
Efficient Top-k Query Answering using Cached Views

Min Xie
Dept. of Computer Science,

Univ. of British Columbia
minxie@cs.ubc.ca

Laks V.S. Lakshmanan
Dept. of Computer Science,

Univ. of British Columbia
laks@cs.ubc.ca

Peter T. Wood
Dept. of CS and Inf. Syst.,

Birkbeck, U. of London
ptw@dcs.bbk.ac.uk

ABSTRACT

Top-k query processing has recently received a significant
amount of attention due to its wide application in informa-
tion retrieval, multimedia search and recommendation gen-
eration. In this work, we consider the problem of how to
efficiently answer a top-k query by using previously cached
query results. While there has been some previous work
on this problem, existing algorithms suffer from either lim-
ited scope or lack of scalability. In this paper, we propose
two novel algorithms for handling this problem. The first
algorithm LPTA+ provides significantly improved efficiency
compared to the state-of-the-art LPTA algorithm [26] by
reducing the number of expensive linear programming prob-
lems that need to be solved. The second algorithm we pro-
pose leverages a standard space partition-based index struc-
ture in order to avoid many of the drawbacks of LPTA-
based algorithms, thereby further improving the efficiency of
query processing. Through extensive experiments on various
datasets, we demonstrate that our algorithms significantly
outperform the state of the art.

Categories and Subject Descriptors

H.2.4 [Database Management]: System—query process-
ing

General Terms

Algorithms, Performance

Keywords

Top-k Query Processing, Top-k Query Answering using Views

1. INTRODUCTION
Top-k query processing has recently received a significant

amount of attention due to its wide application in informa-
tion retrieval, multimedia search and recommendation gen-
eration [32]. In many of these applications, one assigns to

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18–22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00

V1
tid rank score

t5 1 0.74
t3 2 0.66

t1 3 0.57

V2
tid rank score

t5 1 0.74
t6 2 0.59

t2 3 0.53

R
tid A B

t1 0.3 0.6
t2 0.4 0.5

t3 0.3 0.7

C

0.4

0.6

0.3

f1=0.1A+0.9B

k1=3

f2=0.1A+0.5B+0.4C

k2=3

(a) (b)

t4 0.5 0.3
t5 0.2 0.8

t6 0.6 0.5

0.5

0.8

0.7

Figure 1: (a) A relation R with three attributes A,
B, C; (b), two cached views V1, V2 which contain
top-3 tuples according to the the two score functions
f1(t) = 0.1t[A] + 0.9t[B], f2(t) = 0.1[A] + 0.5[B] + 0.4[C]
respectively.

each result tuple t a value or score using a score function,
which indicates the desirability or preference of t; and in-
stead of returning to the user all result tuples, the number
of which might be overwhelming, one returns only the k

most preferred tuples under the given score function, where
k is a small positive integer.

For the applications under consideration, typically a sim-
ple linear score function is used to aggregate the attribute
values of a tuple into a score, due to its intuitiveness [22,
30, 26, 43, 25, 45]. Figure 1 (a) shows an example rela-
tion R which contains 6 tuples over attributes A, B and
C. Consider a query Q1 which asks for the top-3 tuples
with the highest values under the score function f1(t) =
0.1t[A] + 0.9t[B]. The result is shown as (a cached view) V1

in Figure 1 (b).
While various efficient algorithms have been proposed for

processing top-k queries [27, 32], one significant limitation
is that they cannot take advantage of the cached results of
previous queries. E.g., consider the previous example query
Q1 whose result V1 is shown in Figure 1 (b). Suppose a
(possibly different) user subsequently asks the top-1 query
Q′ with the score function f ′(t) = 0.2t[A] + 0.8t[B]. Then,
as we will see in later sections, we can use the previous
cached result V1 to determine, without accessing the original
database R, that t5 is the top-1 answer for Q′.

Leveraging cached query results to scale up query answer-
ing has recently become increasingly popular for most large
scale websites. For example, the popular Memcached [4]
caching system has reportedly been adopted by many large
scale websites such as Wikipedia [12], Flickr [2], Twitter [9]
and Youtube [14]. The application of cached query results or
materialized views for speeding up query answering in rela-
tional databases, the so-called query answering using views

489

(QAV) problem, has been extensively studied (see [28] for an
excellent survey). This problem has been shown to have ap-
plications in data integration [36], query optimization [38],
and data warehouse design [42].

For top-k query processing, recently there have been some
initial efforts at using materialized query results for speeding
up query answering. In the PREFER system, Hristidis et
al. [30] consider the problem of how to select one best ma-
terialized view for answering a query. Their setting is quite
restrictive, as it cannot exploit multiple materialized views,
and it also makes a strong assumption that all attributes of
the underlying base table are always utilized for all top-k
queries. Overcoming these limitations, Das et al. [26] pro-
pose a novel algorithm, called LPTA, which is able to uti-
lize multiple materialized views for answering a top-k query.
Ryeng et al. [41] extend these techniques to answer top-k
queries in a distributed setting.

Though LPTA overcomes many of the limitations of PRE-
FER, unfortunately it still suffers from several significant
limitations. Firstly, the core techniques proposed in [26]
rely on the assumption that either (1) each top-k view is a
complete ranking of all tuples in the database, or (2) that
the base views, which are complete rankings of all tuples in
the database according to the values of each attribute, are
available. These assumptions may often be unrealistic in
practice.

Consider the example of finding top-k movies. There are
several popular websites which provide top-k lists of movies
based on different criteria. For example, Metacritics [5] pro-
vides a ranked list of (up to 5639) movies based on Metas-
core [6], which is aggregated from critics and publications
like the New York Times (NYT) and the San Francisco
Chronicle; IMDB [3] provides a top-250 list of movies based
on votes from their users; and RottenTomatoes (RT) [8] pro-
vides a top-100 list of movies based on the Tomatometer
score, which is calculated based on critics. Here, the top-
k lists on Metacritics, IMDB, and RT can be regarded as
materialized views. Because of the huge number of movies
available, it is impractical to obtain the complete ranking of
all movies from each of the sources, and for the same rea-
son, we cannot assume base views corresponding to the com-
plete ranking of all movies on each of the individual scores,
e.g, NYT score, are available. Consider the query that asks
for top-k movies according to an aggregation of NYT score,
IMDB score, and Tomatometer score. Since the only in-
formation we have access to is the top-k movies from the
Metacritics, IMDB, and RT, the technique proposed in [26]
cannot be used to answer this query. Similar examples can
also be found in other domains: finding the top-k univer-
sities based on university ranking lists from U.S. News [11]
and The Times [13]; or finding the top-k cars based on au-
tomobile ranking lists from U.S. News [10] and Auto123 [1].
The second issue with the LPTA algorithm proposed in [26]

is that it uses linear programming (LP) as a sub-procedure
to calculate the upper bound on the maximum value achiev-
able by a candidate result tuple, and the LPTA algorithm
needs to call this sub-procedure iteratively. It has been
demonstrated in [26] that for low dimensionality scenarios
(e.g., 2 or 3), the cost of this LP overhead is reasonable.
However, we will show in our experiments that for scenarios
with higher dimensionality, which we note is very common,
this iterative invocation of the LP sub-procedure may incur
a high computational overhead.

Finally, for both PREFER [30] and LPTA [26], a poten-
tially costly view selection operation is necessary. For exam-
ple, the view selection algorithm in [26] requires the simula-
tion of the top-k query process over the histograms of each
attribute, and the processing cost is linear with respect to
the number of views. This cost can be prohibitive given a
large pool of cached query (view) results. Furthermore, (his-
tograms over) base views are often not available in practice,
restricting the applicability of this view selection procedure.

In this paper, we propose two novel algorithms for the
problem of top-k query answering using cached views. Our
first algorithm LPTA+ is an extension of LPTA as proposed
in [26]. In LPTA+, we make a novel observation on the
characteristics of LPTA, and by taking advantage of the fact
that our views are cached in memory, we can usually avoid
the iterative calling of the LP sub-procedure, thus greatly
improving the efficiency over the LPTA algorithm. LPTA+

can be useful for scenarios with a small number of views and
low dimensionality. For the case where the number of cached
views is large and the dimensionality is high, we further
propose an index structure called the inverted view index
(IV-Index), which stores the contents of all cached views in
a central data structure in memory, and can be leveraged to
answer a new top-k query efficiently without any need for
view selection.

Specifically, we make the following contributions: (1) We
consider the general problem of top-k query answering using
views, where base views are not available, and the cached
views include only the top-k tuples which need not cover the
whole view (Section 2). (2) For scenarios where we are not
allowed to maintain additional data structures, we extend
LPTA and propose a new algorithm, LPTA+, which can
significantly improve performance over LPTA (Section 3).
(3) We further propose a novel index-based algorithm, IV-
Search, which leverages standard space-partitioning index
structures, and can be much faster than LPTA/LPTA+ in
most situations. We consider two different strategies for
the IV-Search algorithm, and discuss additional optimiza-
tion techniques (Section 4). (4) We present a detailed set of
experiments showing that the performance of our proposed
algorithms can be orders of magnitude better than the state-
of-the-art algorithms (Section 5). Related work is discussed
in Section 6 and we conclude the paper in Section 7.

2. PROBLEM SETTING
Given a schema R with m numeric attributes A1, . . . , Am,

we denote a relation instance of R by R. In practice, R
may have other non-numeric attributes as well, but we are
concerned only with the numeric attributes. Every tuple t ∈
R is an m-dimensional vector t = (t[1], . . . , t[m]), where t[i]
denotes the value of t on attribute Ai, i = 1, . . . ,m. Similar
to previous work on top-k query processing, we assume that
attribute values are normalized in the range of [0, 1], and
that each tuple t also has a unique tuple id.

Similar to [26], we define a top-k query Q over R as a
pair (f, k), where k is the number of tuples required, and
f : [0, 1]m → [0, 1] is a linear function which maps the m

attribute values of a tuple t to a preference score, i.e., f(t) =
w1t[1] + · · · + wmt[m], where wi ∈ [0, 1], and

∑
i
wi = 1.

Note that since every wi is non-negative, the function f is
clearly monotone, i.e., for two tuples t1 and t2, if t1[i] ≥ t2[i],
i = 1, . . . ,m, then f(t1) ≥ f(t2).

Given a relation R and a query Q = (f, k), without loss of

490

generality, assume that k ≤ |R| and that larger f values are
preferred. Then the semantics of top-k query processing is
to find k tuples in R which have the largest values according
to the query score function f . We can formally define the
answer to a top-k query as follows.

Definition 1. Top-k Query Answer: Let Q = (f, k)
be a top-k query over relational schema R. Given a relation
R over R, the answer of Q on R, Q(R), is a list of tuples
from R such that |Q(R)| = k, and ∀t ∈ Q(R) and ∀t′ ∈
R\Q(R), f(t) ≥ f(t′). Finally, tuples of higher rank in
Q(R) have a higher score according to the score function f .

A top-k cached view, or a top-k view for brevity, is defined
similarly to a top-k query, except the results of a top-k view
are cached in memory. For each tuple t in a cached view,
we assume all attribute values t[i], i = 1, . . . ,m, will also be
cached in memory, and thus can be efficiently accessed at
query time. We allow random access by id on the cached
tuples. Given a view Vi = (fi, ki), without any ambiguity,
we reuse Vi also to denote the list of (ki) tuples materialized
along with their ranks and scores w.r.t. fi.

We use Vi[j] to denote the tuple t ∈ Vi, which has the
jth highest score w.r.t. fi, with ties broken using tuple id,
i.e., a tuple with a smaller tuple id will be ranked higher.
Similarly for a given relation R, we denote the jth tuple in
R following the order defined by a score function f as Rf [j].

Let V = {V1, . . . , Vp} be a set of views, where Vi = (fi, ki)
is a top-ki view, and letQ = (f, k) be a top-k query. Inspired
by the notion of certain answers when answering a non-
ranking query using views [15], we say a relation R is score
consistent with the set V of views, if for any view Vi =
(fi, ki) ∈ V, the jth tuple Rfi [j] in R w.r.t. fi has the same
score as the jth tuple Vi[j] in Vi, i.e., fi(Rfi [j]) = fi(Vi[j]),
for j = 1, . . . , ki. Note that we do not require Rfi [j] to
have the same tuple id as Vi[j], since the score of a tuple
is determined solely by its attribute values and not by its
tuple id (Definition 1).
Given a set of views V = {V1, . . . , Vp}, a score consis-

tent relation R is the counterpart of a possible world under
the closed world assumption (see [15]). Accordingly, we de-
fine a tuple t ∈ Vi, i = 1, . . . , p, to be a certain answer to
Q if, for any relation R which is score consistent with V,
f(t) ≥ f(Rf [k]), i.e., the score of tuple t is no worse than
the score of the kth tuple in R under the query score func-
tion f . Motivated by the previously mentioned applications
where we need to efficiently answer a query using merely
top-k views, we consider the following problem.

Definition 2. Top-k QAV (kQAV): Given a set V =
{V1, . . . , Vp} of top-ki views, i = 1, . . . , p and a top-k query
Q = (f, k), find all certain answers of Q, denoted Q(V), up
to a maximum of k answers.

Notice that we have no access to the complete ranking
of tuples in the views nor access to the base views. Simi-
lar to query answering using views in a non-ranking setting
[15], given only the view set V, we need to find the certain
answers. The number of certain answers may be less than,
equal to, or more than k. Since Q = (f, k), we restrict the
output to a maximum of k certain answers, where any ties
at rank k are broken arbitrarily.
As an example, consider the set of views V = {V1, V2}

as shown in Figure 1 (b) and assume the base relation R

is no longer available. Assume we are given the query Q =
(f, 1), where f = 0.1A+ 0.8B + 0.1C. Using the techniques
proposed in Section 3, we can determine that {t5} is the set
of certain answers to Q. Intuitively, this is because after
accessing the second tuple in V1 and V2, we can derive that
for all unseen tuples, the maximum possible value w.r.t. Q
is 0.6425 which is smaller than the current best tuple t5 for
which f(t5) = 0.74. And if Q = (f, 4), we can only find 3
certain answers to Q, which are t5, t3 and t1. This is because
after accessing all three tuples in V1 and V2, the maximum
possible value w.r.t. Q is 0.56 for all unseen tuples, and only
t5, t3, t1 have projected values larger than or equal to 0.56.

2.1 System Overview
Motivated by the applications discussed in the introduc-

tion, we consider the following top-k query evaluation frame-
work as illustrated in Figure 2. For a top-k query Q = (f, k)
submitted to the query processing system, the query execu-
tor will consult the cached top-k views to find the maximum
set of certain answers to Q. In this work, we will focus on the
kQAV problem where the goal is to efficiently find certain
answers using only the given top-k views.

System

Cached Top-k View

V1 V2 V3 ...

User

Q

Q()

Query
Executor

V

Figure 2: System overview.

In the following sections, we will first adapt and improve
the LPTA algorithm as originally proposed in [26] for ad-
dressing the kQAV problem as defined above, where neither
the complete ranking of tuples nor the base views are avail-
able. We will then discuss how a standard space partition-
based index can be used to further optimize the performance
of the algorithm.

3. LPTA-BASED KQAV PROCESSING
In this section, we first discuss LPTA, the state-of-the-art

algorithm proposed in [26] for answering a top-k query using
a set of views.1 We shall see in Section 3.1 that LPTA has
several limitations. We first review LPTA and discuss how
it can be adapted to produce certain answers when cached
views are not complete rankings of tuples and no base views
are available. In Section 3.2, we propose a new algorithm
LPTA+ which overcomes the limitations of LPTA.

3.1 Algorithm LPTA
In [26], Das et al. first studied the problem of answer-

ing a top-k query using multiple views. Similar to the TA
algorithm [27], the authors of [26] assume that the under-
lying database can be randomly accessed to retrieve tuple
attribute information using tuple ids, and that each view
stores a list of tuple ids along with the scores. They focus
on the scenario where either each view is a complete rank-
ing of all tuples in R, or the base views, which are complete
rankings of all tuples in R according to the values of each

1Recall that they assume that views are complete rankings
of tuples or that base views are available.

491

attribute, are available. Thus a top-k query can always be
answered exactly and completely. We next briefly review
the LPTA algorithm presented in [26].

Consider the score function f of each query/view also as a

vector ~f from the origin O, representing the direction of in-
creasing value. Given the assumption on the score function,
the vector defined by any possible score function considered
will reside in the first quadrant. For now, we will assume
that for every cached view Vi = (fi, ki), it is the case that
ki = |R| and the tuples in Vi are sorted based on fi, or their

projected values on ~fi. In Figure 3 (a), we show an example
of the relation R from Example 1 when projected on the first
two dimensions A and B. Given a query Q = (f, k), we can

rank the tuples by projecting them onto ~f , as shown in the
figure.

Q: (f,k)

V1: (f1,k1)

V2: (f2,k2)

A

B

T(1,1)

O(0,0)

(b)

Q: (f,k)

A

B

T(1,1)

O(0,0)

(a)

t1

t2

t3

t4

t5

t6

Figure 3: Example of LPTA.

Recall that we have a set V of p views, and assume that
a set U ⊆ V of r views has been selected in order to answer
the query (we discuss the view selection problem below). In
order to answer a top-k query Q = (f, k), the LPTA al-
gorithm accesses tuples sequentially from the r views. For
each tuple t accessed, the algorithm performs a random ac-
cess to the database in order to retrieve the attribute value
information of t. The current candidate top-k results can
be easily maintained from the accessed tuples. However, it
is more challenging to find the maximum value τ that can
be achieved by any unseen tuple, which is critical for the
stopping criterion of the LPTA algorithm. Let the last tu-
ple accessed in each view Vi = (fi, ki) ∈ U be denoted by
t̄i, i = 1, . . . , r. As observed in [26], τ can be calculated by
solving the following linear programming (LP) problem:

max
t

τ = f(t)

subject to: fi(t) ≤ fi(t̄i), i = 1, . . . , r

0 ≤ t[i] ≤ 1, i = 1, . . . ,m (1)

The “LP solver” is clearly more complex and time con-
suming than other components in the LPTA algorithm, so
instead of invoking this solver every time a new tuple is
accessed from a view Vi, LPTA accesses tuples from the r

views in a lock-step fashion, i.e., the LP solver will be called
once for every r tuples accessed.

The pseudocode for LPTA is given in Algorithm 1. We
initialize a priority queue X based on the score function f of
Q (line 1) and the threshold value τ (line 2). The algorithm
then iteratively accesses tuples from the r views in a lock-
step fashion (lines 4–5). For each set of r tuples accessed,
the algorithm finds the value of τ by solving the LP problem
(Formula 1) (line 8). If the kth tuple X[k] in the priority
queue has value no less than τ , the algorithm can stop.
As we will demonstrate in Section 3.2, while the cost of

iteratively calling the LP solver is reasonable when the di-

Algorithm 1: LPTA(U = {V1, . . . , Vr}, Q = (f, k))

1 X ← an empty priority queue;
2 τ ← ∞;
3 repeat
4 {t̄1, . . . , t̄r} ← getNextTuple(U);
5 retrieveTupleInfo({t̄1, . . . , t̄r});
6 X.insert({t̄1, . . . , t̄r});
7 X.keepTop(k);
8 Find τ by solving the LP problem in Formula (1);

9 until noNewTuple(U) or (|X| = k and f(X[k]) ≥ τ);

mensionality for the given input relation R is low, the cost
increases significantly as the dimensionality grows. We will
discuss in Section 3.2 how this increased cost can be avoided
by leveraging innate characteristics of the kQAV problem.

Another problem that remains to be addressed in using
LPTA is how to choose the r views from a potentially large
pool of cached views, so that query processing cost can be
minimized. As shown in [26], we need no more than m views
for processing a query on an m-dimensional relation R (so
r ≤ m), and this view selection process is critical for the
performance of the LPTA algorithm. In [26], the authors
first observe that for the 2-dimensional case, we can prune
views by considering the angle between view score function
vectors and the query score function vector. Given a query

score function f and two view score functions f1, f2, if ~f1

and ~f2 are to the same side of ~f , then we only need to select

the view which has the smaller angle to ~f for answering the
query, while the other view can be pruned. For example,
consider the two cached views V1 and V2 along with query

Q in Figure 3 (b). Because ~f1 has the smaller angle to ~f , Q
can be answered using V1, while V2 can be pruned.

However, this pruning technique may not be very useful
for high dimensional scenarios. As has been shown in recent
work [41], the pruning of views in the general case may in-
volve solving an LP problem whose number of constraints
is proportional to the total number of views. This is clearly
not practical when the number of views is large, but this is
precisely the situation that arises when we want to answer
a query using previously cached results. Thus, in [26], the
authors adopt a greedy strategy for selecting views.

The view selection algorithm ViewSelect in [26] can be
described as follows. Let U be the current set of views se-
lected. ViewSelect will select the next view to be added to U
by using function EstimateCost to simulate the actual top-k
query Q on the histograms [33] of the views in U and those of
the remaining views. If there is no view which can improve
the cost of the current set of views, the algorithm stops and
returns the current set of views selected.

Since each call of the EstimateCost sub-procedure again
involves solving LP problems against the histograms of the
corresponding cached views, the computational cost for view
selection turns out to be very high. In Section 3.2 we will
first improve LPTA by removing many of the calls to the LP
solver. Then in Section 3.3, we will show how we could use
an LPTA-based algorithm for handling the general kQAV
problem with top-k views.

3.2 Algorithm LPTA+

The original LPTA algorithm relies heavily on repeatedly

492

invoking the LP solver for both view selection and query
processing, since the number of times the LP solver will
be invoked is proportional to the number of calls to the
LPTA algorithm (on both views and histograms) multiplied
by the number of tuples accessed from the views/histograms.
This is especially problematic when the dimensionality is
high, since the cost of LP solver increases significantly as
dimensionality grows.

To test this intuition, we conducted a preliminary exper-
iment to measure the relative contribution of the LP solver
and other operations to the overall cost. For a randomly
generated dataset, where each attribute value of a tuple
is chosen randomly from a uniform distribution, Figure 4
shows how query processing cost increases as dimensionality
increases. The results were obtained by selecting from a pool
of 100 randomly generated views, and by averaging the time
of processing 100 randomly generated top-10 queries, with
all views cached in memory. As can be seen from the figure,
the processing cost of the LP solver dominates the cost of
other operations in the LPTA algorithm. As the dimension-
ality grows, the cost of the LP solver increases quickly while
the cost of other operations remains essentially constant.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 3 4 5 6 7 8 9 10

ti
m

e
(s

e
c
o
n
d
s
)

dimensionality

LP Solver Cost
Other Operation Cost

Figure 4: Query processing cost of LPTA as the
dimensionality increases.

An important question is whether all these invocations of
the LP solver are actually necessary. We will soon see that,
by taking advantage of the fact that the views are cached in
memory and so can be accessed sequentially with very small
overhead, it will be sufficient to solve the LP problem just
a few times for most executions of the LPTA algorithm.

To see this, we need to first to discuss how an LP solver
works. We assume in this paper that the LP solver is based
on the SIMPLEX algorithm [24], which is the most widely
used LP algorithm. The general SIMPLEX algorithm usu-
ally works in two phases. The goal of the first phase is
to find one feasible solution2 to the original problem, while
the goal of the second phase is to find the optimal solu-
tion to the original problem. Because the formulation of our
problem as represented by Formula (1) is in standard maxi-
mization form [24] (i.e., there are no constraints of the form
w1t[1] + · · ·+ wmt[m] ≥ θ except the non-negative variable
constraints), the first phase of finding a feasible solution is
essentially trivial. Thus we need to concentrate on the sec-
ond phase of the SIMPLEX algorithm.

We call each non-zero variable in a feasible solution a basic
solution variable or BSV. In order to obtain the optimal
solution in the second phase, we use the pivoting technique,
which essentially replaces one BSV by a variable which is

2A feasible solution to an LP problem is a solution which
satisfies all the constraints.

not currently a BSV, in the hope that the target value τ can
be increased.

Now recall from the LPTA algorithm in Section 3.1 that
for every r tuples read, we need to solve a new LP problem.
An interesting characteristic of this process is that, for every
LP problem formulated, the only change is in the Right Hand
Side (RHS) of Formula 1, specifically fi(ti); other parts of
the constraints remain the same.
This characteristic motivates us to consider the following

improvement to the LPTA algorithm. As before, we start
by solving the LP problem once for the first set of r tu-
ples accessed, deriving the BSVs for the optimal solution
in the process. Then, when new tuples are accessed, we
can reuse the previously derived BSVs, and check whether
they lead to the optimal solution. If they do, then we have
obtained the optimal solution for the new LP problem with-
out exploring different possible BSVs using pivoting, which
can be very costly [24]. The check above can be done more
efficiently than pivoting. We note that this technique is dif-
ferent from previous work on Incremental Linear Program-
ming [17], where the focus is on the more general problem
of adding/removing/updating constraints.

The intuition behind the above optimization can also be il-
lustrated using geometric properties. Consider the 2-dimen-
sional example in Figure 5. Let t1 and t2 be the last two
tuples accessed from V1 and V2 respectively. The optimal so-
lution for the LP problem in Formula (1) can be obtained at
vertex c of the convex polytope Oacb in Figure 5 (a). Since
the values of c on dimensions A and B are both positive, we
know that A and B are the BSVs of the optimal solution.
After we have accessed two new tuples t3, t4 from V1, V2, we
need to shift the two edges ac and bc of the convex polytope
down and left to a′c′ and b′c′, as shown in Figure 5 (b).
Given the fact that the score functions of the cached views
are all monotone, it is very likely that, for the new convex
polytope Oa′c′b′, the optimal solution will be at the vertex
c′, which again has positive A and B values, and thus cor-
responds to the same BSVs. This shows that the optimal
solution corresponding to the new tuples can be obtained by
choosing the same set of BSVs in the LP problem, i.e., we
do not need to repeat the pivoting steps to find the optimal
BSVs.

Q: (f,k)V1: (f1,k1)

V2: (f2,k2)

A

B

T(1,1)

O(0,0)

(a)

t1

t2

Q: (f,k)V1: (f1,k1)

V2: (f2,k2)

A

B

T(1,1)

O(0,0)

(b)

t1

t2

t3

t4

c

c'

a

b

a'

b'

a

b

c

Figure 5: Example of LPTA+.

The pseudocode of the new LPTA+ algorithm is shown in
Algorithm 2. Compared with LPTA, the difference lies in
how the τ value is calculated (lines 8–15). For the first set of
tuples accessed, we run the LP solver and derive the corre-
sponding optimal BSVs B and τ (lines 8–9). After that, in
each iteration we check whether re-pivoting is needed by us-
ing the function isValidOptimal to verify whether the exist-

493

ing BSVs lead to a new optimal solution (lines 11–12); if they
do, we derive τ directly, otherwise we solve the LP problem
again and derive the new B and τ . Function isValidOpti-
mal basically pushes variables in B directly into the BSVs
of the SIMPLEX algorithm, and checks whether it forms a
valid solution considering the new RHS vector. The over-
head of this operation is small and can clearly avoid many
unnecessary pivoting steps in the SIMPLEX algorithm.

Algorithm 2: LPTA+(U = {V1, . . . , Vr}, Q = (f, k))

1 X ← an empty priority queue;
2 τ ← ∞, B ← nil;
3 repeat
4 {t̄1, ..., t̄r} ← getNextTuple(U);
5 retrieveTupleInfo({t̄1, . . . , t̄r});
6 X.insert({t̄1, . . . , t̄r});
7 X.keepTop(k);
8 if B is nil then
9 Compute the optimal BSVs B and τ using an

LP solver;

10 else
11 derive new RHS vector b using {t̄1, . . . , t̄r};
12 if isValidOptimal(U , B, b) then
13 derive the new τ directly;

14 else
15 Compute the optimal BSVs B and τ using

an LP solver;

16 until noNewTuple(U) or (|X| = k and f(X[k]) ≥ τ);

Since LPTA+ improves only the efficiency of calculating τ ,
we know that both LPTA and LPTA+ will examine the same
number of tuples from U . As we will demonstrate in the
experiments, the reuse of BSVs in LPTA+ usually has a very
small cost, and thus by avoiding many unnecessary pivoting
steps, LPTA+ can be much more efficient than LPTA in
practice.

3.3 Handling the General kQAV Problem
Although LPTA+ can improve the efficiency of LPTA, we

still need to extend it to handle the general kQAV prob-
lem, where we have only top-k views rather than complete
rankings of tuples, and no base views.
Our first observation is that, given a fixed set of views
U = {V1, . . . , Vr}, we can find all the certain tuples from
U by using the LPTA+ algorithm with the following simple
modifications: (1) if the algorithm stops before all tuples in
U are exhausted, we have already found a set of top-k certain
answers for the query, since every possible unseen tuple will
have a value no better than the current top-k results; (2)
if we have exhausted all tuples in U , let τ be the threshold
value derived from the last tuple of each view; if we remove
from the candidate top-k queue all tuples which have value
smaller than τ , then the remaining tuples in the queue are
guaranteed to be certain answers. Similar to the first case,
the pruning of the tuples in the candidate top-k queue here
is sound because τ indicates the maximum value that can
be achieved by an unseen tuple, say t. Every tuple t′ which
is pruned has a value less than τ , so there exists a possible
relation instance R which is score consistent with U , and at
the same time contains an unlimited supply of tuples that

have the same attribute values as t. Thus t′ cannot become
a top-k result for this R since it will be dominated by t.

Now one question is whether, given a set of cached views,
we can find a minimal subset of views which can give us
the maximum set of certain answers to the query Q = (f, k)
(up to a total of k). Unfortunately as discussed in [26],
an obvious algorithm to determine the best subset of views
has a high complexity since we need to enumerate all possi-
ble combinations of r views. Instead, following the heuris-
tics proposed in [26], we propose the modification to the
LPTA/LPTA+ algorithm described below. This modifica-
tion guarantees that we will find the maximum set of certain
answers to Q and that its complexity is linear in the number
of views, but it does not guarantee that the number of views
used is minimal.

Consider the second case above (we do not need any chan-
ges to the first case since that already finds a set of top-k
certain answers). Instead of pruning tuples which have a
value less than τ , we keep these candidate tuples and itera-
tively consider each of the remaining views. For each view
V ′ ∈ V−U , we investigate all tuples in V ′ one by one, replac-
ing existing candidate tuples with them whenever they have
higher value with respect to Q; meanwhile, we try to refine
the threshold value τ by considering the last tuple accessed
in V ′. During this process, if we have k candidate answers
which have value larger than or equal to τ , we know we have
found the top-k certain answers; otherwise, if all views have
been exhausted, we can get the maximum set of certain an-
swers by pruning from the candidate queue those which have
value less than τ .

It is straightforward to see that the above heuristic, when
used in conjunction with LPTA instead, gives us a procedure
for finding all certain answers to Q (up to a maximum of k).
Thus, LPTA can be used to find certain answers even when
base views or complete tuple rankings are not available.

4. IV-INDEX BASED TOP-K QAV
Though the LPTA+ algorithm proposed in Section 3 im-

proves the efficiency of the original LPTA algorithm by avoid-
ing unnecessary pivoting operations, the algorithm still needs
to invoke the LP solver multiple times, during both view se-
lection and query processing. When the underlying relation
has high dimensionality, the cost of LP solver calls can be
considerable. This motivates the quest for an even more
efficient algorithm for finding the certain answers.

To this end, we propose a simple index structure, called
the Inverted View Index (IV-Index). Using this index greatly
reduces the number of invocations of the LP solver, allowing
all certain answers in Q(V) to be returned quickly.

4.1 Inverted View Index
Given the set V of cached views, we first collect all tu-

ples in these views into an Inverted View Index (IV-Index)
I = (T ,HV ,Ht). The components of the index are as fol-
lows: Ht is a lookup table which returns the attribute value
information for a tuple given its id; HV is a lookup table
which returns the definition of a view, and T is a high-
dimensional data structure. In this work, we utilize a kd-
tree as the underlying high-dimensional data structure as it
has been shown to have the most balanced performance com-
pared with other high-dimensional indexing structures [19].
However, we note that the techniques we propose can be
easily adapted to utilize quad-trees or other indexing struc-

494

tures.
Each node g in the kd-tree T represents an m-dimensional

region, with the root node groot of T representing the entire
region from (0, . . . , 0) to (1, . . . , 1). The kd-tree is built as
follows. Starting from the root node, we recursively parti-
tion the region associated with the current node g into two
parts based on a selected dimension and a splitting hyper-
plane. These two sub-regions are represented by two nodes
which will become the children of g in T . Once this recur-
sive process has completed, the disjoint regions represented
by the leaf nodes of T form a partitioning of the whole m-
dimensional space. An example of a kd-tree along with the
partitioning is shown in Figure 6.

A
2

0

A
1

1

1

g1

V1

V1[k1] g3

g2g4

g9

g10g12

g11

g14

g13

g7g8

g15

g16

g6 g5

g1 g2 g3 g4 g13 g14 g15 g16

……

(a) kd-tree (b) space partition

A

B

Figure 6: Example of (a) a kd-tree, and (b) the cor-
responding partition of 2-dimensional space.

For a node g, without ambiguity, we also use g to denote
the region associated with the node. To facilitate query
processing, we associate each leaf node g of T with a set Tg of
tuple ids (tids), corresponding to tuples in the cached views
that belong to g. Given a node (region) g, let the value range
of g on each of the m dimensions be [g1l , g

1

u], . . ., [g
m
l , gmu],

and let t⊢g = (g1l , . . . , g
m
l) and t⊣g = (g1u, . . . , g

m
u). Then

for any monotone function f , it is clear that the maximum
(minimum) value that can be achieved by any tuple in g is
f(t⊣g), (resp., f(t

⊢

g)).
Since the set of top-k views cached in the memory may not

cover the complete set of tuples in the database, it is clear
that we may only have “partial” knowledge about regions
associated with some leaf nodes in T . Let R be any relation
that is score consistent with V. Given a region g, let Rg

denote the set of tuples in R whose values fall inside g. Then
we say that a region g is complete, or κ(g) = true, if Tg = Rg

for every score-consistent relation R; otherwise we say that
g is partial, or κ(g) = false. This is a semantic property
and it is expensive to check it directly. A sufficient condition
for checking the completeness of a region g is given in the
following lemma.

Lemma 1. A region g is complete if there exists a top-k
cached view Vi = (fi, ki) in V for which fi(Vi[ki]) < fi(t

⊢

g).

Proof. If fi(Vi[ki]) < fi(t
⊢

g), then clearly for any score-
consistent relation R, ∀t ∈ Rg, fi(Vi[ki]) < fi(t). So accord-
ing to the definition of top-k cached view, all tuples in Rg

must belong to V ; hence Rg = Tg.

A 2-dimensional example of Lemma 1 is shown in Figure 6

(b). This example shows a vector ~f1 corresponding to a view
V1 = (f1, k1) along with the k1’th tuple V1[k1] from the view.
If we draw a line AB through V1[k1] which is perpendicular

to ~f1, we can observe that t⊢g1 and t⊢g3 are above AB; thus

f1(V1[k1]) < f1(t
⊢

g1
), f1(V1[k1]) < f1(t

⊢

g3
), and g1, g3 are

complete. On the other hand, f1(V1[k1]) > f1(t
⊢

g2
), so if the

only top-k cached view we have is V1, we are not able to
determine whether g2 is complete or not. This is because
we do not have enough information about the part of g2
which is below AB. If R contains no tuple which falls inside
this region, g2 is complete; however, if R does contain tuples
which fall inside this region, g2 is partial.
We note that it is not possible to derive a necessary and

sufficient condition for checking the completeness of a region
given only the top-k cached views. This is because we will
have to consult the original database R to check whether the
regions which cannot be decided using Lemma 1, e.g., g2 in
above example, are complete or not. Obviously this process
can be expensive, and more importantly, it is against the
purpose of our kQAV framework which is to answer queries
using only top-k cached views. So we will simply label re-
gions whose completeness cannot be decided by Lemma 1
as partial. Alternative weaker sufficient conditions for com-
pleteness checking are left as future work.

Consider a partial leaf node g in T for a top-k cached
view V1 = (f1, k1). If f1(t

⊢

g) ≤ f1(V1[k1]) ≤ f1(t
⊣

g) (i.e., the

hyperplane which crosses V1[k1] and is perpendicular to ~f1
intersects with g), we will store a pair p = (V1, V1[k1].id) in
a cross view set Pg associated with g. In p, the first entry
is a pointer to the definition of V1, while the second entry is
the tuple id of V1[k1]. If no such views exist, i.e., the view
is complete, Pg = ∅. Consider the example of Figure 6 (b),
and suppose that V1 is the only top-k cached view. Then
(V1, V1[k].id) is in Pg2 as well as in Pg4 ,Pg5 ,Pg6 ,Pg7 and Pg9 .

4.2 IV-Search Algorithm
Given an IV-Index I, a top-k query Q = (f, k) can be

answered by traversing the corresponding kd-tree of I using
a strategy such as best-first search [40].

The pseudocode of our first algorithm, called IVS-Eager,
is given in Algorithm 3. The algorithm traverses the kd-tree
T by visiting first those nodes which have larger maximum
value with respect to Q (lines 3–17), as indicated by f(t⊣g),
since these nodes may have good potential to contain tuples
which have high value with respect to Q. If the current node
g is a leaf node, then we extract all tuples within g and check
whether they can become new candidate top-k results (lines
9–11). In addition, if a leaf node g is partial, we need to
collect information from Pg, which defines the region of the
unseen tuples which cannot be covered by the top-k cached
views, and solve a linear programming problem to find the
maximum value that can be achieved by any unseen tuples
in g (lines 12–13). Finally, if the current node g has its
maximum value f(t⊣g) less than or equal to f(Xr[k]), which
is the value of the kth candidate tuple in Xr, the algorithm
can stop, since according to the best-first search strategy,
any unseen nodes cannot contain a tuple which is better
than Xr[k] (line 14).

The correctness of IVS-Eager follows from the best-first
search strategy, since every unseen tuple will have value
smaller than Xr[k] with respect to Q. In addition, the up-
dating of the threshold value τ ensures that every tuple re-
turned is a certain answer.

One inefficiency in IVS-Eager is that, for every partial leaf
node encountered, we need to invoke an LP solver to update
the threshold value τ . This can be expensive for the follow-
ing two reasons: first, as shown in the example of Figure 6

495

Algorithm 3: IVS-Eager(I=(T ,HV ,Ht),Q = (f, k))

1 Xn ← an empty priority queue for kd-tree nodes;
2 Xr ← an empty priority queue for candidate results;

3 Xn.enqueue(groot, f(t
⊣

groot));
4 τ ←∞;
5 while ¬Xn.isEmpty() do
6 g ← Xn.dequeue();

7 τ ← min(τ , f(t⊣g));
8 if isLeaf(g) then
9 foreach t ∈ g do

10 Xr.enqueue(t, f(t));

11 Xr.keepTop(k);
12 if ¬κ(g) then
13 τ ← min(τ , LPSolve(Pg, Q));

14 if |Xr| = k ∧ f(Xr[k]) ≥ f(t⊣g) then break;

15 else
16 foreach gc ∈ children(g) do
17 Xn.enqueue(gc, f(t

⊣

gc));

18 return {t | t ∈ Xr ∧ f(t) ≥ τ};

(b), each top-k cached view might be stored in the cross view
set of many nodes, so there might be duplicated computa-
tion if we solve the LP problem for every node individually;
second, when the dimensionality is high, the number of such
partial nodes will be large. In the following, we propose an-
other algorithm, called IVS-Lazy, which needs to solve only
one (potentially larger) LP problem.

Algorithm 4 lists the pseudocode of IVS-Lazy. The dif-
ference with IVS-Eager is that whenever a partial leaf node
g is encountered in IVS-Lazy, we store the cross view set of
g in a cache Cn (line 13) rather than immediately solve the
LP problem and update the threshold τ as is done in IVS-
Eager. After we have exhausted all nodes in the kd-tree, we
collect all the view information in Cn and solve a single LP
problem (lines 18–19).

4.2.1 Further Optimization via View Pruning

As can be observed from Algorithms IVS-Eager and IVS-
Lazy, a critical operation in both algorithms is to collect
constraints from the cross view set(s), and solve the LP
problem given the query and constraints. Since the com-
plexity of an LP problem may increase considerably with
respect to the number of constraints, pruning constraints
which are not useful can be very important for the overall
query performance.

Let Q = (f, k) be the query to be processed, and assume
that we have accessed more than k tuples, i.e., |Xr| ≥ k,
using each of the two IV-Index based search algorithms.
Now consider the point at which we solve the LP prob-
lem, i.e., line 13 in IVS-Eager and line 19 in IVS-Lazy.
Let tmin = Xr[k] be the current kth tuple in Xr, and let
V = (f ′, k′) be a view from the corresponding cross view
set. According to the definition, for any tuple t /∈ V , we
have f ′(t) ≤ f ′(V [k′]), so the maximum value that can be
achieved by any such tuple can be calculated using the fol-
lowing LP problem:

Algorithm 4: IVS-Lazy(I = (T ,HV ,Ht), Q = (f, k))

1 Xn ← an empty priority queue for kd-tree nodes;
2 Xr ← an empty priority queue for candidate results;
3 Cn ← an empty cache for partial leaf nodes;

4 Xn.enqueue(groot, f(t
⊣

groot));
5 τ ←∞;
6 while ¬Xn.isEmpty() do
7 g ← Xn.dequeue();

8 τ ← min(τ , f(t⊣g));
9 if isLeaf(g) then

10 foreach t ∈ g do
11 Xr.enqueue(t, f(t));

12 Xr.keepTop(k);
13 if ¬κ(g) then Cn.add(Pg);

14 if |Xr| = k ∧ f(Xr[k]) ≥ f(t⊣g) then break;

15 else
16 foreach gc ∈ children(g) do
17 Xn.enqueue(gc, f(t

⊣

gc));

18 P ← consolidateCrossViewSets(Cn);
19 τ ← min(τ , LPSolve(P, Q));
20 return {t | t ∈ Xr ∧ f(t) ≥ τ};

max
t

φ = f(t)

subject to: f
′(t) ≤ f

′(V [k′])

0 ≤ t[i] ≤ 1, i = 1, . . . ,m (2)

Let f(t) = w1t[1] + · · · + wmt[m], and f ′(t) = w′

1t[1] +
· · · + w′

mt[m]. A careful inspection of the above LP formu-
lation will reveal that it is exactly the Fractional Knapsack
Problem (or Continuous Knapsack Problem) [35]. In this
problem, we are given a set of items o1, . . . , om, where each
item oi, 1 ≤ i ≤ m, has weight w′

i and value wi, and we are
asked to pack them into a knapsack with maximum weight
f ′(V [k′]) such that the total value is maximized, while al-
lowing fractions of an item to be put into the knapsack.

It is well known that a greedy algorithm which accesses
items ordered by utility (value divided by weight) finds the
optimal solution for the fractional knapsack problem, in lin-
ear time. Thus we utilize the following Algorithm FKP to
find the maximum value φ which can be achieved by an un-
seen tuple with respect to a view V and a query Q. If this
value φ is less than f(tmin) (the value of the current kth tu-
ple in Xr), we can safely prune V from consideration in both
IVS-Eager and IVS-Lazy when checking cross view sets.

4.3 Discussion
Since we usually prefer the cached views to reflect the most

recent and popular queries, and the memory consumption
of the index structure needs to be bounded, a mechanism
for cache replacement is necessary. There is much previous
work on good strategies for cache/buffer replacement [34,
23], so in this work we will assume that a cache replacement
strategy has been specified. Instead, we will only discuss
how the basic operations of inserting and deleting a view
might be implemented using the IV-Index.

To handle view insertion and deletion, we could associate
with each tuple t cached in the memory a count c(t), indi-

496

Algorithm 5: FKP(Q = (f, k), V = (f ′, k′))

1 l ← {(i, ui ←
wi

w′

i

) | 1 ≤ i ≤ m};

2 Sort tuples in l based on utility;
3 φ ← 0, B ← f ′(V [k′]);
4 for (i, ui) ∈ l do
5 if w′

i ≥ B then
6 φ ← φ+ uiB;
7 break;

8 else φ ← φ+ wi, B ← B − w′

i;

9 return φ;

cating how many views contain t. In addition, we could as-
sociate with each node g a count c(g), specifying how many
views cover g, or make g a complete node, according to
Lemma 1. First consider inserting a new top-k cached view
V = (f, k). For each tuple t ∈ V , we set c(t) = c(t) + 1 and
insert t into the kd-tree if necessary. To change the com-
pleteness status of nodes affected by V in the kd-tree, we
could use a best-first strategy to find each node g for which
f(t⊣g) > f(V [k]), and set c(g) = c(g) + 1. Similarly, when
deleting a top-k cached view V = (f, k), we could use a best-
first strategy to find each node g for which f(t⊣g) > f(V [k]),
and set c(g) = c(g) − 1. In addition, we find each cached
tuple t ∈ V for which f(t) > f(V [k]), set c(t) = c(t)− 1 and
remove it from cache when c(t) = 0.

5. EMPIRICAL RESULTS
In this section, we study the performance of various al-

gorithms for the kQAV problem based on one real dataset
of NBA statistics and four synthetic datasets. The goals
of our experiments are to study: (i) the performance of the
LPTA-based algorithms, and by how much LPTA+ improves
the state-of-the-art LPTA algorithm; (ii) the relative perfor-
mance of the lazy and eager versions of the IV-Index-based
algorithm, and to what extent they outperform LPTA+;
(iii) the effectiveness of the pruning process proposed in Sec-
tion 4.2.1. We implemented all the algorithms in Python,
and all experiments were run on a Linux machine with a 4
Core Intel Xeon CPU, OpenSuSE 12.1, and Python 2.7.2.
The NBA dataset is collected from the Basketball Statis-

tics website [7], which contains the career statistics informa-
tion of NBA players until 2009. The NBA dataset has 3705
tuples and we selected 10 attributes to be used in our exper-
iments. The synthetic datasets are generated by adapting
the benchmark generator proposed in [20]. The uniform
(UNI) dataset and the powerlaw (PWR) dataset are gener-
ated by considering each attribute independently. For UNI,
attribute values are sampled from a uniform distribution,
and for PWR, attribute values are sampled from a power
law distribution with α = 2.5 and normalized into the range
[0, 1]. In the correlated (COR) synthetic dataset, values from
different attributes are correlated with each other, while in
the anti-correlated (ANT) synthetic dataset, values from dif-
ferent attributes are anti-correlated with each other. Each
synthetic dataset is over 10 attributes and has 100000 tuples.
Weights for the score functions in all views are generated

randomly, and all views are cached in memory. Similar to
previous work on LPTA-based algorithms [26], the size of the
histograms used for estimation is set to be roughly 1% of the

size of the corresponding dataset. For the IV-Index-based
approach, we set the number of tuples in the leaf nodes
of the kd-tree to be less than or equal to 50. Alternative
configurations for the kd-tree were also tested with similar
results and so are omitted here for lack of space. Finally, the
query score functions are also generated randomly, and all
results reported here are based on an average of the results
from processing 100 queries.

5.1 LPTA-based Algorithms
In Figure 7, we compare the performance of LPTA and

LPTA+ for queries which ask for the top-100 tuples using
a set of 100 views. Figure 7 (a–e) considers the setting in
which each view contains 1000 tuples. We can see that, for
all five datasets, LPTA+ is much faster than LPTA in most
cases. Similar results are obtained for the setting in which
each view contains 100 tuples (Figure 7 (f–j)). However, we
note that for this setting, query processing time is longer
because now the views contain fewer tuples, so we need to
check more additional views in order to guarantee that we
will find all the certain answers in Q(V) w.r.t. the query Q.
In Figure 8 (a), we compare the performance of LPTA

and LPTA+ when varying the number of views in the cache
pool. Here we fix the number of dimensions at 5, and con-
sider queries where k is randomly selected from 10 to 100.
As can be seen from this figure, the performance of both
algorithms degenerates as the number of views increases.
However, LPTA+ is still twice as fast as LPTA in most set-
tings. This result was obtained using the RND dataset. Very
similar results were obtained for the other datasets and for
different dimensionality settings, and are thus omitted.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100 200 300 400 500

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Number of views

(a) LPTA vs. LPTA+

LPTA
LPTA+

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

100 200 300 400 500

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Number of views

(b) IVS-Eager vs. IVS-Lazy

IVS-Eager
IVS-Lazy

Figure 8: When varying the number of views on the
RND dataset, the performance comparison between:
(a) LPTA and LPTA+; (b) IVS-Eager and IVS-Lazy.

In Figure 9 (a), we compare the performance of LPTA
and LPTA+ when varying the value k in each query from 10
to 100, given 100 views and by fixing the the dimensionality
at 5. Similar to the previous results, the performance of
both algorithms degenerates as k increases, but LPTA+ is
still faster than LPTA for all settings. The results obtained
for datasets other than RND are very similar. We discuss
Figures 8(b) and 9(b) below.

Although LPTA+ can greatly outperform LPTA, it can
be observed that the query processing cost for LPTA+ is
still high.

5.2 IV-Index-based Algorithms
Figure 10 shows the experimental results of the IVS-Eager

and IVS-Lazy algorithms under the same settings as in Fig-
ure 7. Compared with the results of LPTA-based algorithms
in Figure 7, we can readily see that the IV-Index-based ap-

497

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(a) RND (1000)

LPTA
LPTA+

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(b) PWR (1000)

LPTA
LPTA+

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(c) COR (1000)

LPTA
LPTA+

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(d) ANT (1000)

LPTA
LPTA+

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(e) NBA (1000)

LPTA
LPTA+

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(f) RND (100)

LPTA
LPTA+

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(g) PWR (100)

LPTA
LPTA+

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(h) COR (100)

LPTA
LPTA+

 0

 1

 2

 3

 4

 5

 6

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(i) ANT (100)

LPTA
LPTA+

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(j) NBA (100)

LPTA
LPTA+

Figure 7: LPTA vs. LPTA+: (a–e) results on 5 datasets with each view containing 1000 tuples; (f–j) results
on 5 datasets with each view containing 100 tuples.

 0

 0.5

 1

 1.5

 2

 2.5

 3

10 20 30 40 50 60 70 80 90 100

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

k value in the query

(a) LPTA vs. LPTA+

LPTA
LPTA+

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

10 20 30 40 50 60 70 80 90 100

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

k value in the query

(b) IVS-Eager vs. IVS-Lazy

IVS-Eager
IVS-Lazy

Figure 9: When varying the value k of a query on the
RND dataset, the performance comparison between:
(a) LPTA and LPTA+; (b) IVS-Eager and IVS-Lazy.

proaches are orders of magnitude faster than the LPTA-
based approaches under all circumstances. From Figure 10
(a–j), we can also observe that, in most cases, IVS-Lazy is
much faster than IVS-Eager, since it saves many calls to
the LP solver. The only exception is for low-dimensional
cases where both algorithms have a very small query pro-
cessing cost. The advantage of IVS-Lazy especially applies
for the high-dimensional cases where more nodes in the kd-
tree are partial. Similar to the results of the LPTA-based
algorithms, both IVS-Eager and IVS-Lazy are much faster
on views which contain more tuples, simply because they
need to check fewer partial nodes in the kd-tree.

When we vary the number of views and when we vary the
number k in each query, as can be observed from Figure 8
(b) and Figure 9 (b), the performance of IV-Index-based
algorithms are orders of magnitude faster than the LPTA-
based algorithms. The running time of both IVS-Eager and
IVS-Lazy increases as the number of views increases, or as
k increases, as with all algorithms. However, IVS-Lazy has
consistently better performance than IVS-Eager.

5.3 Effectiveness of Pruning
Finally, in Figure 11, we show the effectiveness of the

pruning techniques proposed in Section 4.2.1. In this exper-
iment, we fix the number of tuples in each view to be 100,
and for each query Q = (f, k), k is a random number within
[10, 100]; for other settings of these parameters, the results

obtained are very similar. As can be seen from the figure,
the pruning technique can improve the performance of both
IV-Search algorithms. Notice that for various dimensional-
ity settings, the overall performance of IVS-Lazy/Pruning is
consistently the best on all five datasets.

6. RELATED WORK
For general top-k query processing, the most popular ap-

proach is the Threshold Algorithm (TA) / No Random Ac-
cess Algorithm (NRA) as proposed by Fagin et al. in [27].
While TA and NRA differ in whether random access to the
database is allowed, this family of algorithms usually share
a similar query processing framework which accesses tuples
from the database in a certain order, while maintaining an
upperbound on the maximum value that can be achieved by
the tuples that have not yet been accessed. If the current
top-k result has a value no less than the best value achiev-
able by any unseen tuple, the algorithm can stop. Recently,
various improvements to the original algorithms such as the
Best Position Algorithm [16] have been proposed, while vari-
ations of top-k queries such as Rank Join [31] and Contin-
uous Top-k Queries [45] have been studied. Finally, Li et
al. study how top-k algorithms might be implemented in a
relational database [39]. An excellent survey on top-k query
processing can be found in [32].

Hristidis et al. [30] first considered the problem of using
views to speed up top-k query processing. They focused on
finding one best view which can be used for answering a
query. As mentioned in [26], their setting is quite restrictive
as it cannot exploit multiple views, and it also assumes that
all attributes of the underlying base table are always utilized
for all top-k queries. Das et al. [26] propose a novel algo-
rithm, called LPTA, which overcomes the limitations of [30]
by utilizing multiple views for answering a top-k query.

It can be verified that the kQAV problem defined here is
a generalization of the kQAV problem as considered in [26].
This is because the core techniques proposed in [26] rely on
the assumption that either each top-k view Vi = (fi, ki) ∈ V
is a complete ranking of all tuples in R, i.e., ki = |R|; or the
base views, which are complete rankings of all tuples in R

according to the values of each attribute, are available. We
make no such assumptions in our setting. That said, we can

498

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(a) RND (1000)

IVS-Eager
IVS-Lazy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(b) PWR (1000)

IVS-Eager
IVS-Lazy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(c) COR (1000)

IVS-Eager
IVS-Lazy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(d) ANT (1000)

IVS-Eager
IVS-Lazy

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(e) NBA (1000)

IVS-Eager
IVS-Lazy

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(f) RND (100)

IVS-Eager
IVS-Lazy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(g) PWR (100)

IVS-Eager
IVS-Lazy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(h) COR (100)

IVS-Eager
IVS-Lazy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(i) ANT (100)

IVS-Eager
IVS-Lazy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 p
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(j) NBA (100)

IVS-Eager
IVS-Lazy

Figure 10: IVS-Eager vs. IVS-Lazy: (a–e) results on 5 datasets with each view containing 1000 tuples; (f–j)
results on 5 datasets with each view containing 100 tuples.

 0

 0.05

 0.1

 0.15

 0.2

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(a) RND (100)

IVS-Eager
IVS-Eager and Pruning

IVS-Lazy
IVS-Lazy and Pruning

 0

 0.05

 0.1

 0.15

 0.2

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(b) PWR (100)

IVS-Eager
IVS-Eager and Pruning

IVS-Lazy
IVS-Lazy and Pruning

 0

 0.05

 0.1

 0.15

 0.2

 0.25

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(c) COR (100)

IVS-Eager
IVS-Eager and Pruning

IVS-Lazy
IVS-Lazy and Pruning

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(d) ANT (100)

IVS-Eager
IVS-Eager and Pruning

IVS-Lazy
IVS-Lazy and Pruning

 0

 0.05

 0.1

 0.15

 0.2

 0.25

2 3 4 5 6 7 8 9 10

Q
u

e
ry

 P
ro

c
.

ti
m

e
(s

)

Num. of dimensions

(e) NBA (100)

IVS-Eager
IVS-Eager and Pruning

IVS-Lazy
IVS-Lazy and Pruning

Figure 11: Pruning effectiveness test of IV-Search algorithms based on the five datasets.

easily adapt our algorithms to work in settings where we do
have base views available or all views are complete rankings
of all tuples.

In [18], the authors consider the problem of whether a top-
k query can be answered exactly using a set of top-k views,
which resembles the classical query containment problem in
databases [21]. However, this work does not address the
general kQAV problem, i.e., return a maximum set of certain
answers, in case V cannot answer a query Q exactly. Ryeng
et al. [41] extend the techniques proposed in [26] and [18] to
answer top-k queries in a distributed setting. They assume
that access to the original database is available through the
network interface, thus exact top-k answers can always been
found by forming a “remainder” query which can be utilized
to fetch tuples not available in the views. We note that
the focus of our work is on efficient algorithms for finding
answers to the kQAV problem, where the original database
is not accessible. Should it be accessible, we can adapt the
techniques proposed in [41] to find the additional answers
in the case where our algorithms cannot find enough certain
tuples from the cached views.

In addition to leveraging views, an alternative way of op-
timizing top-k query processing is through a Layered In-
dex [22, 44, 29, 37]. These approaches try to organize tuples
in the database into an layered index structure. We can
quickly obtain the answers to a top-k query by accessing
just the first few layers of the index. First, we note that our
proposed IV-Index is significantly different from the layered
index, since it is based on a standard space partitioning in-
dex such as kd-tree. Furthermore, these layered indexes all
assume access to the original database is available, so are

difficult to adapt to scenarios where we have no access to
the database.

7. CONCLUSION
In this paper, motivated by many real applications, we

considered the problem of top-k query answering using cached
views, where each view is a top-k view for some k. To ad-
dress this problem, we first considered the state-of-the-art
LPTA algorithm as proposed in [26]. The performance of
LPTA suffers because of iterative calls to a linear program-
ming sub-procedure, which can be especially problematic
when the number of views is large or if the dimensionality of
the dataset is high. By observing an interesting characteris-
tic of the LPTA framework, we proposed LPTA+ which has
greatly improved efficiency over LPTA. We adapted both al-
gorithms so they work in our kQAV setting, where views are
not complete tuple rankings and base views are not avail-
able. Furthermore, we proposed an index structure, called
IV-Index, which stores the contents of all cached views in a
central data structure in memory, and can be leveraged to
answer a new top-k query much more efficiently compared
with LPTA and LPTA+. Using comprehensive experiments,
we showed LPTA+ substantially improves the performance
of LPTA while the algorithms based on IV-Index outper-
form both these algorithms by a significant margin. As fu-
ture work, it is important to study how to further optimize
the IV-Index based approach, e.g., by investigating alterna-
tive weaker sufficient conditions for completeness checking
for nodes. It is interesting to consider how the proposed al-
gorithms could be adapted for more complex top-k querying
frameworks such as Rank Join.

499

8. ACKNOWLEDGMENTS
This research was supported in part by a grant from NSERC

(Canada). The first author’s research was also supported
by the Four Year Doctoral Fellowship from the University
of British Columbia.

9. REFERENCES

[1] Auto123 consumer car ratings. http://www.auto123.
com/en/car-reviews/consumer-ratings/.

[2] Flickr. http://www.flickr.com.

[3] IMDB. http://imdb.com.

[4] Memcached. http://memcached.org.

[5] Metacritics. http://www.metacritic.com.

[6] Metascore.
http://www.metacritic.com/about-metascores.

[7] Nba basketball statistics.
http://www.databasebasketball.com.

[8] Rottentomatoes. http://www.rottentomatoes.com.

[9] Twitter. http://twitter.com.

[10] U.s. news best cars.
http://usnews.rankingsandreviews.com/

cars-trucks/rankings/cars/.

[11] U.s. news best collage rankings.
http://www.usnews.com/rankings.

[12] Wikipedia. http://www.wikipedia.org.

[13] World university rankings.
http://www.timeshighereducation.co.uk/

world-university-rankings/.

[14] Youtube. http://www.youtube.com.

[15] S. Abiteboul and O. M. Duschka. Complexity of
answering queries using materialized views. In PODS,
pages 254–263, 1998.

[16] R. Akbarinia, E. Pacitti, and P. Valduriez. Best
position algorithms for top-k queries. In VLDB, pages
495–506, 2007.

[17] G. J. Badros, A. Borning, and P. J. Stuckey. The
Cassowary linear arithmetic constraint solving
algorithm. ACM Trans. Comput.-Hum. Interact.,
8(4):267–306, 2001.

[18] E. Baikousi and P. Vassiliadis. View usability and
safety for the answering of top-k queries via
materialized views. In DOLAP, pages 97–104, 2009.

[19] C. Böhm, S. Berchtold, and D. A. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Comput. Surv., 33(3):322–373, 2001.

[20] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[21] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In STOC, pages 77–90, 1977.

[22] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li,
M.-L. Lo, and J. R. Smith. The onion technique:
Indexing for linear optimization queries. In SIGMOD,
pages 391–402, 2000.

[23] H.-T. Chou and D. J. DeWitt. An evaluation of buffer
management strategies for relational database
systems. In VLDB, pages 127–141, 1985.

[24] G. Dantzig. Linear Programming and Extensions.
Princeton University, 1998.

[25] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas.
Ad-hoc top-k query answering for data streams. In
VLDB, pages 183–194, 2007.

[26] G. Das, D. Gunopulos, N. Koudas, and
D. Tsirogiannis. Answering top-k queries using views.
In VLDB, pages 451–462, 2006.

[27] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci., 66(4):614–656, 2003.

[28] A. Y. Halevy. Answering queries using views: A
survey. VLDB J., 10(4):270–294, 2001.

[29] J.-S. Heo, J. Cho, and K.-Y. Whang. The hybrid-layer
index: A synergic approach to answering top-k queries
in arbitrary subspaces. In ICDE, pages 445–448, 2010.

[30] V. Hristidis, N. Koudas, and Y. Papakonstantinou.
PREFER: A system for the efficient execution of
multi-parametric ranked queries. In SIGMOD, pages
259–270, 2001.

[31] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid.
Supporting top-k join queries in relational databases.
In VLDB, pages 754–765, 2003.

[32] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey
of top-k query processing techniques in relational
database systems. ACM Comput. Surv., 40(4), 2008.

[33] Y. E. Ioannidis. The history of histograms. In VLDB,
pages 19–30, 2003.

[34] T. Johnson and D. Shasha. 2Q: A low overhead high
performance buffer management replacement
algorithm. In VLDB, pages 439–450, 1994.

[35] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
Problems. Springer, 2004.

[36] C. T. Kwok and D. S. Weld. Planning to gather
information. In AAAI/IAAI, Vol. 1, pages 32–39,
1996.

[37] J. Lee, H. Cho, and S. won Hwang. Efficient
dual-resolution layer indexing for top-k queries. In
ICDE, pages 1084–1095, 2012.

[38] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and
D. Srivastava. Answering queries using views. In
PODS, pages 95–104, 1995.

[39] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song.
RankSQL: Query algebra and optimization for
relational top-k queries. In SIGMOD, pages 131–142,
2005.

[40] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Pearson Education, third edition,
2010.

[41] N. H. Ryeng, A. Vlachou, C. Doulkeridis, and
K. Nørv̊ag. Efficient distributed top-k query processing
with caching. In DASFAA, pages 280–295, 2011.

[42] D. Theodoratos and T. K. Sellis. Data warehouse
configuration. In VLDB, pages 126–135, 1997.

[43] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and
D. Srivastava. Ranked join indices. In ICDE, pages
277–288, 2003.

[44] D. Xin, C. Chen, and J. Han. Towards robust indexing
for ranked queries. In VLDB, pages 235–246, 2006.

[45] A. Yu, P. K. Agarwal, and J. Yang. Processing a large
number of continuous preference top-k queries. In
SIGMOD, pages 397–408, 2012.

500

