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ABSTRACT

A wide variety of desktop and mobile Web applications involve
geo-tagged content, e.g., photos and (micro-) blog postings. Such
content, often called User Generated Geo-Content (UGGC), plays
an increasingly important role in many applications. However, a
great demand also exists for “core” UGGC where the geo-spatial
aspect is not just a tag on other content, but is the primary con-
tent, e.g., a city street map with up-to-date road construction data.
Along these lines, the iPark system aims to turn volumes of GPS
data obtained from vehicles into information about the locations of
parking spaces, thus enabling effective parking search applications.
In particular, we demonstrate how iPark helps ordinary users anno-
tate an existing digital map with two types of parking, on-street
parking and parking zones, based on vehicular tracking data.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Data mining, Spatial databases
and GIS

General Terms

Design, Experimentation
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1. INTRODUCTION
Web applications increasingly involve content with a geo-spatial

aspect, such as geo-tagged micro-blog postings1, photos2, and so-
cial network users and locations3. The geo-spatial aspect of this
kind of User-Generated Geo Content (UGGC) [1] occurs mainly as
meta data, namely as spatial attributes (e.g., locations) that describe
other content (e.g., photos).

In addition to such UGGC, we are also faced with a great demand
for core UGGC that is inherently geo-spatial, such as (poly-)lines

1http://tinyurl.com/ca9n4ha
2http://www.flickr.com/groups/geotagging/
3https://foursquare.com/about/
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representing new streets, turn restrictions, speed limits, and ad-
dresses of point-of-interests. For example, OpenStreetMap (OSM)4

aims to create a free, editable map of the world, where users can
create and update streets by modifying OSM map files. TomTom,
a leading manufacturer of navigation systems, encourages users to
make changes (e.g., altered turn restrictions) to its existing maps
using TomTom Map Share5 in order to achieve up-to-date naviga-
tion plans. Navteq, a major provider of electronic navigable maps,
also allows users to update its maps using Navteq Map Reporter6.

Parking is an important aspect of vehicular transportation, as
search for parking by drivers is a significant contributor to con-
gestion in cities and thus also generates considerable amounts of
greenhouse gas emissions [2]. Further, drivers waste considerable
time on searching for parking and on leaving early due to antici-
pated parking problems.

Several contributions towards enabling effective parking search
services have been made recently [3, 4]. An important prerequi-
site for such parking search services is that the locations of parking
spaces are recorded in digital maps. However, parking spaces (es-
pecially on-street parking) are often missing in full or in part for
cities in existing maps (e.g., Google Maps, Bing Maps, and OSM).
Thus, it is relevant to provide means of obtaining more complete
parking information, e.g., using GPS records from vehicles that are
available in increasingly large volumes.

We present iPark, a system that enables users to enhance the cov-
erage of parking spaces in OSM. After uploading a collection of ve-
hicular tracking data (e.g., GPS records), iPark identifies two types
of parking, on-street parking and parking zone parking. Users of
the system have the opportunity to make the final decision as to
whether or not to upload the identified parking into OSM. We are
not aware of other systems that facilitate users in creating park-
ing space UGGC in an efficient and effective manner from GPS
records.

2. SYSTEM DESIGN
Figure 1 gives an overview of the iPark system, which consists

of four major modules: pre-processing, graph construction, label
propagation, and post-processing.

The pre-processing module takes as input a collection of GPS
records obtained from vehicles, and it outputs a collection of park-

ing trajectories that exhibit parking search behavior and stop at
possible parking spaces. By considering the similarity of the park-
ing search behaviors exhibited by different parking trajectories, the
graph construction module builds a trajectory similarity graph based

4http://www.openstreetmap.org/
5http://www.tomtom.com/en_gb/maps/map-share/
6http://mapreporter.navteq.com/
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Figure 1: iPark Overview

on user-specified parameters. A small number of seed trajectories

that exhibit parking lane (PL) and parking zone (PZ) parking be-
havior are identified either in an automatic manner with the help
of existing parking locations recorded in OSM or manually by the
users. The label propagation module then applies semi-supervised
learning [5] to the trajectory similarity graph to classify parking
trajectories into two categories, PL trajectories and PZ trajectories.
The post-processing module takes as input existing OSM map files
and the identified PL and PZ trajectories, and it identifies possible
on-street and parking zone parking. In the following, we describe
each module in detail.

2.1 Pre-Processing
The input to the pre-processing module is a collection of GPS

vehicle tracking records. The pre-processing conducts three tasks:
reorganizing the GPS records, map matching, and parking trajec-
tory filtering.

Data Reorganization: A GPS record is of the form

(VID , t, l, h, s,mm),

where VID is a vehicle identifier; t indicates the time of the ob-
servation; l, h, s indicate the location (a latitude-longitude pair)
of the vehicle at t, the heading (degrees w.r.t. North) of the vehi-
cle’s movement at t, and the instantaneous speed of the vehicle at
t, respectively; and mm is an attribute reserved for map matching.

After grouping the GPS records by vehicle identifier, and order-
ing them based on time, GPS tracking observations are reorganized
into collections of trajectories. A trajectory is a sequence of GPS
observations that typically indicates a trip.

Map Matching: Trajectories are map matched onto an OSM
map using a map matching tool [6]. In particular, a GPS observa-
tion in a trajectory is mapped to a specific point on a road segment
in an OSM map, and the mm field of the observation is updated
with the specific point and the road segment identifier. However, a
small portion of GPS observations cannot be mapped to any road
segments. When this occurs, the corresponding mm fields are as-
sociated with empty values.

Parking Trajectory Filtering: Not every trajectory ends at a
parking space, so we eliminate the trajectories that do not finish at
parking spaces, yielding a collection of parking trajectories.

Intuitively, all such trajectories finish at a parking space, but

we need to filter some special cases. For example, vehicles that
travel through the Limfjord tunnel, Aalborg, Denmark, generate
non-parking trajectories due to missing GPS signal reception in the
tunnel. We eliminate non-parking trajectories by considering the
speeds of the last few observations of the trajectories. Specifically,
we treat a trajectory as a parking trajectory if the speed of its last
GPS observation is zero; if its last few GPS observations have very
low instantaneous speeds; and if it exhibits a clear slowing down
process during the ending part of the trajectory. In addition, a park-
ing duration threshold enables the separation of vehicles that are
parked from vehicles that merely are stopped temporarily, e.g., due
to red traffic lights.

2.2 Graph Construction
The graph construction module generates a trajectory similar-

ity graph that is employed as the data foundation in the label prop-
agation module. A trajectory similarity graph is a weighted, undi-
rected graph G = (V,E, F ), where V and E are vertex and edge
sets and function F : E → R records the weights of edges in E.

A vertex vi ∈ V represents a parking trajectory, and an edge
ek ∈ E is defined by a set of two distinct vertices. For example,
ek = {vi, vj} is an edge connecting vertices vi and vj , (vi 6= vj).
The parking search similarity between two trajectories represented
by vertices vi and vj , denoted as sim(vi, vj), is determined by
Equation 1. If sim(vi, vj) exceeds a threshold α, an edge ek =
{vi, vj} is created with weight sim(vi, vj), which is recorded in
function F by keeping an entry F ({vi, vj}) = sim(vi, vj). Fig-
ure 2 illusttrates a trajectory similarity graph where the similarity
threshold α is set to 0.5.
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Figure 2: Trajectory Similarity Graph and Label Propagation

After analyzing more than 100 million GPS records collected
from Aalborg, Denmark, six distinct features that can be derived
from GPS records were identified that indicate parking behavior.
The similarity between trajectories vi and vj is defined as a weighted
average of the similarities on the six individual features, as defined
in Equation 1.

sim(vi, vj) =

∑
6

k=1
λk · normk(|fk(vi)− fk(vj)|)∑

6

k=1
λk

, (1)

where λk is a relative importance weight of the k-th feature; |fk(vi)
− fk(vj)| is the difference between trajectories of vi and vj on the
k-th feature; and normk(·) is a normalization function that returns
a value in [0, 1]. Note that different (e.g., linear and non-linear)
normalization functions may be used for evaluating different fea-
tures. We proceed to cover the six features and how to compute
similarity for each.

Heading Difference: The heading differences of the last β1 GPS
observations of a parking trajectory is a good indicator of whether
a parking trajectory ended at a PL or a PZ. On-street parking nor-
mally involves a relatively complicated movement compared to park-
ing zone parking, and thus PL parking trajectories typically con-
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tains more heading changes. Thus, f1(vi) returns the absolute
value of the average heading changes of the last β1 observations
of parking trajectory vi.

Opposite Headings: This feature considers how many opposite
headings exist in the last β1 GPS observations of a parking trajec-
tory. If the heading difference between two consecutive observa-
tions exceeds β2 degrees, we treat it as an opposite heading occur-
rence. Feature f2(vi) returns the number of opposite headings in
the last β1 observations of parking trajectory vi.

Average Speed: We also consider the average speed of the last
β1 GPS observations of a parking trajectory. A PL trajectory nor-
mally has a lower average speed at the end since the vehicle has to
do back and forth movements with low speed. A PZ trajectory is
expected to have a higher average speed since the vehicle can enter
a parking space more directly. Feature f3(vi) returns the average
speed of the last β1 observations of parking trajectory vi.

Near Points: The near points in a parking trajectory are the GPS
observations that locate within a circle with the location of the last
GPS observation as center and β3 meters as radius. The presence
of many such near points suggests that the vehicle did parking ma-
neuvers, which increases the possibility that the vehicle parked at
a PL. Thus, f4(vi) returns the number of near points of parking
trajectory vi.

Parking Track Points: Given a parking trajectory, its parking
search region is a circle with the location of its last GPS obser-
vation as center and β4 meters as radius (β4 ≫ β3). The GPS
records whose locations are within the parking search region and
have speeds that are lower than β5 km/h are the parking track points.
The intuition is that a substantial number of PL trajectories in-
volve search for parking, meaning that PL trajectories typically
have more parking track points than do PZ trajectories. Feature
f5(vi) returns the number of parking track points of parking trajec-
tory vi.

Parking Place Matched: Whether the last β6 observations of a
parking trajectory are matched to a road segment is also a very im-
portant feature that distinguishes PL trajectories from PZ trajecto-
ries. Thus, f6(vi) returns the number of map-matched observations
in the last β6 observations of trajectory vi.

2.3 Label Propagation
Label propagation [5], a semi-supervised learning algorithm, is

conducted on top of the trajectory similarity graph in order to assign
each trajectory a label indicating that the trajectory ended at a PL,
a PZ, or an unknown type of parking.

Before running the label propagation algorithm, a small number
of trajectories must be labeled as PL and PZ trajectories—we call
them seed trajectories. If a trajectory stopped at a parking space
that is already recorded in OSM, the trajectory can be labeled with
the corresponding seed. For example, if the last GPS record of a
trajectory is in a parking zone that is already recorded in OSM, the
trajectory becomes a PZ seed. Further, users can also manually la-
bel trajectories, especially with the PL label. Only a small number
of seed trajectories (for our data set, 8 PL and 8 PZ seeds) need to
be created before the label propagation algorithm can automatically
propagate labels to unlabeled trajectories and assign each trajectory
a label.

We use a matrix Y ∈ R
N×M to denote the initial label assign-

ment, where N = |V| is the total number of parking trajectories,
and M = 3 indicates the three possible labels, i.e., PL, PZ, and
unknown. If the i-th trajectory is a PL (PZ) seed trajectory, its cor-
responding entry in matrix Y is set to 1. Figure 2 shows an example
where v1 and v2 is a PL and PZ seed trajectory, respectively. Thus,
Y1,1 = 1 and Y2,2 = 1, and all the remaining entries in Y are 0.

After label propagation, we get a new matrix Ŷ ∈ R
N×M that

records the estimated labels for all trajectories. Specifically, the
value of entry Ŷi,j indicates the probability of the i-th trajectory
being labeled with the j-th label. For the i-th trajectory, the j-th
label with the biggest probability (j = argmaxx∈{1,2,3} Ŷi,x) is
used as the final label of the trajectory. For example, trajectory v3
and v4 is finally labeled as a PZ and a PL trajectory, respectively,
because Ŷ3,2 and Ŷ4,1 has the biggest value on the third and fourth

rows of Ŷ, respectively, as shown in Figure 2.
The process of label propagation amount to minimizing the ob-

jective function

O(Ŷ) =

M∑

x=1

[
(Y·x − Ŷ·x)

T
S(Y·x − Ŷ·x)︸ ︷︷ ︸

Keeping seed labels

+µ1Ŷ
T

·xLŶ·x︸ ︷︷ ︸
Spreading labels

+µ2||Ŷ·x −R·x||
2

2︸ ︷︷ ︸
Regularization

]
,

where the intuition is to keep the labels for seed trajectories; to
spread labels over the graph while ensuring that similar trajectories
(evaluated by Equation 1) obtain similar labels; and to do regu-
larization to avoid over-fitting. Specifically, Y·x, Ŷ·x, and R·x

indicate the x-th column of the corresponding matrices. Next, L
is a graph Laplacian matrix derived from the trajectory similarity
graph G. How to construct the auxiliary matrices S and R, and
how to choose appropriate values for hyper-parameters µ1 and µ2

are beyond the scope of the paper and is covered elsewhere [5].

2.4 Post-Processing
All the locations of the last GPS records of the identified PL

trajectories indicate locations on road segments with possible on-
street parking spaces. By considering the directions of the PL tra-
jectories, the street sides that allow parking can be decided as well.
The identified PLs can be recorded in existing OSM road segments
by modifying the “parking:lane:{both|left|right}” attribute of such
segments.

By clustering the locations of the last GPS observations of PZ
trajectories, parking zones are identified, where each cluster cor-
responds to a parking zone. If a cluster only contains one GPS
observation, a node with tag “amenity=parking” is created. If a
cluster contains more than one GPS observations, a polygon that
covers all the GPS observations is created to indicate the extent of
the identified parking zone.

We provide two approaches to help ensure that the identified
parking spaces are correct. First, we only consider the PL and PZ
trajectories with high confidences. For example, we only consider
v4 for PL, but do not consider v3 for PZ because v3 has similar con-
fidences for both PL and PZ labels as shown in Figure 2. Second,
the user is asked to check the identified parking spaces and make
the final decision.

3. DEMONSTRATION OUTLINE
The user interface of iPark is developed on top of JOSM7 and

OpenLayers8. Figure 3, to be explained shortly, shows a screenshot
of iPark’s user interface. The four modules of iPark are imple-
mented in Java, where the label propagation module is built based
on Junto9. Next, we describe how demonstration participants can
interact with iPark to experience the working of the four modules.

7http://josm.openstreetmap.de/
8http://www.openlayers.org/
9http://code.google.com/p/junto/
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Figure 3: User Interface of iPark

Pre-Processing: We provide several collections of GPS tracking
data collected from Aalborg, Denmark. Participants may choose
any of these for conducting the pre-processing step. Upon pre-
processing, parking trajectories are listed. The participants can then
choose to visualize the parking trajectories, along with the corre-
sponding map matched road segments, on OSM or Bing Maps.
Figure 3 shows a parking trajectory as a red line along with its
corresponding, map-matched road segment, shown as a blue line,
where OSM is used.

Graph Construction: A data entry panel is provided that en-
ables the participants to set parameters that control the working
of the system. Default parameter settings are also provided. The
participants are able to observe differences in the graphs obtained
when choosing different parameter settings. This part of the demon-
stration offers an intuitive understanding of the effects of the differ-
ent parameters.

Label Propagation: To enable users to conveniently identify PL
and PZ seed trajectories, iPark provides an interface that can visu-
alize trajectories on top of an aerial image, e.g., by choosing the
“Bing Aerial (with labels)” button in the upper-right box in Fig-
ure 3. If the visualization shows that a trajectory stops along a
street (or in a parking lot), users can label the trajectory as a PL (or
PZ) seed trajectory.

For example, since Figure 4 clearly shows that the trajectory fin-
ished in a parking zone, participants can label it as a PZ seed tra-
jectory by clicking “PZ seed” in the popup window. To facilitate
the demonstration, we also provide a group of pre-selected PL and
PZ seed trajectories.

After running the label propagation process based on the chosen
seeds, iPark provides an interface for the users to inspect the results
of the label propagation, i.e., the label (along with its confidence
value) assigned to each parking trajectory.

Post-Processing: After post-processing, a collection of PLs and
a collection of PZs are identified. Next, the participants can set a
confidence threshold, so that identified parking spaces with con-
fidence exceeding the threshold can be uploaded to an OSM map
file directly. The parking spaces identified with confidence below
the threshold are listed so that users can determine by inspection

Figure 4: Choosing Seed Trajectories

whether they are correct.
For example, the red marker shown in Figure 3 indicates an iden-

tified parking space with low confidence. By clicking the marker,
a pop-up window shows its type, confidence value, corresponding
parking trajectory identifier, and other information about the corre-
sponding road segment. By means of a visualization on top of an
aerial image, the demonstration participants can check the correct-
ness of the identified parking spaces, and they can decide whether
to update the OSM map files with the identified parking spaces.

4. CONCLUSION AND OUTLOOK
We demonstrate how the iPark system allows users to turn vol-

umes of GPS records from vehicles into an OSM parking layer that
captures on-street parking and parking in parking zones.

Several improvements to iPark are possible, e.g., better filtering
of trajectories that experience long non-parking stops, e.g., due to
traffic jams; distinguishing private and public parking spaces; and
integrating iPark with parking search services. It is also of interest
to explore other opportunities for facilitating the use of GPS data
for the creation of core UGGC that may enhance map-based appli-
cations. Examples include improved representations of rotaries in
maps and the association of road width information (e.g., number
of lanes) with polyline representations of roads in maps.
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