, non-compressed in-
cremental merge-sorting and non-compressed presorting through-
out the entire sequence of queries. This is because it reorganizes
and processes less data. The stepwise descent in query response
time occurs at the end of every merge phase. At the end of ev-
ery phase, the average run length of every value doubles and the
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size of the column is nearly halved6. Hence, the next merge phase
merges exponentially less data and query response time decreases
exponentially7.
Cracking: Cracking is not able to benefit from compression since
it does not keep data sorted within each range partition. Hence, the
average run-length remains very small in general.

4. SUMMARY
Our experiments indicate that invisible loading poses almost no

burden on MapReduce jobs, and makes incremental progress to-
wards optimizing data access for future analysis, yet maintains a
cumulatively low price in comparison to performing no data access
optimization. We show that Incremental Merge Sort still competes
with cracking in main-memory data reorganization of fixed-width
columns even though it targets a different data reorganization niche
than database cracking (variable-width, compressed and memory-
limited data). We also show that integrating lightweight compres-
sion into incremental data reorganization improves query perfor-
mance over low cardinality data sets.

Invisible loading is not a silver bullet to all loading problems. It
suffers from data duplication costs. Since, there is no automatic
scheme to determine if a particular file has been completely parsed,
files are never garbage collected after invisible loading completes.
Incremental merge sort spreads data reorganization over many queries.
This is beneficial only if most our data is short-lived as we don’t
waste effort reorganizing the entire data. However, by fine-turning
the fractions loaded per IL job and the initial number of sorted
slices k used by incremental merge sort, one could speed up or
slow down the reorganization process.

5. RELATED WORK
Our research work is influenced by and relates to the following

research areas:
In the research area of Schema Independent querying, we were

influenced by systems like Pig [14] of Yahoo and Swazall [16] of
Google. Pig executes over Hadoop and processes files in HDFS
without requiring predefined schemas. Instead, schemas are de-
fined at runtime as long as the user provides a parser that could
extract tuples from the raw data representation.

In our work, we address a very specific problem within the larger
Schema Evolution research, that attempts to transparently evolve
a database schema to adapt to changes in the modeled reality[6].
Using a column-store, we efficiently evolve a simple schema as we
incrementally add attributes. In our system, if a data set was parsed
by different parsers, two identical attributes could be considered
different by the catalog and maintained separately in the database.
However, by using a schema integration system like Clio [8], we
could eventually create a unified schema in the database and map it
to the different schema representations maintained in the catalog.

The work on Self-tuning Databases relates to our work in a com-
plementary fashion. Self-tuning databases monitor query work-
loads and query execution plans, and create or remove indices and
materialized views in response [5]. We could develop similar tools
that monitor how data in the file systems are accessed and suggest,
which data sets should be migrated to the database.

A recently developed incremental data reorganization technique
is Adaptive Merging [7]. Similar to cracking, adaptive merging is

6With non-uniform data distributions, query response time will decrease at
every merge phase but not necessarily in a stepwise fashion.
7The roughly equal step sizes are due to the log scale but each merge phase
takes an order of magnitude less time than the previous phase.

query driven and optimizes the organization of an index for selec-
tion ranges that are heavily queried. Adaptive merging does not
guarantee a monotonically decreasing effort spent in data reorgani-
zation as it is sensitive to the size of the result-set requested by a
query. If a query selects the entire range of the data, adaptive merg-
ing performs a complete sort of the data set. It, however, uses an
efficient external merge sort.

A recent research work enables users to write SQL queries di-
rectly over structured flat files and gradually transfers data from the
files to the DBMS [11, 2]. Our system derives schema, loading
and reorganizing operations from MapReduce scripts over (less-
structured) distributed files. Complementary to our system is Man-
imal [3], which uses static code analysis to apply relational opti-
mizations to map functions.

6. CONCLUSION
We have designed and evaluated a system that can achieve the

immediate gratification of writing MapReduce jobs over distributed
file systems, while still making progress towards the longer term
benefits of data organization, clustering, and indexing that come
with traditional database systems. Invisible Loading gives the il-
lusion that user code is operating directly on the file system, but
every time a file is accessed, progress is made towards loading the
data into a database system, and then incrementally clustering and
indexing the data. Experiments showed that the cumulative perfor-
mance of invisible loading is very close to the traditional technique
of loading all data in advance.
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